図面 (/)

技術 放電現象解析装置、粒子挙動解析装置、粒子挙動解析システム、プログラム

出願人 富士ゼロックス株式会社
発明者 平松崇岡本英樹長尾剛次
出願日 2009年8月21日 (10年7ヶ月経過) 出願番号 2009-191534
公開日 2011年3月3日 (9年0ヶ月経過) 公開番号 2011-043648
状態 特許登録済
技術分野 その他の電気的手段による材料の調査、分析 電子写真におけるクリーニング・その他 特定用途計算機
主要キーワード 電気的中点 電荷面 計算終了条件 解析対象範囲 節点間隔 三角点 計算対象領域 電気的放電
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2011年3月3日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (15)

課題

面に堆積していない浮遊粒子放電現象解析できるようにする。

解決手段

電荷面602,604の間の粒子運動領域内に、予め決められた規則に従って領域境界610を設定する。浮遊粒子の内で、領域境界610を挟んで電荷面602側の領域に属する浮遊粒子aについては電荷面604側の領域に属するものとの間での放電現象a1を解析し、領域境界610を挟んで電荷面604側の領域に属する浮遊粒子bについては電荷面602側の領域に属するものとの間での放電現象b1を解析する。好ましくは、浮遊粒子aについては電荷面602側の領域に属するものとの間での放電現象a2も解析し、浮遊粒子bについては電荷面604側の領域に属するものとの間での放電現象b2も解析する。

概要

背景

各種の装置において発生する放電現象シミュレーションにより解析する仕組みが考えられている。

たとえば、特許文献1では、画像形成装置における転写ブロセスでの放電現象をシミュレーション解析する手法において、対向する面に電荷を有する粒子堆積しているシミュレーションモデルの場合には、粒子の表層部分に位置する節点電位差の算出の対象とする仕組みが提案されている。

概要

面に堆積していない浮遊粒子の放電現象を解析できるようにする。電荷面602,604の間の粒子運動領域内に、予め決められた規則に従って領域境界610を設定する。浮遊粒子の内で、領域境界610を挟んで電荷面602側の領域に属する浮遊粒子aについては電荷面604側の領域に属するものとの間での放電現象a1を解析し、領域境界610を挟んで電荷面604側の領域に属する浮遊粒子bについては電荷面602側の領域に属するものとの間での放電現象b1を解析する。好ましくは、浮遊粒子aについては電荷面602側の領域に属するものとの間での放電現象a2も解析し、浮遊粒子bについては電荷面604側の領域に属するものとの間での放電現象b2も解析する。A

目的

本発明は、放電現象のシミュレーションによる解析において、解析精度が向上する仕組みを提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

第1の面と第2の面に挟まれた解析対象領域内に、予め決められた規則に従って境界を設定する境界設定部と、前記解析対象領域内に浮遊している粒子の内で、前記境界設定部により設定された境界を挟んで前記第1の面側の領域に属するものについては前記第2の面側の領域に属するものとの間での放電現象解析し、前記境界設定部により設定された境界を挟んで前記第2の面側の領域に属するものについては前記第1の面側の領域に属するものとの間での放電現象を解析する放電解析部と、を備えた放電現象解析装置

請求項2

前記境界設定部は、前記第1の面および前記第2の面の中間に前記境界を設定する請求項1に記載の放電現象解析装置。

請求項3

前記境界設定部は、前記第1の面と前記第2の面との間の幾何学的な中間位置を前記境界に設定する請求項2に記載の放電現象解析装置。

請求項4

前記境界設定部は、前記第1の面や前記第2の面に電荷を有する粒子が堆積している場合には、前記堆積している粒子の内で最上層の粒子と、前記堆積している粒子に対向する面もしくは当該対向する面に堆積している粒子の内で最上層の粒子との間の幾何学的な中間位置を前記境界に設定する請求項2に記載の放電現象解析装置。

請求項5

前記境界設定部は、前記堆積している粒子の内の最上層の粒子の表面を基準にして幾何学的な中間位置を前記境界に設定する請求項4に記載の放電現象解析装置。

請求項6

前記境界設定部は、前記第1の面と前記第2の面との間の電気的な中間位置を前記境界に設定する請求項2に記載の放電現象解析装置。

請求項7

前記境界設定部は、前記第1の面や前記第2の面に電荷を有する粒子が堆積している場合には、前記堆積している粒子の内で最上層の粒子と、前記堆積している粒子に対向する面もしくは当該対向する面に堆積している粒子の内で最上層の粒子との間の電気的な中間位置を前記境界に設定する請求項6に記載の放電現象解析装置。

請求項8

前記境界設定部は、前記第1の面と前記第2の間の電界に対する、前記解析対象領域内に浮遊している粒子による変化分を反映させて前記境界を設定する請求項6または7に記載の放電現象解析装置。

請求項9

前記放電解析部は、着目する放電探索箇所電位変化単調でないときには、その放電探索箇所を放電解析の対象から除外する請求項6〜8の内の何れか一項に記載の放電現象解析装置。

請求項10

前記放電解析部は、前記浮遊している粒子の内で、前記第1の面側の領域に属するものについてはさらに前記第1の面側の領域に属するものとの間での放電現象を解析し、前記第2の面側の領域に属するものについてはさらに前記第2の面側の領域に属するものとの間での放電現象を解析する請求項1〜9の内の何れか一項に記載の放電現象解析装置。

請求項11

前記放電解析部は、前記解析対象領域内に浮遊している粒子を前記第1の面側の部分と前記第2の面側の部分とに分け、前記境界設定部により設定された境界を挟んで前記第1の面側の領域に属するものについては、さらに、前記第1の面側の部分と前記第1の面側の領域に属するものとの間での放電現象を解析し、前記境界設定部により設定された境界を挟んで前記第2の面側の領域に属するものについては、さらに、前記第2の面側の部分と前記第2の面側の領域に属するものとの間での放電現象を解析する請求項10に記載の放電現象解析装置。

請求項12

前記放電解析部は、前記解析対象領域内に浮遊している粒子の前記第1の面側の表面と前記第1の面側の領域に属するものとの間での放電現象を解析し、前記解析対象領域内に浮遊している粒子の前記第2の面側の表面と前記第2の面側の領域に属するものとの間での放電現象を解析する請求項10または11に記載の放電現象解析装置。

請求項13

前記放電解析部は、前記解析対象領域内に浮遊している粒子の表面で生じる放電現象を解析する請求項1に記載の放電現象解析装置。

請求項14

第1の面と第2の面に挟まれた解析対象領域内に、予め決められた規則に従って境界を設定する境界設定部と、前記解析対象領域内に浮遊している粒子の内で、前記境界設定部により設定された境界を挟んで前記第1の面側の領域に属するものについては前記第2の面側の領域に属するものとの間での放電現象を解析し、前記境界設定部により設定された境界を挟んで前記第2の面側の領域に属するものについては前記第1の面側の領域に属するものとの間での放電現象を解析する放電解析部と、前記放電解析部による放電現象の解析結果後の粒子の物性情報に基づき、前記解析対象領域内に存在する各粒子の運動を解析する運動解析部と、を備えた粒子挙動解析装置

請求項15

分配された解析対象要素受け付ける受付部および前記受付部が受け付けた解析対象粒子の物性情報に基づき予め決められた並行処理分割法に従って粒子挙動計算を行なう複数の粒子挙動計算部と、解析対象範囲内の解析対象要素を、前記分割法に従って前記複数の粒子挙動解析装置のそれぞれに分配する分配処理部と、を備え、前記粒子挙動計算部は、第1の面と第2の面に挟まれた解析対象領域内に、予め決められた規則に従って境界を設定する境界設定部と、前記解析対象領域内に浮遊している粒子の内で、前記境界設定部により設定された境界を挟んで前記第1の面側の領域に属するものについては前記第2の面側の領域に属するものとの間での放電現象を解析し、前記境界設定部により設定された境界を挟んで前記第2の面側の領域に属するものについては前記第1の面側の領域に属するものとの間での放電現象を解析する放電解析部と、前記放電解析部による放電現象の解析結果後の粒子の物性情報に基づき、前記解析対象領域内に存在する各粒子の運動を解析する運動解析部と、を備えている粒子挙動解析システム

請求項16

第1の面と第2の面に挟まれた解析対象領域内に、予め決められた規則に従って境界を設定する境界設定部と、前記解析対象領域内に浮遊している粒子の内で、前記境界設定部により設定された境界を挟んで前記第1の面側の領域に属するものについては前記第2の面側の領域に属するものとの間での放電現象を解析し、前記境界設定部により設定された境界を挟んで前記第2の面側の領域に属するものについては前記第1の面側の領域に属するものとの間での放電現象を解析する放電解析部と、して電子計算装置を機能させるプログラム

技術分野

背景技術

0002

各種の装置において発生する放電現象をシミュレーションにより解析する仕組みが考えられている。

0003

たとえば、特許文献1では、画像形成装置における転写ブロセスでの放電現象をシミュレーション解析する手法において、対向する面に電荷を有する粒子堆積しているシミュレーションモデルの場合には、粒子の表層部分に位置する節点電位差の算出の対象とする仕組みが提案されている。

先行技術

0004

特開2005−345120号公報

発明が解決しようとする課題

0005

本発明は、放電現象のシミュレーションによる解析において、解析精度が向上する仕組みを提供することを目的とする。

課題を解決するための手段

0006

請求項1に記載の発明は、第1の面と第2の面に挟まれた解析対象領域内に、予め決められた規則に従って境界を設定する境界設定部と、前記解析対象領域内に浮遊している粒子の内で、前記境界設定部により設定された境界を挟んで前記第1の面側の領域に属するものについては前記第2の面側の領域に属するものとの間での放電現象を解析し、前記境界設定部により設定された境界を挟んで前記第2の面側の領域に属するものについては前記第1の面側の領域に属するものとの間での放電現象を解析する放電解析部と、を備えた放電現象解析装置である。

0007

請求項2に記載の発明は、請求項1に記載の発明において、前記境界設定部は、前記第1の面および前記第2の面の中間に前記境界を設定する。

0008

請求項3に記載の発明は、請求項2に記載の発明において、前記境界設定部は、前記第1の面と前記第2の面との間の幾何学的な中間位置を前記境界に設定する。

0009

請求項4に記載の発明は、請求項2に記載の発明において、前記境界設定部は、前記第1の面や前記第2の面に電荷を有する粒子が堆積している場合には、前記堆積している粒子の内で最上層の粒子と、前記堆積している粒子に対向する面もしくは当該対向する面に堆積している粒子の内で最上層の粒子との間の幾何学的な中間位置を前記境界に設定する。

0010

請求項5に記載の発明は、請求項4に記載の発明において、前記境界設定部は、前記堆積している粒子の内の最上層の粒子の表面を基準にして幾何学的な中間位置を前記境界に設定する。

0011

請求項6に記載の発明は、請求項2に記載の発明において、前記境界設定部は、前記第1の面と前記第2の面との間の電気的な中間位置を前記境界に設定する。

0012

請求項7に記載の発明は、請求項6に記載の発明において、前記境界設定部は、前記第1の面や前記第2の面に電荷を有する粒子が堆積している場合には、前記堆積している粒子の内で最上層の粒子と、前記堆積している粒子に対向する面もしくは当該対向する面に堆積している粒子の内で最上層の粒子との間の電気的な中間位置を前記境界に設定する。

0013

請求項8に記載の発明は、請求項6または7に記載の発明において、前記境界設定部は、前記第1の面と前記第2の間の電界に対する、前記解析対象領域内に浮遊している粒子による変化分を反映させて前記境界を設定する。

0014

請求項9に記載の発明は、請求項6〜8の内の何れか一項に記載の発明において、前記放電解析部は、着目する放電探索箇所電位変化単調でないときには、その放電探索箇所を放電解析の対象から除外する。

0015

請求項10に記載の発明は、請求項1〜9の内の何れか一項に記載の発明において、前記放電解析部は、前記浮遊している粒子の内で、前記第1の面側の領域に属するものについてはさらに前記第1の面側の領域に属するものとの間での放電現象を解析し、前記第2の面側の領域に属するものについてはさらに前記第2の面側の領域に属するものとの間での放電現象を解析する。

0016

請求項11に記載の発明は、請求項10に記載の発明において、前記放電解析部は、前記解析対象領域内に浮遊している粒子を前記第1の面側の部分と前記第2の面側の部分とに分け、前記境界設定部により設定された境界を挟んで前記第1の面側の領域に属するものについては、さらに、前記第1の面側の部分と前記第1の面側の領域に属するものとの間での放電現象を解析し、前記境界設定部により設定された境界を挟んで前記第2の面側の領域に属するものについては、さらに、前記第2の面側の部分と前記第2の面側の領域に属するものとの間での放電現象を解析する。

0017

請求項12に記載の発明は、請求項10または11に記載の発明において、前記放電解析部は、前記解析対象領域内に浮遊している粒子の前記第1の面側の表面と前記第1の面側の領域に属するものとの間での放電現象を解析し、前記解析対象領域内に浮遊している粒子の前記第2の面側の表面と前記第2の面側の領域に属するものとの間での放電現象を解析する。

0018

請求項13に記載の発明は、請求項1に記載の発明において、前記放電解析部は、前記解析対象領域内に浮遊している粒子の表面で生じる放電現象を解析する。

0019

請求項14に記載の発明は、第1の面と第2の面に挟まれた解析対象領域内に、予め決められた規則に従って境界を設定する境界設定部と、前記解析対象領域内に浮遊している粒子の内で、前記境界設定部により設定された境界を挟んで前記第1の面側の領域に属するものについては前記第2の面側の領域に属するものとの間での放電現象を解析し、前記境界設定部により設定された境界を挟んで前記第2の面側の領域に属するものについては前記第1の面側の領域に属するものとの間での放電現象を解析する放電解析部と、前記放電解析部による放電現象の解析結果後の粒子の物性情報に基づき、前記解析対象領域内に存在する各粒子の運動を解析する運動解析部と、を備えた粒子挙動解析装置である。

0020

請求項15に記載の発明は、分配された解析対象要素受け付ける受付部および前記受付部が受け付けた解析対象粒子の物性情報に基づき予め決められた並行処理分割法に従って粒子挙動計算を行なう複数の粒子挙動計算部と、解析対象範囲内の解析対象要素を、前記分割法に従って前記複数の粒子挙動解析装置のそれぞれに分配する分配処理部と、を備え、前記粒子挙動計算部は、第1の面と第2の面に挟まれた解析対象領域内に、予め決められた規則に従って境界を設定する境界設定部と、前記解析対象領域内に浮遊している粒子の内で、前記境界設定部により設定された境界を挟んで前記第1の面側の領域に属するものについては前記第2の面側の領域に属するものとの間での放電現象を解析し、前記境界設定部により設定された境界を挟んで前記第2の面側の領域に属するものについては前記第1の面側の領域に属するものとの間での放電現象を解析する放電解析部と、前記放電解析部による放電現象の解析結果後の粒子の物性情報に基づき、前記解析対象領域内に存在する各粒子の運動を解析する運動解析部と、を備えている粒子挙動解析システムである。

0021

請求項16に記載の発明は、第1の面と第2の面に挟まれた解析対象領域内に、予め決められた規則に従って境界を設定する境界設定部と、前記解析対象領域内に浮遊している粒子の内で、前記境界設定部により設定された境界を挟んで前記第1の面側の領域に属するものについては前記第2の面側の領域に属するものとの間での放電現象を解析し、前記境界設定部により設定された境界を挟んで前記第2の面側の領域に属するものについては前記第1の面側の領域に属するものとの間での放電現象を解析する放電解析部と、して電子計算装置を機能させるプログラムである。

発明の効果

0022

請求項1,16に記載の発明によれば、放電現象のシミュレーションによる解析において、解析対象領域内の浮遊粒子を放電解析の対象としない場合よりも解析精度が向上する。

0023

請求項2に記載の発明によれば、中間位置の領域境界に対する浮遊粒子が帰属する領域に応じて放電解析を行なうことができる。

0024

請求項3に記載の発明によれば、領域境界を簡単に設定することができる。

0025

請求項4に記載の発明によれば、堆積粒子による実質的な電荷面の変動分を考慮しない場合よりも、浮遊粒子と堆積粒子との間の放電解析の精度が向上する。

0026

請求項5に記載の発明によれば、堆積粒子の最上層の粒子の表面以外を適用する場合よりも、浮遊粒子と堆積粒子との間の放電解析の精度が向上する。

0027

請求項6に記載の発明によれば、幾何学的な中間位置と電気的な中間位置が一致しない場合に、本請求項6に係る発明を採用しない場合と比較して放電解析の精度が向上する。

0028

請求項7に記載の発明によれば、幾何学的な中間位置と電気的な中間位置が一致しない要因が堆積粒子にある場合に、本請求項7に係る発明を採用しない場合と比較して放電解析の精度が向上する。

0029

請求項8に記載の発明によれば、幾何学的な中間位置と電気的な中間位置が一致しない要因が浮遊粒子にある場合に、本請求項8に係る発明を採用しない場合と比較して放電解析の精度が向上する。

0030

請求項9に記載の発明によれば、着目する放電探索箇所の電位変化が単調でないときに、その放電探索箇所を放電解析の対象とする場合よりも実態に即した解析ができる。

0031

請求項10に記載の発明によれば、本請求項10に係る発明を採用しない場合と比較して放電解析の精度が向上する。

0032

請求項11に記載の発明によれば、浮遊粒子を第1の面側の部分と第2の面側の部分とに分ける処理を、本請求項11に係る発明を採用しない場合よりも簡単にできる。

0033

請求項12に記載の発明によれば、請求項10または11の発明を実施する場合に、浮遊粒子の表面以外を適用する場合よりも、放電解析の精度が向上する。

0034

請求項13に記載の発明によれば、浮遊粒子の表面以外を適用する場合よりも、放電解析の精度が向上する。

0035

請求項14に記載の発明によれば、解析対象領域内の浮遊粒子も対象とした放電解析結果を反映させた粒子挙動解析ができる。

0036

請求項15に記載の発明によれば、解析対象領域内の浮遊粒子も対象とした放電解析結果を反映させた粒子挙動解析が、本請求項15に係る発明を採用しない場合よりも短時間で行なえる。

図面の簡単な説明

0037

本実施形態の放電現象解析処理粒子挙動解析処理で対象とする解析対象粒子が存在する装置の一例である電子写真方式の画像形成装置の一構成例を示す図である。
粒子挙動解析システムの基本構成を示すブロック図である。
主粒子挙動解析装置の構成例を説明する図である。
副粒子挙動解析装置の構成例を説明する図である。
粒子挙動解析装置の構成例を説明する図である。
数値演算処理部(粒子挙動計算部)の構成例を説明する図である。
本実施形態の放電解析処理を含む粒子挙動解析処理の処理手順の一例を説明するフローチャートである。
本実施形態の放電解析処理の基本的な考え方を示した概要図である。
第1実施形態の放電解析処理を説明する図である。
第2実施形態の放電解析処理を説明する図である。
第3実施形態の放電解析処理を説明する図(その1)である。
第3実施形態の放電解析処理を説明する図(その2)である。
第4実施形態の放電解析処理を説明する図である。
粒子挙動解析装置を、電子計算機を利用して構成するときの構成例を示すブロック図である。

実施例

0038

以下、図面を参照して本発明の実施形態について詳細に説明する。各機能要素について実施形態別に区別する際には、A,B,C,…などのように大文字英語参照子を付して記載し、特に区別しないで説明する際にはこの参照子を割愛して記載する。図面においても同様である。

0039

以下、図面を参照して本発明の実施形態について詳細に説明する。なお、以下においては、粒子挙動解析装置の解析対象粒子が存在する装置としては、たとえば、プリンタ装置ファクシミリ装置、またはそれらの機能を有する複合機などの画像形成装置を例に説明する。

0040

解析対象粒子との関係においては、トナー粒子のみまたはキャリア粒子とトナー粒子からなる現像剤を用いる電子写真方式による画像形成装置における現像剤粒子挙動解析に着目する。ただしこれは一例であって、解析対象粒子が存在する装置は画像形成装置に限定されない。特に、本実施形態で着目する放電解析との関係では、着目粒子と他の部材(他の粒子を含む)との間で放電現象が起こる装置であれば、どのようなものであっても、後述の実施形態を適用し得る。

0041

<画像形成装置の概要>
図1は、本実施形態の放電現象解析処理や粒子挙動解析処理にて対象とする解析対象粒子が存在する装置の一例である電子写真方式の画像形成装置の一構成例を示す図である。

0042

本構成では、カラー画像形成用を想定して、画像形成に関わる主要部の構成としては、転写装置にて直接に用紙に像保持体トナー像転写体である用紙に転写させるのではなく、出力色ごとの画像形成部(出力エンジン)を一列に配置したタンデム型の構成を採る。たとえば、K(黒),Y(イエロー),M(マゼンタ),C(シアン)の出力色に対応する複数の出力エンジンを、たとえばK→Y→M→Cの順にインライン状に配列し、K,Y,M,Cの画像を4つの出力エンジンで並行的(同時進行的)に処理する。配置位置に応じた時間を隔てて、1色ずつ中間転写体に像保持体のトナー像を転写(特に一次転写という)させ、その後、中間転写体上のトナー像を用紙に転写(特に二次転写という)させるように構成する。図は、その一部を示している。

0043

図示のように、画像形成装置1は、像保持体の一例である感光体10(感光体ドラム)を中心として、帯電装置20、露光装置30、図示しない攪拌機構を備えた現像装置40、転写装置50(一次転写装置50aおよび二次転写装置50b)、中間転写体の一例である中間転写ベルト58、ブレード機構を持つクリーニング装置60、定着装置70を備えている。

0044

帯電装置20は、感光体10の近傍に配された直流電源22、交流バイアス電源24、および帯電部26を具備している。露光装置30は、レーザ光源32やポリゴンミラー34やモータ36を具備している。転写装置50は、転写電源52および転写部54を具備している。

0045

現像装置40には、現像剤粒子102が充填されている。図では、1つの現像剤粒子102を便宜的に1つの丸で示している。実際には、現像剤粒子102はたとえば、それぞれ物性や粒径の異なる磁性体から構成された(磁性を持つ)キャリア粒子と非磁性のトナー粒子(たとえば各色のトナー粒子)を主成分として含有する2成分方式のものである。キャリア粒子とトナー粒子の対によって、全体として磁性粉体が形成されるようにしている。トナー粒子は、キャリア粒子に静電力により互いに吸着されている。一般的には、キャリア粒子の粒径の方がトナー粒子の粒径よりも大きい。なお、トナー粒子としては、磁性トナーを使用してもよく、この場合はキャリア粒子を使用しなくてもよい。現像剤粒子102は、実際にはさらに、外添剤などの他の粒子も含む。

0046

現像装置40は、収納容器101内に、表面に現像剤粒子102を引き連れて回転する回転ロールの一例である現像ロール140(マグロールマグネットローラ磁気搬送ローラとも言われる)を、周面が開口部101aから少し突き出すように備える。現像ロール140内には、その内周縁に沿って、予め決められた間隔で予め決められた数のマグネット142が配置されている。

0047

また、現像装置40は、現像ロール140の近傍に、高さ規制部材層形成部材層規制部材として機能する規制トリマー150を備え、マグネット142による磁力線に沿ってできた現像剤粒子102の磁気ブラシの高さを規制するようになっている。

0048

図示を割愛するが、収納容器101内には、現像剤粒子102を攪拌するとともに現像ロール140側に搬送する攪拌搬送ロールが設けられる。攪拌搬送ロールは、その回転動作によって、現像剤粒子102を現像ロール140側に攪拌しながら搬送する。

0049

現像ロール140は、矢印X方向に回転される感光体10とともに、感光体10と対向する側のその表面の回転移動方向が、感光体10の移動方向Xと同じ向き(矢印Y方向)に回転される。感光体10の移動方向Xと逆向きに回転駆動するようにしてもよい。

0050

現像剤粒子102は、攪拌機能を持つ攪拌搬送ロール(図示せず)により攪拌され摩擦帯電されつつ現像ロール140側に搬送される。規制トリマー150によって現像剤粒子102の現像ロール140への吸着量が規制され一定の高さで現像ロール140の周縁に現像剤粒子102が付着する。キャリア粒子は、現像ロール140に内蔵されたマグネット142からの磁場により磁気ブラシを構成する。トナー粒子はキャリア粒子とともに、感光体10に対向する部分まで搬送される。

0051

画像形成装置1を複写装置として構成する場合、帯電装置20によって、直流電源22からの直流電圧に交流バイアス電源24からの交流バイアス電圧重畳させて帯電電位初期電位)を生成し、この帯電電位で感光体10の表面を一様な表面電位に帯電させる。

0052

この後、原稿を図示しない読取装置によってスキャンして得た画像データに従って感光体10の表面に露光装置30に備えられるレーザ光源32から発せられるレーザビームをモータ36により回転駆動されるポリゴンミラー34でスキャンすることによって、感光体10表面を露光して潜像電位からなる静電潜像を形成する。

0053

続いて、現像装置40は、図示しない攪拌機構において出力色のトナー粒子やキャリア粒子などでなる現像剤粒子102を混合しながら、その現像剤粒子102中のトナー粒子を感光体10の表面に形成されている静電潜像に重畳することでトナー像を感光体10の表面に形成させる。

0054

すなわち、現像ロール140は、感光体10に対向して設けられており、現像ロール140に吸着された現像剤粒子102のうちトナー粒子は、帯電されており、静電気力により感光体10に吸着される。このとき、感光体10の表面は、記録画像に応じて露光されることで静電潜像が形成されており、トナー粒子は、感光体10に形成された静電潜像に応じて吸着される。これによって、感光体10の表面に形成された潜像は現像化される。現像処理後のキャリア粒子と、感光体10側に飛翔されなかったトナー粒子とは、収納容器101内に回収される。

0055

この後、一次転写装置50aは、感光体10の表面に形成されているトナー像を中間転写ベルト58上に転写する。感光体10と転写部54aとが対向する予め決められた範囲を一次転写領域と称する。

0056

一方、クリーニング装置60は、転写装置50による転写後の感光体10の表面に残留する残留トナーを除去する。清掃後の感光体10の表面には残留電位が残っているが、帯電装置20で初期電位を印加してから次の電子写真プロセスに利用される。

0057

中間転写ベルト58上のトナー像は、二次転写装置50bの転写部54b側に送られる。この動作と同期して、給紙トレイからピックアップローラで用紙がピックアップされ、その用紙はさらに用紙搬送ロールで二次転写装置50bの転写部54b側に搬送される。これによって、中間転写ベルト58上のトナー像は、二次転写装置50b(転写部54b)により用紙上に転写される。中間転写ベルト58と転写部54bとが対向する予め決められた範囲を二次転写領域と称する。

0058

転写済の用紙は定着装置70側に搬送され、定着装置70にて加熱溶融圧着作用によりトナー像を転写体としての印刷用紙上に定着する。定着済の用紙は、図示しない排出装置によって、画像形成装置1の外に排紙される。

0059

このような電子写真プロセスは、感光体10に対する帯電、原稿イメージの露光、現像すなわち感光体10へのトナー重畳、転写部材(中間転写ベルト58や用紙)へのトナー転写およびトナー定着、感光体10のクリーニングという複数の工程からなる。

0060

電子写真プロセスでは、たとえば、攪拌、現像、転写などの各プロセスにおいて粉体挙動解析シミュレーションを適用することで、現実に画像形成実験を行なうことなく、形成される画像を予測し評価する。このとき、特に、キャリア粒子やトナー粒子の挙動の解析が、電子写真装置本体や現像装置40の開発にとって重要な要素となる。

0061

たとえば、転写装置50における転写プロセスでは、感光体表面粗さや、感光体・中間転写ベルトや用紙などの転写体間の速度差、転写体の接触幅などの転写プロセスにおける条件パラメータを変更しながら、粉体挙動解析シミュレーションを繰り返し行なっていくことで、転写プロセスを再現しながら形成される画質の評価を行なう。因みに、転写プロセスについての粒子挙動解析では、現像剤粒子102(特にトナー粒子)に作用する電場および重力場を考慮する。そして、たとえば、電場(電界)中の粒子同士や粒子と面との間の放電現象を解析することが行なわれる。

0062

<粒子挙動解析システム>
図2は、粒子挙動解析システムの基本構成を示すブロック図である。基本構成の粒子挙動解析システム200は、粒子挙動解析処理の時間短縮のため、複数の粒子挙動解析装置による並列処理を行なうように、それぞれ粒子挙動解析機能を有する複数台の粒子挙動解析装置202がネットワーク接続されて構成されている。

0063

各粒子挙動解析装置202は、主要の処理データを相互にネットワーク208を介して伝達し合い、粒子挙動解析処理を並列的に実行可能になっており、粒子挙動解析システム200としては、事実上の並列型計算装置クラスタ計算機)として構成されている。ネットワーク208は、通信状態ルーティング機能を持つネットワーク管理装置208aで管理されるようになっている。

0064

各粒子挙動解析装置202は、一例として、一般の電子計算機と同様のもので構成するのがよい。ここで、図示した例では、粒子挙動解析システム200を構成する各粒子挙動解析装置202の内の1台が全体を統括する計算管理ノードの機能を持つ主粒子挙動解析装置202aとして機能するようになっている。主粒子挙動解析装置202aに対して残りの粒子挙動解析装置202が、主粒子挙動解析装置202aにより制御される副粒子挙動解析装置202bとしてネットワーク接続されている。

0065

なお、図では便宜的に、ネットワーク管理装置208aから1本のネットワーク線を出し、そのネットワーク線上に主粒子挙動解析装置202aと副粒子挙動解析装置202bとを接続する態様で示しているが、実際には、ネットワーク管理装置208aに備えられる個別のポートに各粒子挙動解析装置202が接続され、各粒子挙動解析装置202間の通信は、このネットワーク管理装置208aを介してなされるようになっている。

0066

主粒子挙動解析装置202aには、粒子挙動解析処理用の各種の操作を行なうためのキーボードマウスなどの指示入力装置210と、処理結果を操作者画像情報として提示する表示装置212とが接続されている。指示入力装置210と表示装置212を纏めてGUI(Graphical User Interface)と称し、表示装置212の表示画面をGUI画面と称する。

0067

このような基本構成のシステム構成により、複数種類粒子間相互作用がある系について粒子挙動解析処理を行なうに当たり、予め定められた分割法を適用して並列処理にて挙動解析を実行する。粒子挙動解析処理としては、たとえば、誘電率解析、電荷解析、放電解析、運動解析などが該当する。

0068

ここで、粒子挙動解析の並列計算アルゴリズム(分割法)としては、たとえば、領域分割法粒子分割法、力分割法などが知られている。本実施形態では、その何れを採用してもよい。

0069

なお、図2に示した粒子挙動解析システム200の基本構成では、事実上の並列型計算装置(クラスタ計算機)の構成で示したが、これは一例に過ぎない。図示を割愛するが、それぞれ粒子挙動解析機能を有する複数台の粒子挙動解析装置を第1ネットワークにてネットワーク接続されて並列型計算装置として構成されている複数の粒子挙動解析システムを、さらに、別の第2ネットワークで接続して構成されたものとしてもよい。この場合、各粒子挙動解析システムは、主要の処理データを相互に外部ネットワーク(第2ネットワーク)を介して伝達し合い、それぞれ対象の異なる粒子挙動解析処理を並列的に実行するようになり、このような変形例の粒子挙動解析システムとしては、事実上の並列型計算装置をネットワーク接続してなるグリッド型計算装置として構成される。

0070

<粒子挙動解析装置>
図3図3Bは、粒子挙動解析装置202を説明する図である。図3は、粒子挙動解析システム200における計算管理ノードの機能を具備した主粒子挙動解析装置202aに着目したブロック図である。図3Aは、粒子挙動解析システム200における一般ノードの機能を具備した副粒子挙動解析装置202bに着目したブロック図である。主粒子挙動解析装置202aは、副粒子挙動解析装置202bを含んで構成されている。図3Bは、並列化処理ではなく、1台の粒子挙動解析装置202にて粒子挙動解析処理を行なう場合の構成例である。

0071

図3に示すように、主粒子挙動解析装置202aは、指示入力装置210などを利用して処理対象データを取り込むデータ入力部220と、粒子挙動解析処理を行なうデータ処理部230と、処理結果を表示装置212などを利用して操作者に提示する情報提示部240を備えている。データ入力部220と情報提示部240は、主粒子挙動解析装置202aの計算管理ノードに相当する部分に設けられている。図3Aにも示すように、副粒子挙動解析装置202bは、このデータ処理部230のみで構成すればよい。

0072

各粒子挙動解析装置202のデータ処理部230は、個々の粒子の挙動を運動方程式に基づいて追跡する個別要素法を適用した粒子挙動解析手法を適用する。また、少なくとも、個別要素法を適用する際には、領域分割法、力分割法、粒子分割法、またはこれらを任意に組み合わせた方法、さらにはその他の分割法の何れかを適用した複数の粒子挙動解析装置202による並行処理を適用する。

0073

領域分割法は、処理対象要素である解析領域計算対象領域)を分割して、分割した領域別にその領域内に存在する全粒子を各プロセッサ(粒子挙動解析装置202)に割り当てていく手法である。粒子分割法は、処理対象要素である計算対象粒子を予め決められた数ずつ分割してマトリックス配置した各プロセッサ(粒子挙動解析装置202)に割り当てていく手法である。力分割法は、力マトリックスを用いたアルゴリズムを利用する手法である。力分割法は、マトリックス配置した各プロセッサの解析対象粒子を割り当てるという点では粒子分割法に似通っているが、解析対象粒子の割り当て方計算処理時の通信相手の考え方が異なる。

0074

主粒子挙動解析装置202aの計算管理ノード側の筐体内には、処理対象要素を各種の分割法に従って分割し、分割した各解析対象要素(分割部分)を、予め決められた分割法に従って粒子挙動解析を行なう各計算システム(プロセッサとも称する:図の粒子挙動解析装置202)に割り当てる(分配する)分割処理部250(分配処理部)が設けられている。

0075

複数の粒子挙動解析装置202を用いた並列処理により粒子挙動解析を行なう際には、解析対象の装置の全体について、纏めて分割対象とするのではなく、解析対象領域を複数の領域に分割し、この分割した各解析対象領域の別に、さらに予め決められた分割法を適用するのがよい。

0076

データ入力部220は、指示入力装置210を構成するキーボードやマウスを介して操作者より入力されるコマンドやデータを受け付け、データ処理部230に渡す。

0077

データ処理部230は、データ入力部220から入力されたデータに基づいて粒子挙動解析処理を行なう。そのため、データ処理部230は、データ受付部232と、数値演算処理部234と、バスインタフェース部235と、メモリアクセス制御部237と、データ記憶部238とを有している。データ処理部230は、副粒子挙動解析装置202bに含まれる。

0078

なお、数値演算処理部234、バスインタフェース部235、一時記憶部238aを同一パッケージ(筐体)に具備するプロセッサコア部239として構成してもよい。プロセッサコア部239は、数値演算処理を行なう1個のプロセッサコア(単に「コア」とも称する)と内蔵メモリ(一時記憶部238a)を具備したシングルコアコアCPUで構成されるものである。プロセッサコア部239には、数値演算処理部234と一時記憶部238aの他に、出力データ処理部として機能するバスインタフェース部235を有する。

0079

数値演算処理部234は、分割処理部250による分割処理により割り当てられた分割部分について、決められた分割法に従ってデータ記憶部238との間でデータ(情報)の入出力(メモリアクセス)を行ないながら計算を行なう粒子挙動計算部として機能する。

0080

バスインタフェース部235は、データの数値演算処理部234への入出力を行なうもので、解析過程のデータを他の粒子挙動解析装置202との間で受け渡しする機能の他に、数値演算処理部234で取得される解析結果(途中経過を含む)を情報提示部240に出力する出力データ処理部としても機能する。

0081

データ記憶部238は、相互作用を計算するためのパラメータ表のデータを記憶する装置であり、数値演算処理部234に接続される。ここで、データ記憶部238は、一時記憶部238aと外部記憶装置238bを含む。一時記憶部238aは、いわゆるCPUと同一の半導体基板上に内蔵される内蔵メモリ(キャッシュメモリ:Cache Memoryとも称される)と同様の一時記憶部238aであり、メモリバス(MBUS)を介して数値演算処理部234と接続される。外部記憶装置238bは、いわゆるメインメモリとも称される外部の半導体製の記憶媒体(たとえば数100MB〜数GB程度の容量のもの)やメインメモリより大容量(数100GB以上)のハードディスク装置(HDD)などであり、メモリバスとは異なるバスで数値演算処理部234と接続される。

0082

データ受付部232は、データ入力部220から入力されたデータをデータ記憶部238の外部記憶装置238bに記憶する。たとえば、解析の対象としている粒子を扱う装置の構成、計算に必要な各種物パラメータ物性値に関するデータ)や粒子の初期配置、解析対象粒子数やシミュレーションの収束条件などの計算条件が外部記憶装置238bに記憶される。

0083

数値演算処理部234は、データ受付部232からデータ記憶部238に供給されたデータに基づき、解析対象粒子について、たとえば、誘電率解析、電荷解析、放電解析、運動解析などを、予め決められた分割法を適用してシミュレーション処理にて解析する。計算途中では適宜、一時記憶部238aとの間でデータの記憶と読出しを行なう。数値演算処理部234は、その解析結果をバスインタフェース部235(出力データ処理部の機能部)を介して情報提示部240に供給する。

0084

情報提示部240は、数値演算処理部234での計算結果受け取り、数値演算処理部234での計算結果を表示データに変換し、表示装置212に供給する。たとえば、数値演算処理部234で取得された解析対処領域の電位分布、電荷量分布、粒子の挙動、電荷分布放電分布など結果を示す表示情報が表示装置212に供給される。表示装置212は、情報提示部240から供給された表示情報に基づく処理結果画像を表示する。実際には確認困難な現像剤粒子102の挙動を視覚的に把握できるように、現像剤粒子102の挙動予測可視化して表示装置212上に表示するのである。

0085

ここでは、分割処理部250を、計算管理ノードとして機能する主粒子挙動解析装置202aに設け、この主粒子挙動解析装置202aも粒子挙動解析システム200の一部を構成する粒子挙動解析装置202として説明したが、このことは必須ではない。粒子挙動解析を行なう複数の粒子挙動解析装置202(計算機)とは別の情報処理装置に分割処理部250を設けたシステム構成にしてもよい。その場合、各粒子挙動解析装置が扱う解析対象要素を分配する専用の装置が必要となるので、ここで示した構成例よりも、専用の情報処理装置(計算機)が1つ増えることになる。

0086

なお、図3および図3Aでは、粒子挙動解析処理の時間短縮のため、複数の粒子挙動解析装置202による並列処理を行なうように、主粒子挙動解析装置202aと副粒子挙動解析装置202bについて示した。しかしながら、粒子挙動解析処理を並列処理により行なうことは必須でなく、単一の粒子挙動解析装置202にて行なってもよい。たとえば、図3Bに示すように、主粒子挙動解析装置202aから分割処理部250を取り外して1台の粒子挙動解析装置202を構成すればよく、その場合は、その1台の粒子挙動解析装置202が粒子挙動解析システム200と等価である。

0087

<数値演算処理部の構成>
図3Cは、粒子挙動解析装置202に備えられる数値演算処理部234(粒子挙動計算部)の構成例を説明する図である。

0088

数値演算処理部234は、詳細には、導体電荷移動解析処理部420、境界設定部430、放電解析部440、運動解析部460、および、電荷移動解析部470を備える。これらの内の運動解析部460を除いた部分で放電現象解析装置402が構成される。

0089

電界計算を行なう手法としては有限要素法差分法があり、本実施形態ではその何れをも採用し得るが、以下では、特段の断りのない限り、有限要素法を適用するものとして説明する。

0090

導体中電荷移動解析処理部420は、誘電率解析部422、電荷解析部424、および、電荷移動解析部426を有する。

0091

誘電率解析部422は、各トナー粒子の位置・形状・径・誘電率などの情報に基づき、メッシュデータ中の誘電率の分布にトナー粒子の誘電率を考慮したデータを算出する。

0092

電荷解析部424は、メッシュデータ中の真電荷の分布に、トナー粒子が持つ電荷の分布を考慮したデータを算出する。

0093

電荷移動解析部426は、導体中の電荷移動をオームの法則に従って算出する。

0094

境界設定部430は、予め決められた手法に従って対向する2つの境界(電荷面)間に別の境界を設定する。

0095

放電解析部440は、放電の発生を判定して放電による電荷の移動や放電後の電位分布を算出するもので、詳しくは、対向面間放電抽出部442、尖頭材間放電抽出部444、放電電荷量算出部446、電荷更新部448を有する。

0096

対向面間放電抽出部442は、パッシェンの放電則に従って2つの対向する平面間における放電発生の有無を検索し、放電する部分を抽出する。対向面間放電抽出部442は、境界設定部430で設定された境界の情報も使って、放電する部分を抽出する。

0097

放電発生の検索は、メッシュデータ未知変数としての電位を定義している部分(電位定義セグメントまたは単にセグメントと称する)の内、放電を検索する面上または面に近接するものを使用し、各電位定義セグメントに対して最もパッシェン電圧を上回る対向面の放電定義セグメントを抽出することで実現する。検索に使用した面上または面に近接したセグメントを放電検索セグメント、抽出された電位定義セグメントを放電セグメント、放電相手との組を放電セグメント対と称する。パッシェン電圧としては、それを近似曲線で示したものが種々提案されており、その何れを使用してもよい。

0098

ここで、対向面間放電抽出部442は、面がその上に堆積したトナー粒子の層(以下、トナー層とも称する)で覆われている場合は、その覆われた部分の電位定義セグメントは検索から除外する。その代りに、面上に堆積したトナー層の内で表層に位置したトナー粒子に対して、そのトナー粒子に近接する電位定義セグメント(特にトナーセグメントと称する)を対応させ、トナーセグメントを放電発生の検索に使用する。

0099

尖頭部材間放電抽出部444は、除電針のようにパッシェンの放電則に従わない2体間について、ギャップ長放電開始電圧の関係を示す実験結果に基づいて放電セグメント対を抽出する。

0100

放電電荷量算出部446は予め決められている算出式(ここではその説明を割愛する:特許文献1の式2〜4を参照)に従って、放電発生後の電位と放電電荷量を算出する。トナーセグメント以外の放電セグメントの電荷量については、ここで得られた放電電荷量を加算して更新する。

0101

電荷更新部448は、放電電荷量算出部446で算出された放電電荷量の内で放電が発生している電位定義セグメントがトナーセグメントであった場合にトナーセグメント抽出の元となったトナー粒子に対して電荷量を放電電荷分だけ加算して更新する。

0102

運動解析部460は、静電気力、重力付着力空気抵抗力など、転写領域でトナー粒子に働く力に基づいてニュートンの運動方程式を解いてトナー粒子の座標を計算刻み時間後の位置に更新する。

0103

電荷移動解析部470は、物体の運動に伴う電荷の移動を解析する。たとえば、電荷は、一般に物体の表面にのみ存在する。このように電荷が蓄積される可能性のある物体の表面を電荷面と称する。ここで、物体の運動を考慮する場合、電荷面を構成する節点間で物体の運動方向に電荷を移動させればよい。

0104

画像形成装置1における転写プロセスでの挙動を解析する場合の電荷面としては、たとえば、一次転写領域では感光体10と中間転写ベルト58の表面が該当し、二次転写領域では中間転写ベルト58と用紙の表面が該当する。それらの間は実際には密着していることがあるが、電荷移動解析部470は、微小ギャップがあるものとして、電荷面上の真電荷を物体の運動方向に移動させることによりシミュレーションを実行する。

0105

<粒子挙動解析処理の概要>
図4図4Aは、本実施形態の粒子挙動解析処理を説明する図である。ここで、図4は、本実施形態の放電解析処理を含む粒子挙動解析処理の処理手順の一例を説明するフローチャートである。図4Aは、本実施形態の放電解析処理の基本的な考え方を示した概要図である。

0106

本実施形態では、電界計算を行なう手法として有限要素法を採用する。なお、有限要素法では節点で電位が定義されることから、電位定義セグメントは節点ということになる。この点を踏まえて、以下では、放電セグメントを「放電節点」とし、放電の解析対象となる放電検索セグメントを「放電検索節点」、放電セグメント対を「放電節点対」、トナーセグメントを「トナー節点」と称する。

0107

また、本実施形態の放電解析処理では、最初に放電が発生しないとしたときの電位分布を求め、その結果から放電発生箇所(放電節点対)を抽出し、放電開始電圧(たとえばパッシェン電圧)を超えないようにするにはどれだけの電荷を移動すればよいかを求める。特許文献1に示されている式2〜4(式3,4は放電が発生しないとしたときの電位分布から作成されるもの)に基づき、それらの式を電界計算の式に連成させて解析する。

0108

[粒子挙動解析処理]
なお、本実施形態では、粒子挙動解析処理の時間短縮のため、複数の粒子挙動解析装置202による並列処理を行なう。そのために、粒子分割法、領域分割法、力分割法などの各種の並列化アルゴリズムを適用するが、その際には分割処理部250が各粒子挙動解析装置202に担当部分を割り当てる。以下では、一例として、力分割法を適用する場合で説明する。

0109

先ず、主粒子挙動解析装置202a(の分割処理部250は)、現時点において並列化処理を適用した粒子挙動解析処理に使用可能な粒子挙動解析システム200を構成する粒子挙動解析装置202の数(プロセッサ数)を特定する(S102)。

0110

この後、主粒子挙動解析装置202aは、計算に必要な各種物理パラメータや粒子の初期配置や各種の分割法で必要となる解析対象粒子数などの計算条件を指示入力装置210やデータ入力部220を介して読み込み、関連する粒子挙動解析装置202へデータを配布する(S104)。このとき、データ入力部220や分割処理部250は、感光体10における潜像など、初期電荷分布の設定も同時に行なうとともに、入力データの条件に従って現像剤粒子102(放電解析との関係では特にトナー粒子)を初期位置に設定する(S106)。

0111

物理パラメータは、シミュレーションの計算モデルで用いる設定値であり、特に、本実施形態で着目する転写プロセスの粒子挙動解析に必要なメッシュデータや各種パラメータが含まれる。メッシュデータは、差分メッシュ有限要素メッシュなど、電界計算を行なう手法に応じて誘電体抵抗体からなる転写装置50の解析領域を微小領域に分割したデータを意味する。各種パラメータには、構造体(たとえば感光体10、現像ロール140、その他の現像剤粒子102にとって壁として機能するものなど)のヤング率、各部材の誘電率、導電率、電荷分布、境界条件としての電位、移動する物体の速度、電荷の蓄積する可能性のある面(電荷面と称する)の指定、放電の起こる面の指定、現像剤粒子102(キャリア粒子やトナー粒子)の径・初期配置・帯電量・誘電率、計算刻み時間、計算終了条件(シミュレーションの収束条件)などが含まれる。

0112

次に、計算管理ノードの分割処理部250は、ステップS102にて特定した各粒子挙動解析装置202(プロセッサ)を、力分割法に従って、力マトリクスの各マトリクス要素に配置し、また、各解析対象粒子(現像剤粒子102を構成するキャリア粒子やトナー粒子)に番号を付与し、行列対応付けられた各プロセッサに計算対象の解析対象粒子を割り当てる(S108)。各番号のプロセッサ(各粒子挙動解析装置202)をノード#Nとも呼ぶ。

0113

次に、複数種類の粒子間相互作用力を、力マトリクス中の自身を中心とする行方向および列方向に存在する通信を必要とするカットオフ設定情報に従った範囲内の粒子を担当するプロセッサ(特に特定プロセッサと呼ぶ)に分散して、数値演算処理部234が粒子挙動計算処理を開始する。なお、カットオフは、解析対象範囲内の全粒子を実際の解析対象とするのではなく、計算効率を高めるべく、その対象を距離に基づき制限する指標である解析対象制限値を意味する。

0114

たとえば、導体中電荷移動解析処理部420(誘電率解析部422、電荷解析部424、電荷移動解析部426)にて、導体中電荷移動解析処理を行なう(S120)。具体的には、誘電率解析部422は、トナー粒子を考慮した誘電率分布設定を行なう(S122)。電荷解析部424は、トナー電荷を考慮した真電荷分布設定を行なう(S124)。電荷移動解析部426は、誘電率解析部422により得られた誘電率分布と、電荷解析部424により得られた真電荷分布、および予め設定されている誘電分極分布に基づき、導体中の電荷移動計算を行なう(S126)。

0115

次に、放電解析部440は、自身の各機能部を用いて、放電解析を行なう(S140)。たとえば、対向面間放電抽出部442は、平行面間の放電箇所と放電先を組とした放電セグメント対の抽出処理を行なう(S142)。ここで、本実施形態の放電解析処理では、対向面間放電抽出部442は、解析対象領域の電界中において、電荷面に堆積しておらず浮いている電荷を持った粒子(浮遊粒子と称する)についても放電解析の対象とする点に特徴がある。この点については後で詳しく説明する。

0116

尖頭部材間放電抽出部444は、尖頭部材間の放電箇所と放電先を組とした放電セグメント対の抽出処理を行なう(S144)。放電電荷量算出部446は、全電位定義セグメントの電荷を求める(S146)。電荷更新部448は、放電が発生したトナー粒子の電荷量を更新する(S148)。

0117

次に、運動解析部460は、解析対象粒子の運動解析を行なう。たとえば、運動解析部460は、予め決められた時間経過後のトナーの挙動計算を行ない、その計算結果によって得られたトナーの位置を求められた位置に更新する(S160)。この際には、放電現象と関係するトナー粒子に関しては、放電解析結果後のトナー粒子情報(放電解析結果を反映したトナー粒子に与えられている物性情報)が、解析対象領域内のトナー粒子同士や他の粒子(たとえばキャリア粒子)や壁などとの間の相互作用力計算に反映されるようにする。

0118

また、複数種類の多体粒子間相互作用に対しては、それぞれ別の力マトリックスを用いて計算する。たとえば、担当マトリクス中の相手粒子との間における磁気相互作用を、当該磁気相互作用解析用の力マトリックスを用いて解析処理する。次に、特定プロセッサコア間で通信し、磁気相互作用について、分配して計算した磁気相互作用力の総和値を求める。同様にして、担当マトリクス中の相手粒子との間における静電相互作用を、当該静電相互作用解析用の力マトリックスを用いて解析処理する。

0119

次に、特定プロセッサコア間で通信し、静電相互作用について、分配して計算した静電相互作用力の総和値を求める。また、担当マトリクス中の相手粒子との間における機械的相互作用接触力)を、当該機械的相互作用解析用の力マトリックスを用いて解析処理する。次に、特定プロセッサコア間で通信し、機械的相互作用について、分配して計算した機械的相互作用力の総和値を求める。

0120

さらに、磁気相互作用、静電相互作用、および機械的相互作用(接触力)のそれぞれについて求めた各総和値を加算して全総和値を求める。次に、磁気相互作用、静電相互作用、および機械的相互作用(接触力)の全総和値を使用して、各粒子の運動方程式を解き、位置座標を計算する。そして、このようにして求めた各粒子の位置座標を、相互作用マトリクスに関係する特定プロセッサコアに送り(通信し)、計算情報を更新する。

0121

電荷移動解析部470は、物体の運動に伴う電荷の移動を解析する(S180)。

0122

この後、予め設定されたシミュレーションの終了時間(または処理ステップ数)に達するまで、ステップS120に戻って同様の処理を繰り返す(S190)。

0123

バスインタフェース部235は、各計算ステップでの計算データの受け渡しを他の粒子挙動解析装置202の数値演算処理部234の間で行なう以外に、予め決められた計算ステップごとに、数値演算処理部234での計算結果の出力ファイルを受け取り、情報提示部240に渡す。

0124

情報提示部240は、各粒子挙動解析装置202からのデータを集約して、表示データに変換し、表示装置212に供給する。また、情報提示部240は、一連のシミュレーション処理が完了したら、シミュレーション結果のファイル出力を行なう。たとえば、得られた計算領域の電位分布、電荷量分布、トナーの挙動、トナーの電荷分布、放電分布などの結果を出力する。

0125

表示装置212は、情報提示部240から供給された表示データに基づく処理結果画像を表示する。実際には確認困難な現像剤粒子102の挙動を視覚的に把握できるように、現像剤粒子102の挙動予測を可視化して表示装置212上に表示するのである。

0126

[放電解析処理:基本概念
本実施形態の放電解析処理における特徴点(基本概念)が図4Aに示されている。ここで、本実施形態の放電解析処理は、解析対象領域(たとえば転写領域)の電界中において、電荷面に堆積しておらず浮いている粒子(浮遊粒子と称する)についても放電現象解析の対象とする点に特徴がある。なお、放電現象を解析することを、「放電計算を行なう」とも称する。電荷面上に堆積していない浮遊粒子も放電計算の対象とすることで、浮遊粒子を放電計算の対象としない場合よりも、放電計算の精度が向上する。

0127

浮遊粒子を放電解析の対象とするべく、本実施形態では、先ず、解析対象領域の対向する電荷面間に、予め決められた規則に従って電荷面に挟まれた解析対象領域を分割する領域境界(2次元の場合は分割線、3次元の場合は分割面)を設定する。そして、解析対象の浮遊粒子が、領域境界を挟んで対向する電荷面のどちら側に属するかを判別する。浮遊粒子が属する側の領域を帰属領域と称し、電荷面も含むものとする。

0128

そして、境界を挟んで一方の面側の帰属領域に属する浮遊粒子については、他方の面側の領域に属するもの(電荷面も含む)との間での放電現象を解析する。好ましくは、帰属領域側の電荷面との間の放電現象も解析するようにする。電荷面同士や堆積粒子に関する放電現象の解析は特許文献1と同様に行なう。纏めると、帰属領域の浮遊粒子やその浮遊粒子が属する側の電荷面、および領域境界を挟んで反対側の領域(別領域)に属する浮遊粒子およびその浮遊粒子が属する側の電荷面を対象として放電現象を解析する。端的には、特許文献1の仕組みとの対比として、浮遊粒子についても放電現象の解析対象とすると言うことである。

0129

なお、領域境界の設定手法としては、幾何学的(物理的な距離)な観点から規定する考え方と電気的な観点から規定する考え方に大別できるが、何れの手法を使うかで優劣がある。この点については、第1〜第3実施形態で詳しく説明する。

0130

また、本願発明者の検討によれば、粒子のどの部分を対象として放電現象を解析するかによって、放電計算の精度に影響を与えるということが分かった。たとえば、粒子の中心(内部)に位置する節点を放電探索節点にして解析した場合と、粒子の表面(表層部分)に位置する節点を放電探索節点にして解析した場合とでは明らかな差が生じ、表面を対象とする方が実態に即する、つまり、表面の方が放電計算の精度が向上すると言うことが分かった。これは電荷分布や放電は、物質表面に存在・発生するためであると考えられる。

0131

そこで、本実施形態では、粒子の表面(表層部)を対象として放電現象の解析を行なうことにする。たとえば、属する側の領域(帰属領域と称する)の浮遊粒子やその浮遊粒子が属する側の電荷面、および領域境界を挟んで反対側の領域(別領域)に属する浮遊粒子およびその浮遊粒子が属する側の電荷面を対象として、放電現象を解析する。

0132

放電現象の解析手法自体は公知の手法を適用してよく、本実施形態では、特許文献1に記載の仕組みを利用して、電荷面間の電位分布に基づいて、その2面間での放電の発生する可能性がある箇所を抽出する。その際に、前述のように領域境界を設定し、電荷面に堆積している堆積粒子だけでなく、浮遊粒子についても、後述の実施形態のようにして、領域境界を挟んだどちらの面側に属するかを案して放電探索節点を付与する。放電探索節点に対しての電荷量は粒子の電荷量をそのまま適用する。あるいは、放電探索節点に対しての電荷量は粒子の電荷量を粒子が含む節点へ分配した値を適用する。

0133

たとえば、図4Aにおいて、対向配置された電荷面A,Bに挟まれた解析対象領域(粒子運動領域)内に、電荷面A,Bに堆積してない浮遊粒子a,bが存在する場合に、その浮遊粒子a,bを放電解析の対象とする。このため、先ず、境界設定部430は、後述の第1〜第3実施形態のようにして解析対象領域内に境界C(領域境界610)を設定する。領域境界610を挟んで電荷面A側の領域を帰属領域A、電荷面B側の領域を帰属領域Bとする。

0134

対向面間放電抽出部442は、境界設定部430が設定した領域境界610に基づき、解析対象の浮遊粒子aが、領域境界610を挟んで対向する電荷面A,Bのどちら側に(つまり帰属領域A,Bのどちらに)属するかを判別する。この例では、浮遊粒子aは帰属領域Aに属し、浮遊粒子bは帰属領域Bに属すると判別することになる。

0135

ここで、浮遊粒子に関しての放電解析に当たっては、主たる解析対象の放電現象と、従たる解析対象の放電現象とに分けて考える。主たる解析対象の放電現象とは、帰属領域の浮遊粒子に関して、その浮遊粒子が帰属しない側の電荷面やその電荷面に堆積する堆積粒子との間での放電現象を解析することを意味する。従たる解析対象の放電現象とは、帰属領域の浮遊粒子に関して、その浮遊粒子が帰属する側の電荷面やその電荷面に堆積する堆積粒子との間での放電現象や浮遊粒子同士での放電現象を解析することを意味する。

0136

たとえば、主たる解析対象の放電現象として、帰属領域Aに属する浮遊粒子aに関しては、浮遊粒子aと、浮遊粒子aが属しない側の電荷面Bとの間の放電a1を解析する。「浮遊粒子aと電荷面Bとの間の放電a1を解析する」に当たっては、たとえば、先ず、メッシュ分割されたシミュレーションモデルの電荷面Bの電位と浮遊粒子aに関しての電位の差(電位差ΔVa1)を、予め定められた放電前の電荷量およびシミュレーションモデルによって定義される誘電率に基づいて算出する。そして、算出された電位差ΔVa1が、浮遊粒子aと電荷面Bとの間の距離から定まる放電開始電圧(たとえばパッシェン電圧)を上回るか否かを判定する。

0137

同様にして、主たる解析対象の放電現象として、帰属領域bに属する浮遊粒子bに関しては、浮遊粒子bと、浮遊粒子bが属しない側の電荷面Aとの間の放電b1を解析する。「浮遊粒子bと電荷面Aとの間の放電b1を解析する」に当たっては、たとえば、先ず、メッシュ分割されたシミュレーションモデルの電荷面Aの電位と浮遊粒子bに関しての電位の差(電位差ΔVb1)を、予め定められた放電前の電荷量およびシミュレーションモデルによって定義される誘電率に基づいて算出する。そして、算出された電位差ΔVb1が、浮遊粒子bと電荷面Aとの間の距離から定まる放電開始電圧(たとえばパッシェン電圧)を上回るか否かを判定する。

0138

また、従たる解析対象の放電現象として、帰属領域Aに属する浮遊粒子aに関しては、浮遊粒子aと、浮遊粒子aが属する側の電荷面Aとの間の放電a2を解析する。「浮遊粒子aと電荷面Aとの間の放電a2を解析する」に当たっては、「浮遊粒子aと電荷面Bとの間の放電a1を解析する」場合と同様にして、電荷面Aの電位と浮遊粒子aに関しての電位の差(電位差ΔVa2)を、予め定められた放電前の電荷量およびシミュレーションモデルによって定義される誘電率に基づいて算出する。そして、算出された電位差ΔVa2が、浮遊粒子aと電荷面Aとの間の距離から定まる放電開始電圧(たとえばパッシェン電圧)を上回るか否かを判定する。

0139

同様にして、従たる解析対象の放電現象として、帰属領域Bに属する浮遊粒子bに関しては、浮遊粒子bと、浮遊粒子bが属する側の電荷面Bとの間の放電b2を解析する。「浮遊粒子bと電荷面Bとの間の放電b2を解析する」に当たっては、「浮遊粒子bと電荷面Aとの間の放電b1を解析する」場合と同様にして、電荷面Bの電位と浮遊粒子bに関しての電位の差(電位差ΔVb2)を、予め定められた放電前の電荷量およびシミュレーションモデルによって定義される誘電率に基づいて算出する。そして、算出された電位差ΔVb2が、浮遊粒子bと電荷面Bとの間の距離から定まる放電開始電圧(たとえばパッシェン電圧)を上回るか否かを判定する。

0140

図示しないが、一方の浮遊粒子と他方の浮遊粒子との間の放電を解析するに当たっては、一方の浮遊粒子に関しての電位と他方の浮遊粒子に関しての電位との差(電位差ΔVc2)を、予め定められた放電前の電荷量およびシミュレーションモデルによって定義される誘電率に基づいて算出する。そして、算出された電位差ΔVc2が、浮遊粒子bと電荷面Bとの間の距離から定まる放電開始電圧(たとえばパッシェン電圧)を上回るか否かを判定する。

0141

電荷面A,B同士の放電解析や、電荷面A,Bに堆積している堆積粒子についての放電解析は、たとえば、特許文献1に記載されている仕組みなど、公知の解析手法を同様に適用してよい。

0142

以下、具体的に説明する。なお、以下では、特に特許文献1に記載の仕組みと異なる放電解析部440における放電解析処理(特に放電探索節点の付与の仕方)について着目し、その他の誘電率解析部422、電荷解析部424、電荷移動解析部426、運動解析部460、電荷移動解析部470についての詳細説明は割愛する。

0143

<放電解析処理:第1実施形態>
図5は、第1実施形態の放電解析処理を説明する図である。

0144

第1実施形態の放電解析処理は、前述の放電解析処理の基本を踏まえた上で、さらに、分割線を何処に設定するかという点において、対向する2つの境界(電荷面)の幾何学的な中間位置を領域境界610(2次元で考えるときは分割線、3次元で考えるときは分割面)として用いる点に特徴がある。また、対向面間に浮遊している堆積していない粒子と、その粒子が属さない側の電荷面との間での放電解析を行なう点に特徴がある。この考え方は、空間的な中間位置は、電気的な中間位置(放電節点対間の電位の中点)と一致しているとみなした処理である。図5は、理解を容易にするため2次元で示している。

0145

たとえば、感光体10と中間転写ベルト58が対向している一次転写領域での解析に着目する。この場合、感光体10と中間転写ベルト58が、対向する電荷面に対応し、感光体10側の電荷面を電荷面602、中間転写ベルト58側の電荷面を電荷面604とする。この事例は、中間転写方式を採らない画像形成装置1における、感光体10と用紙が対向している転写領域での解析に着目することと等価である。この場合、感光体10と用紙が、対向する電荷面に対応し、感光体10側の電荷面を電荷面602、用紙側の電荷面を電荷面604とすればよい。また、一次転写領域での解析に限らず、二次転写装置50bにて形成される二次転写領域での解析の場合でもよい。この場合、中間転写ベルト58と用紙が、対向する電荷面に対応し、中間転写ベルト58側の電荷面を電荷面602、用紙側の電荷面を電荷面604とすればよい。

0146

電荷面上にトナー粒子が堆積しているシミュレーションを行なう場合、トナー粒子が堆積している部分では、電荷面上の節点に代えて、トナー粒子の最表層部分に位置する節点を放電検索節点とする。加えて、堆積している状態ではなく、両電荷面602,604に挟まれた空間中に浮遊しているトナー粒子についても、そのトナー粒子が領域境界610を境に、電荷面602側と電荷面604側のどちらの領域に属するかに応じてそのトナー粒子に放電検索節点を設定し、電荷面602,604との間の放電解析も行なうようにする。

0147

以下では、堆積している状態のトナー粒子を堆積粒子、浮遊している状態(堆積していない状態)のトナー粒子を浮遊粒子と称する。トナー粒子は球と仮定して図面中では円で表示する。

0148

[堆積粒子について]
堆積粒子に対しては、特許文献1の段落69〜71と同様の方法で放電検索節点を抽出する。たとえば、対向面間放電抽出部442は、次のような処理を行なう。

0149

1)電荷面上の全ての節点は放電検索節点として登録する。

0150

2)電荷面602,604に堆積したトナー粒子の内で表面に位置するトナー粒子を抽出する。たとえば、図中において、黒丸で示すトナー粒子は、感光体10側に堆積しているものを示す。白丸で示すトナー粒子は、電荷面604側に堆積しているものを示す。梨地で示すトナー粒子とハッチングで示すトナー粒子は浮遊粒子である。感光体10側に堆積しているトナー粒子(黒丸)の放電面は電荷面602となり、中間転写ベルト58側に堆積しているトナー粒子(白丸)の放電面は電荷面604となる。

0151

3)各トナー粒子の表面の節点の内で、電荷面602,604から最も離れた位置に最も近接した節点をトナー節点として抽出する。そして、抽出されたトナー節点を放電検索節点として追加する。

0152

[浮遊粒子について]
浮遊粒子に対しては、次のような方法で放電検索節点を抽出する。たとえば、対向面間放電抽出部442は、次のような処理を行なう。

0153

1)浮遊粒子に対して、電荷面602と電荷面604のどちらに属するかを検討するために、境界設定部430は、電荷面602,604の幾何学的な中間位置に領域境界610の一例としての第1空間的放電分割線612を設定する。電荷面602,604の幾何学的な中間位置に第1空間的放電分割線612を設定すればよく、距離計算だけで第1空間的放電分割線612が求まるので、その設定が簡易であり、本実施形態を適用しない領域境界610の設定手法よりも計算時間が短縮される。

0154

2)対向面間放電抽出部442は、境界設定部430により設定された第1空間的放電分割線612の情報を使って、浮遊粒子の中心座標が、第1空間的放電分割線612を基準に、電荷面602と電荷面604のどちらに近いかで、浮遊粒子の属する放電面を決定する。具体的には、第1空間的放電分割線612よりも浮遊粒子の中心が電荷面602側の粒子の放電面は電荷面602であり、第1空間的放電分割線612よりも浮遊粒子の中心が電荷面604側の粒子の放電面は電荷面604である。

0155

3)対向面間放電抽出部442は、特許文献1の段落69〜70に準じて、浮遊粒子を含む各粒子表面の節点の内で、属する側の電荷面602,604から最も離れた位置に最も近接した節点を粒子節点として抽出し、抽出された粒子節点を放電検索節点として追加する。対象の浮遊粒子に複数の節点が存在する場合でも、表面に近い側の(つまり粒子の表層部分に位置する)節点で、かつ、浮遊粒子が属する側とは反対側の電荷面602,604に近接した節点が電位差算出の対象となる放電検索節点として抽出される。

0156

この結果、電荷面602,604上の節点に対する法線メッシュ線)と浮遊粒子との領域境界610(第1空間的放電分割線612)側の交点に最も近い浮遊粒子に属する節点が電荷面602,604上の節点の代わりに放電候補節点とされる。これにより、電荷面602,604上に堆積していない浮遊粒子も放電計算の対象となる。

0157

[その他]
1)堆積粒子に覆われた電荷面602,604上の節点は放電検索節点から除外する。
2)以上のようにして抽出した放電検索節点に基づき、放電節点対を抽出する。

0158

3)そして、浮遊粒子に関して設定された放電探索節点と、その浮遊粒子が属さない側の電荷面に属する放電探索節点との間での放電解析を行なう。たとえば、浮遊粒子の電荷面602側の領域に属する放電探索節点に関しては、電荷面604側の領域に属する放電探索節点(電荷面604に設定される放電探索節点やその電荷面604に堆積される堆積粒子に関して設定される放電探索節点)との間での放電現象を解析する。また、浮遊粒子の電荷面604側の領域に属する放電探索節点に関しては、電荷面602側の領域に属する放電探索節点(電荷面602に設定される放電探索節点やその電荷面602に堆積される堆積粒子に関して設定される放電探索節点)との間での放電現象を解析する。

0159

なお、放電解析の手法そのものは特許文献1と同様でよい。ここでは、その詳細説明を割愛する。

0160

<放電解析処理:第2実施形態>
図6は、第2実施形態の放電解析処理を説明する図である。ここで、図6(1)は、第1・第2実施形態の対比を説明する図であり、図6(2)は、第2実施形態の手法の詳細を説明する図である。

0161

第2実施形態の放電解析処理は、前述の放電解析処理の基本を踏まえた上で、さらに、分割線を何処に設定するかという点において、対向する2つの境界(電荷面)だけでなく堆積粒子の分も加味した幾何学的な中間位置を領域境界610として用いる点に特徴がある。電荷面602,602上に堆積粒子が存在することによる、実質的な電荷面の変動分を考慮する趣旨である。また、第1実施形態と同様に、対向面間に浮遊している堆積していない粒子と、その粒子が属さない側の電荷面との間での放電解析を行なう点に特徴がある。図6(1)も、理解を容易にするため2次元で示している。

0162

「堆積粒子の分も加味」とは、堆積粒子が存在する場所では、電荷面の位置を堆積粒子の表面位置に置き換えて領域境界610を求めることを意味する。この考え方も、第1実施形態と同様に、空間的な中間位置は、電気的な中間位置と一致しているとみなした処理である。

0163

図6(1)に示すように、電荷面604側に堆積粒子が存在しており、図中の堆積粒子表面線622は、その堆積粒子の最も外側(電荷面602側)の表面の概略位置を示している。このとき、第1実施形態のようにして第1空間的放電分割線612を設定する手法を適用すると、第1空間的放電分割線612が設定される。その手法は、第1空間的放電分割線612の設定が簡易であるものの、図6(1)に示すように、堆積粒子が第1空間的放電分割線612を越える場合、堆積粒子および粒子Dに対する放電計算の正確性が失われてしまう。

0164

そこで、第2実施形態では、堆積粒子が存在する場所では、電荷面の位置を堆積粒子の表面位置に置き換えて領域境界610を求めることで、この問題点を解消する。たとえば、対向面間放電抽出部442は、次のような処理を行なう。

0165

1)堆積している粒子に対しては、第1実施形態と同様の方法で放電検索節点を抽出する。

0166

2)電荷面604に対する法線624を電荷面602の方向へ引き、各法線624に最も近い電荷面602,604に属する放電検索節点をそれぞれ抽出する。この2つの放電検索節点を放電節点対と呼ぶ。因みに、メッシュ分割する際の線(メッシュ線、要素境界)と法線624は独立である(図6(2)参照)。また、法線624と電荷面602,604の交点に最も近い節点が放電検索節点となる。また、法線624と粒子表面の交点がある場合はこれに最も近い節点を放電検索節点とする。

0167

3)その後に、放電節点対間の距離の中点を求めることで、第1空間的放電分割線612を設定する。つまり、電荷面602に属する放電検索節点と電荷面604に属する放電検索節点との間の幾何学的な中間位置に、堆積粒子の影響を加味した第2空間的放電分割線614を設定する。

0168

「面に属する放電検索節点」と記載したのは、「堆積粒子の分も加味」するため、電荷面602,604上の放電検索節点だけでなく、堆積粒子について特定された放電検索節点も対象とすることに基づいている。

0169

図6(1)の例であれば、電荷面602と堆積粒子表面線622との幾何学的な中間位置に第2空間的放電分割線614が設定されることになり、発生し得る堆積粒子に対する放電計算の精度が第1実施形態の手法よりも向上する。

0170

図6(2)を参照して、2)〜3)について詳細に説明する。

0171

[法線の引き方のルール
メッシュ線と法線624は独立であり、たとえば図6(2)に示すように、節点間隔よりも十分小さい間隔で電荷面604に対して垂直に引く。この垂線を法線624とする。

0172

[放電検索節点の抽出]
1)法線624A:電荷面602側の堆積粒子(たとえば図中のA)に着目した法線624を法線624Aと記す。境界設定部430は、電荷面602側にて最も電荷面604側に近い堆積粒子(トナー粒子)との交点(図中小黒丸)を求める。次に、求めた交点に最も近い節点を調べる。図の例では、小黒丸の右にある星a1が選択される。そして、この法線624Aに関する電荷面604に属する放電探索節点として、図中の星a2が選択される。結果、法線624Aに関しては、電荷面602に属する放電検索節点が星a1であり、電荷面604に属する放電検索節点が星a2であり、2つの放電検索節点a1,a2が法線624Aに関しての放電節点対aとなる。

0173

2)法線624B:電荷面604側の堆積粒子(たとえば図中のB)に着目した法線624を法線624Bと記す。境界設定部430は、電荷面604側にて最も電荷面602側に近い堆積粒子(トナー粒子)との交点(図中小黒丸)を求める。次に、求めた交点に最も近い節点を調べる。図の例では、小黒丸の右下にある星b1が選択される。そして、この法線624Bに関する電荷面602に属する放電探索節点として、図中の三角b2が選択される。結果、法線624Bに関しては、電荷面604に属する放電検索節点が星b1であり、電荷面602に属する放電検索節点が三角b2であり、2つの放電検索節点b1,b2が法線624Bに関しての放電節点対bとなる。

0174

3)境界設定部430は、1)や2)のような処理を他の位置の法線624に関しても同様にして行なうことで、各法線624に関しての放電節点対を特定する。

0175

4)境界設定部430は、各放電節点対の幾何学的な中間位置を幾何学的放電分割点とする。たとえば、法線624Aに関しては点a3が幾何学的放電分割点であり、法線624Bに関しては点b3が幾何学的放電分割点である。境界設定部430は、複数の法線624から得られた各幾何学的放電分割点を連結することで、第2空間的放電分割線614を特定する。

0176

5)以下、第1実施形態と同様である。

0177

<放電解析処理:第3実施形態>
図7図7Aは、第3実施形態の放電解析処理を説明する図である。

0178

第3実施形態の放電解析処理は、前述の放電解析処理の基本を踏まえた上で、さらに、分割線を何処に設定するかという点において、電気的な中間位置を領域境界610として用いる点に特徴がある。また、第1・第2実施形態と同様に、対向面間に浮遊している堆積していない粒子と、その粒子が属さない側の電荷面との間での放電解析を行なう点に特徴がある。第3実施形態は、空間的な中間位置が、電気的な中間位置と一致しない場合への対処の事例である。以下では、第2実施形態をベースに説明するが、第1実施形態に対しても同様の手法を適用し得る。

0179

たとえば、第1・第2実施形態では、空間的な中間位置が電気的な中間位置と一致しているとみなして、空間的な中間位置に基づいて領域境界610を設定していた。しかしながら、たとえば、堆積していない電荷を持った粒子(浮遊粒子)が放電節点対の間に存在する場合や、電荷面602,604上の電荷分布が一様でない場合には、図7(1)に示すように、放電節点対間の電位勾配が一定ではなくなる。この場合、空間的な中間位置と電気的な中間位置は一致しなくなり、放電計算の精度が低下する。

0180

そこで、第3実施形態では、電気的な中間位置を実際に特定することで、この問題点を解消する。たとえば、対向面間放電抽出部442は、次のような処理を行なう。

0181

1)先ず、第2実施形態における1)〜3)に従って、各法線624に関しての放電節点対を特定する。

0182

2)次に、着目する放電節点対に関して、放電節点対間の電位の状況を特定する。たとえば、本実施形態で適用している有限要素法では、たとえば、特許文献1と同様に、電位は節点の値として定義されるので、放電節点対間のメッシュ線の各交点(節点)の電位から電位カーブを特定すればよい。すなわち、第2実施形態を適用して特定される電荷面602に属する放電探索節点と電荷面604に属する放電探索節点はメッシュ線上に存在し、両放電探索節点間の各節点の電位そのものから、放電節点対間の電位カーブを特定する。そして、両放電探索節点の電位(VaとVb:Va>Vb)の中点電位((Va+Vb)/2)となる点を電気的な中間位置にすればよい。

0183

3)境界設定部430は、2)のような処理を他の位置の放電節点対に関しても同様にして行なうことで、各放電節点対に関しての電気的な中間位置を特定する。

0184

4)境界設定部430は、複数の放電節点対に関して得られた各電気的な中間位置を連結することで、電気的放電分割線616を特定する(図7(2)を参照)。

0185

5)以下、第1・第2実施形態と同様である。

0186

なお、図7(3)に示すように、放電節点対間の電位変化の状況(電位カーブ)が単調変化単調増加単調減少)でない場合にも放電解析を行なうことは、好ましい解析結果にならない(実態に即さない)ということが分かった。よって、対向面間放電抽出部442は、解析対象としている放電探索対間の電位カーブが単調増加や単調減少でない場合には、放電解析の対象から除外する(放電させない)。第1・第2実施形態の手法では、放電節点対間の電位カーブの状況を特定する手法でないので、このような対処はできない。この点でも、第3実施形態の方が第1・第2実施形態の手法よりも有効な手法であると言える。

0187

図7(2)では、第2実施形態に対する変形例で示しており、堆積粒子の存在(図では電荷面604側)により電荷面604上の電荷分布が一様でないために、放電節点対間の電位勾配が一定でなくなる場合を例示しているが、放電節点対間の電位勾配が一定でなくなる要因はこのような場合に限らない。

0188

たとえば、図7A(1)に示すように、電荷面602,604に堆積粒子が存在しているか否かに関わらず、浮遊粒子が存在することで電位分布(電界分布)が一様にならない。そのため、極端な場合、着目する放電節点対間に浮遊粒子が存在する場合には、その放電節点対間の電位勾配が一定ではなくなる。もちろん、着目する放電節点対間に浮遊粒子が存在しない場合でも、近傍に電荷を持った浮遊粒子が存在する場合には、その浮遊粒子の影響を受けてその放電節点対間の電位勾配が一定ではなくなる。このような場合にも、電荷面602と電荷面604の間の電界に対する、解析対象領域内に浮遊している浮遊粒子Eによる変化分を反映させて電気的放電分割線616を設定する。幾何学的な中間位置を領域境界610(空間的放電分割線612,614)に設定するよりも、電気的な中間位置を領域境界610(電気的放電分割線616)に設定する方が、解析精度が向上する。

0189

因みに、非構造格子の場合は、放電節点対間の電位の状況を特定する代わりに、各法線624上の電位の状況を法線周囲の各節点から特定してもよい。この場合、図7A(2)に示すように処理するのがよい。たとえば、同図中の点線を法線624とし、四角を要素とする。法線624上に、節点間隔より十分小さい間隔で、電荷面602側から電荷面604側まで三角点を打つ。

0190

そして、それぞれの三角点に対して、最も近い節点の電位を三角点の電位として与える。たとえば、図中の白三角は、最も近い節点である図中○印の電位が与えられる。他の三角点に対しても同様の方法で電位を求め、最も電気的中点に近い三角点を、法線624に関しての電気的な中間位置とする。

0191

境界設定部430は、同様のことを、他の位置の法線624に関しても行なうことで、各法線624に関しての電気的な中間位置を特定する。境界設定部430は、複数の法線624に関して得られた各電気的な中間位置を連結することで、電気的放電分割線616を特定する(図7(2)を参照)。

0192

なお、法線624上の電位は、法線624が通過する要素の持つ電位から内挿して求めるとよい。たとえば、三角点を法線624上に打つ。各三角点は必ず要素の中に含まれているので、要素内の三角点の位置から要素の持つ電位を線形補間することで、三角点の位置の電位が求まる。

0193

<放電解析処理:第4実施形態>
図8は、第4実施形態の放電解析処理を説明する図である。

0194

第4実施形態の放電解析処理は、前述の放電解析処理の基本を踏まえた上で、さらに、浮遊粒子と、その浮遊粒子が属する側の電荷面602,604との間での放電解析も行なうようにする点に特徴がある。

0195

前述の第1〜第3実施形態の放電解析処理では、対向面間の浮遊粒子と、その浮遊粒子が属さない側の電荷面との間での放電解析を行なうので、浮遊粒子とその粒子が属する側の面との間や浮遊粒子同士での放電解析はなされない。しかしながら、電位差や空間的距離などによっては、このような位置関係でも放電する可能性があるので、放電解析の対象にするのが望まれる。

0196

第4実施形態はこのようなことに対処する事例であり、電荷面602,604に堆積していない浮遊粒子(の表面)と、両側の電荷面602,604の間や浮遊粒子同士での放電解析を行なうものである。すなわち、第4実施形態は、着目する浮遊粒子から、両側の境界、堆積粒子、自身を除く他の浮遊粒子への放電を考慮する仕組みである。浮遊粒子に対して両側の電荷面602,604や他の粒子(堆積粒子や浮遊粒子)への放電をさせることで、第1〜第3実施形態よりも放電計算の精度が向上する。

0197

対向面間放電抽出部442は、基本的な考え方として、浮遊粒子の中心よりも電荷面602側の表層部と電荷面602に属するものとの間での放電解析を行ない、浮遊粒子の中心よりも電荷面604側の表層部と電荷面604に属するものとの間での放電解析を行なうようにする。このため、たとえば、対向面間放電抽出部442は、次のようにして放電検索節点を求める。

0198

1)堆積粒子に関しては、第1実施形態で述べたように、特許文献1の段落69〜71と同様の方法で放電検索節点を抽出する。

0199

2)浮遊粒子に関しては、その浮遊粒子内にある節点を全て調べ、それらの内で電荷面602に近い節点を電荷面604に属する放電検索節点として選び、逆に、電荷面604に近い節点を電荷面602に属する放電検索節点として選ぶ。

0200

このとき、電荷面602,604の何れに近い節点かを簡易的に求めるため、図8に示すような手法を採るとよい。すなわち、浮遊粒子の中心座標を通り、電荷面604と平行な直線を各浮遊粒子に引き、その直線を、その浮遊粒子に関しての粒子分割線618とする。そして、浮遊粒子ごとに、粒子分割線618よりも電荷面602側に近い節点は電荷面604に属しているとし、電荷面604側に近い節点は電荷面602に属しているとする。

0201

3)そして、電荷面602側に属するとされた放電検索節点(電荷面604に近い表層側の節点)に関しては電荷面604との間での放電計算を行ない、電荷面604側に属するとされた放電検索節点(電荷面602に近い表層側の節点)に関しては電荷面602との間での放電計算を行なう。また、浮遊粒子同士での放電計算を行なうようにしてもよい。

0202

このような手法を採ることで、第1〜第3実施形態と同様な考え方で、浮遊粒子の電荷面602側の領域に属する放電探索節点と電荷面604側の領域に属する放電探索節点(電荷面604に設定される放電探索節点やその電荷面604に堆積される堆積粒子に関して設定される放電探索節点)との間での放電現象を解析すると言う手法をそのまま適用してもよくなる。また、浮遊粒子の電荷面604側の領域に属する放電探索節点と電荷面602側の領域に属する放電探索節点(電荷面602に設定される放電探索節点やその電荷面602に堆積される堆積粒子に関して設定される放電探索節点)との間での放電現象を解析すると言う手法をそのまま適用してもよくなる。

0203

<粒子挙動解析装置;計算機構成
図9は、粒子挙動解析装置202の他の構成例を示すブロック図である。この構成は、ソフトウェアを実行するマイクロプロセッサなどから構築されるパーソナルコンピュータなどの電子計算機を利用したもので、粒子挙動解析を行なう粒子挙動解析装置202のより現実的なハードウェア構成を示している。

0204

たとえば、CPU(中央制御部)、読出専用の記憶部であるROM(Read Only Memory)、または随時読出し・書込みが可能なメモリであるRAM(Random Access Memory)などを具備して構成されたコンピュータシステムにおいて、ソフトウェア処理で粒子挙動解析処理を行なうためのシステム構成図である。

0205

すなわち、本実施形態において、粒子の挙動を解析する仕組みは、ハードウェア処理回路により構成することに限らず、その機能を実現するプログラムコードに基づき電子計算機(コンピュータ)を用いてソフトウェア的に実現することも可能である。よって、本実施形態に係る仕組みを、電子計算機(コンピュータ)を用いてソフトウェアで実現するために好適なプログラムあるいはこのプログラムを格納したコンピュータ読取可能な記録媒体(記憶媒体)が発明として抽出される。ソフトウェアにより実行させる仕組みとすることで、既存のコンピュータシステムのハードウェアの変更を伴うことなく、粒子挙動解析の計算処理手順などが容易に変更されることとなる。

0206

一連の粒子挙動解析処理はハードウェアまたはソフトウェアの単独に限らずその両者の複合構成によっても実現され得る。ソフトウェアによる処理を実行する場合、処理手順を示したプログラムを、ハードウェアに組み込まれたコンピュータ内の記憶媒体に組み込んで(インストールして)実行させたり、各種処理が実行可能な汎用の電子計算機にプログラムを組み込んで実行させる。

0207

粒子挙動解析処理機能をコンピュータに実行させるプログラムは、たとえば可搬型の記録媒体を通じて配布・提供される。たとえばプログラムは、CD−ROM(Compact Disc Read Only Memory )やFDフレキシブルディスク)に格納されて配布・提供されてもよい。また、MO(Magneto Optical Disk)ドライブを設け、MOに前記プログラムを格納してもよく、またフラッシュメモリなどの不揮発性半導体メモリを利用したカード型の記憶媒体など、その他の記録媒体にプログラムを格納して配布・提供してもよい。

0208

ソフトウェアを構成するプログラムは、記録媒体を介して配布・提供されることに限らず、通信手段(有線無線は不問)を介して配布・提供されてもよい。たとえば、他のサーバなどからインターネットなどのネットワークを経由してプログラムをダウンロードして取得したり、または更新したりしてもよい。

0209

粒子挙動解析処理を行なう機能を実現するプログラムコードを記述したファイルとしてプログラムが提供されるが、この場合、一括プログラムファイルとして提供されることに限らず、コンピュータで構成されるシステムのハードウェア構成に応じて、個別のプログラムモジュールとして提供されてもよい。

0210

たとえば、コンピュータシステム900は、コントローラ部901と、ハードディスク装置、FDドライブ、CD−ROMドライブ、半導体メモリコントローラなどの、記録媒体からデータを読み出したり記録したりするための記録・読取制御部902を有する。

0211

また、コンピュータシステム900は、ユーザインタフェースをなす機能部としての操作部903と、各機能部との間のインタフェース機能をなすインタフェース部909(IF部)を有する。なお、解析処理結果印刷出力してユーザに提示する構成とするべく、処理結果を出力媒体(たとえば印刷用紙)に出力する画像形成部を設けてもよい。

0212

コントローラ部901は、CPU912、読出専用の記憶部であるROM913、随時書込みや読出しが可能であるとともに揮発性の記憶部の一例であるRAM915、および不揮発性の記憶部の一例であるRAM(NVRAMと記述する)916を有している。

0213

操作部903は、操作者による操作を受け付けたり、表示装置を具備し各種の情報を提示したりするためのものである。操作部903の指示入力装置としてはたとえば、操作パネル操作キーを利用してもよいし、キーボードやマウスなどを利用してもよい。操作部903の表示装置としてはたとえば、たとえば、操作パネルを利用してもよいし、CRTやLCDなどでなるその他のディスプレイ部を利用してもよい。なお、表示面上にタッチパネルを有するディスプレイ部とすることで、表示だけでなく、指先ペンなどで情報を入力する構成としてもよい。

0214

インタフェース部909としては、処理データや制御データの転送経路であるシステムバス991の他、たとえば、ネットワークとの間の通信データの受け渡しを仲介する通信IF部999を有している。

0215

通信IF部999は、インターネット、LAN、WANなどの外部のネットワーク網に接続されることにより、他のコンピュータシステム900とデータ送受信を行なう。これにより、予め定められた分割法を適用して、複数のコンピュータシステム900の協働処理による並列処理を実行することで、解析時間を短縮する。インタフェース部909は、図示しないがこの他にもたとえば、画像形成部や他のプリンタとのインタフェース機能をなすプリンタIF部などを備える。

0216

記録・読取制御部902は、CD−ROMやメモリカードなどの可搬型の外部記録媒体挿脱可能に構成され、可搬型の外部記録媒体の情報を読み込む外部データ読出部の機能を持つ。

0217

記録・読取制御部902(外部データ読出部)を備えることで、外部記録媒体からプログラムのインストールや更新を行ない得るようになる。通信IF部999を備えることで、通信網を介しプログラムのインストールや更新を行ない得るようになる。

0218

このような構成により、操作部903を介した操作者による指令にて、粒子挙動解析処理を実行するプログラムが記憶されているCD−ROMなどの読取可能な記録媒体からRAM915に粒子挙動解析プログラムがインストールされ、また操作部903を介した操作者による指令や自動処理にて粒子挙動解析プログラムが起動される。

0219

CPU912は、システムバス991を介してシステム全体の制御を行ない、粒子挙動解析プログラムに従って粒子挙動解析方法に伴う計算処理を行なう。ROM913は、CPU912の制御プログラムなどを格納する。RAM915は、SRAMやフラッシュメモリなどで構成され、プログラム制御変数や各種処理のためのデータなどを格納する。また、RAM915は、アプリケーションプログラムに従って演算して得たデータや外部から取得したデータなどを一時的に格納する領域を含んでいる。処理結果はRAM915やハードディスクなどの記憶装置に格納され、また、処理結果の情報などが操作パネルやCRTやLCDなどの表示装置に出力される。

0220

なお、ここでは、粒子挙動解析装置202の制御構成をコンピュータにてソフトウェア上で実現する構成例で説明しているが、本実施形態の粒子挙動解析を実現するための制御構成の各部(機能ブロックを含む)の具体的手段は、ハードウェア、ソフトウェア、通信手段、これらの組み合わせ、その他の手段を用いてよく、このこと自体は当業者において自明である。また、機能ブロック同士が複合して1つの機能ブロックに集約されてもよい。また、コンピュータにプログラム処理を実行させるソフトウェアは、ハードウェアや通信手段などの組み合わせの態様に応じて個別のプログラムモジュールとして分配してインストールされ得る。

0221

たとえば、粒子挙動解析処理のための各機能部分の全ての処理をソフトウェアで行なうのではなく、これら機能部分の一部を専用のハードウェアにて行なう処理回路908を設けてもよい。ソフトウェアで行なう仕組みは、並列処理や連続処理に柔軟に対処し得るものの、その処理が複雑になるに連れ、処理時間が長くなるため、処理速度の低下が問題となる。これに対して、ハードウェア処理回路で構築すると、処理が複雑であっても、処理速度の低下を防ぐことができ、高いスループットを得ることができる高速化を図ったアクセラレータシステムが構築される。

0222

たとえば、処理回路908としては、それぞれ図3図3Bに示したデータ処理部230を構成する、データ受付部232に相当するデータ受付部908a、数値演算処理部234に相当する数値演算処理部908b、バスインタフェース部235の出力データ処理部の機能部分に相当する出力データ処理部908c、分割処理部250に相当する分割処理部908x、などの何れかをハードウェアで構成するとよい。

0223

1…画像形成装置、10…感光体、20…帯電装置、30…露光装置、40…現像装置、50…転写装置、58…中間転写ベルト、60…クリーニング装置、70…定着装置、102…現像剤粒子、200…粒子挙動解析システム、202…粒子挙動解析装置、202a…主粒子挙動解析装置、202b…副粒子挙動解析装置、204…情報出力装置、210…指示入力装置、212…表示装置、220…データ入力部、230…データ処理部、232…データ受付部、234…数値演算処理部(粒子挙動計算部)、238…データ記憶部、240…情報提示部、250…分割処理部、402…放電現象解析装置、420…導体中電荷移動解析処理部、422…誘電率解析部、424…電荷解析部、426…電荷移動解析部、430…境界設定部、440…放電解析部、442…対向面間放電抽出部、444…尖頭部材間放電抽出部、446…放電電荷量算出部、448…電荷更新部、460…運動解析部、470…電荷移動解析部、602,604…電荷面、610…領域境界、612…第1空間的放電分割線、614…第2空間的放電分割線、616…電気的放電分割線、618…粒子分割線

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ