図面 (/)
課題
解決手段
概要
背景
従来、透析患者の状態把握には、主として血液から得られる生化学的指標を用いており、一回の透析について一度の採血で結果が得られる簡便な方法が採られている。このような指標としては、以下のものがある。
(1)URR(Urea Reduction Rate;尿素窒素除去率)
ここで、
URR=(Upre−Upost)/Upre×100
Upre:透析前の尿素窒素レベル、Upost:透析後の尿素窒素レベル
(2)BUN(Blood Urea Nitrogen;血中尿素窒素)
(3)血清クレアチニン濃度
腎機能障害の指標となる。
(4)クレアニチン産生率(%CrG)
(5)Kt/V;標準化透析量
適正透析の指標となる。
ここで、
Kt/V=−ln(1−URR)
K:dialyzer clearance of urea (provided by the manufacturer);溶質クリアランス
t:dialysis time;透析時間
V:patient's total body water;体液量
概要
血液透析における毒素除去量を簡易かつ正確に把握することができる毒素除去量測定方法等を提供する。透析液の廃液の一部は電磁弁21を介してサンプリングされる。電磁弁21によるサンプリングのタイミングはタイマ22により指示される。タイマ22は、透析器1による透析に必要な制御を実行する透析コントローラ23からの信号に基づいて、透析開始時にタイムカウントを開始する。透析中にサンプリングされた透析液の廃液は容器24に保存される。また、流量計26により得られる透析中の流量を制御演算部31において時間積分することで、透析液の廃液の総量が算出される。
目的
本発明の目的は、血液透析における毒素除去量を簡易かつ正確に把握することができる毒素除去量測定方法等を提供する
効果
実績
- 技術文献被引用数
- 1件
- 牽制数
- 0件
この技術が所属する分野
(分野番号表示ON)※整理標準化データをもとに当社作成
請求項1
血液透析における毒素除去量を測定する毒素除去量測定方法において、透析液の廃液を透析中に複数回サンプリングするステップと、サンプリングされた前記廃液に基づいて透析中の毒素の全除去量を推定するステップと、を備えることを特徴とする毒素除去量測定方法。
請求項2
前記毒素の全除去量を推定するステップでは、サンプリングされた前記廃液全量の毒素量を測定することで前記毒素の全除去量を推定することを特徴とする請求項1に記載の毒素除去量測定方法。
請求項3
前記廃液をサンプリングするステップでは、透析中における単位時間当たりのサンプリング量が実質的に一定となるようにサンプリング間隔およびサンプリング量が定められることを特徴とする請求項2に記載の毒素除去量測定方法。
請求項4
請求項5
前記毒素の全除去量を推定するステップでは、サンプリングされた前記廃液のそれぞれの毒素の濃度を測定した結果に基づいて前記毒素の全除去量を推定することを特徴とする請求項1に記載の毒素除去量測定方法。
請求項6
透析中の透析液の流量を測定するステップと、前記流量を測定するステップにより得られた流量を積分して総廃液量を算出するステップと、を備え、前記毒素の全除去量を推定するステップでは、算出された前記総廃液量を用いて前記毒素の全除去量を推定することを特徴とする請求項1〜5のいずれか1項に記載の毒素除去量測定方法。
請求項7
技術分野
背景技術
0002
従来、透析患者の状態把握には、主として血液から得られる生化学的指標を用いており、一回の透析について一度の採血で結果が得られる簡便な方法が採られている。このような指標としては、以下のものがある。
(1)URR(Urea Reduction Rate;尿素窒素除去率)
ここで、
URR=(Upre−Upost)/Upre×100
Upre:透析前の尿素窒素レベル、Upost:透析後の尿素窒素レベル
(2)BUN(Blood Urea Nitrogen;血中尿素窒素)
(3)血清クレアチニン濃度
腎機能障害の指標となる。
(4)クレアニチン産生率(%CrG)
(5)Kt/V;標準化透析量
適正透析の指標となる。
ここで、
Kt/V=−ln(1−URR)
K:dialyzer clearance of urea (provided by the manufacturer);溶質クリアランス
t:dialysis time;透析時間
V:patient's total body water;体液量
0003
「血液透析におけるUrea kinetic modeling」臨床透析Vol.17 no.4 2001 35・433
先行技術
0004
「栄養障害の克服と高いQOLを目指した食べられる透析とは?」Clinical Engineering vol.17 No.2 2006
発明が解決しようとする課題
0005
使用する透析膜などの透析処方をまったく変更せず透析を継続した場合、時間の経過に伴って患者に対する臨床効果が低下することが報告されている(非特許文献1)。その理由は、患者体内から毒素が除去されるモデルが経時的に変化する一方、従来の生化学的指標では、そのモデル変化の影響を検知することができないからである。
0006
毒素除去のモデルとして、1プールモデルおよび2プールモデルがある。
0007
1プールモデルは血液および体細胞の両方から均等に毒素が除去されるモデルである。1プールモデルはある透析処方条件での透析開始時に当てはまり、血液内の毒素濃度は体内の毒素の総量、もしくは体内からの毒素除去量をよく反映する。
0008
2プールモデルは血液からは毒素が除去される一方、体細胞からの毒素除去量が少なくなってしまうモデルであり、ある透析処方条件での透析を続けた場合の経時的変化後に当てはまる。このモデルでは、血液中の毒素量が減っても体細胞からは毒素が除去されていないために、計測された血液内毒素量から推定される量よりも多くの毒素が体内に存在している。この2プールモデルに移行してしまうと、毒素が体内から抜けないため容態が悪化する。この場合は透析処方を変更する事で容態の完全を図ることができる。
0009
経時的に臨床効果が低下していることを把握する方法としては以下のものがあるが、煩雑な作業を要するなどの理由により普及していない。
0010
(1)透析液のサンプリング
1回の透析に使う透析液(約120リットル)の廃液を貯蔵し、そのUrea濃度と量から算出される毒素の抜けの総量であるUrea CS(クリアスペース)という指標は透析状況を把握する優れた指標である。しかし、廃液を貯蔵するタンクの重量やスペースの問題や測定の煩雑さのため、一般の病院ではこれを透析指標として導入していない。
0011
(2)血液を用いる他の方法
例えば、Kcと呼ばれる指標は、血液のサンプリングだけで患者の状態把握ができる方法の1つである。しかし測定のための採血は、透析前を含め透析後45分間経過時までの計7点で行われるため、病院側、患者側の双方にとって負担が大きく普及していない。
0012
本発明の目的は、血液透析における毒素除去量を簡易かつ正確に把握することができる毒素除去量測定方法等を提供することにある。
課題を解決するための手段
0013
本発明の毒素除去量測定方法は、血液透析における毒素除去量を測定する毒素除去量測定方法において、透析液の廃液を透析中に複数回サンプリングするステップと、サンプリングされた前記廃液に基づいて透析中の毒素の全除去量を推定するステップと、を備えることを特徴とする。
この毒素除去量測定方法によれば、透析液の廃液を透析中に複数回サンプリングし、サンプリングされた廃液に基づいて透析中の毒素の全除去量を推定するので、血液透析における毒素除去量を簡易かつ正確に把握することができる。
0014
前記毒素の全除去量を推定するステップでは、サンプリングされた前記廃液全量の毒素量を測定することで前記毒素の全除去量を推定してもよい。
0017
前記毒素の全除去量を推定するステップでは、サンプリングされた前記廃液のそれぞれの毒素の濃度を測定した結果に基づいて前記毒素の全除去量を推定してもよい。
0018
透析中の透析液の流量を測定するステップと、前記流量を測定するステップにより得られた流量を積分して総廃液量を算出するステップと、を備え、前記毒素の全除去量を推定するステップでは、算出された前記総廃液量を用いて前記毒素の全除去量を推定してもよい。
0019
本発明のサンプリング装置は、血液透析における透析液の廃液をサンプリングするサンプリング装置において、透析液の廃液を透析中に複数回サンプリングするタイミングを与えるタイマと、前記タイマの指示に従って、前記透析液の廃液をサンプリングするサンプリング手段と、を備えることを特徴とする。
このサンプリング装置によれば、透析液の廃液を透析中に複数回サンプリングし、サンプリングされた廃液に基づいて透析中の毒素の全除去量を推定できるので、血液透析における毒素除去量を簡易かつ正確に把握することができる。
発明の効果
0020
本発明の毒素除去量測定方法によれば、透析液の廃液を透析中に複数回サンプリングし、サンプリングされた廃液に基づいて透析中の毒素の全除去量を推定するので、血液透析における毒素除去量を簡易かつ正確に把握することができる。
0021
本発明のサンプリング装置によれば、透析液の廃液を透析中に複数回サンプリングし、サンプリングされた廃液に基づいて透析中の毒素の全除去量を推定できるので、血液透析における毒素除去量を簡易かつ正確に把握することができる。
図面の簡単な説明
0022
毒素除去量測定方法を実施するためのサンプリング装置の構成を示すブロック図。
サンプリング装置の制御系の構成を示すブロック図。
毒素濃度をオンライン測定するサンプリング装置の構成例を示すブロック図。
透析中の血液をサンプリングするサンプリング装置の構成例を示すブロック図。
実施例
0023
以下、本発明による毒素除去量測定方法の一実施形態について説明する。
0026
図1に示すように、透析器1は血液の領域と、透析液の領域とを区画する透析膜11を備え、各領域に、老廃物を含んだ血液および透析液がそれぞれ導入される。血液中の老廃物は、透析膜11を介して透析液の側に移動し、透析器1により浄化された血液は患者に戻される。また、老廃物を含む透析液は、廃液として排出される。
0027
図1に示すように、透析液の廃液の一部は電磁弁21を介してサンプリングされる。電磁弁21によるサンプリングのタイミングはタイマ22により指示される。タイマ22は、透析器1による透析に必要な制御を実行する透析コントローラ23からの信号に基づいて、透析開始時にタイムカウントを開始する。
0029
また、流量計26により得られる透析中の流量を制御演算部31において時間積分することで、透析液の廃液の総量が算出される。
0030
透析液の廃液のサンプリングは、例えば、同一サンプリング量のサンプリングを一定周期で行うことができる。例えば、サンプリングを20分に1回とし、1回ごとのサンプリング量を10ccとした場合、4時間の透析セッション中に容器24に蓄積される総量は120ccとなる。このため、容器24の容量はごく小さくてよい。
0033
1回ごとのサンプリング量は任意に設定することができる。例えば、5ccあるいは50ccとしてもよい。また、サンプリングの頻度も任意に設定できる。例えば10分に1回、あるいは40分に1回サンプリングするようにしてもよい。
0034
また、透析中、サンプリングの間隔を変化させてもよい。この場合、複数回にわたりサンプリングした廃液の混合液の濃度が、透析中に除去された総毒素量を反映した値となるように、実質的に単位時間当たりのサンプリング量が一定になるようにサンプリング量を調整すればよい。この場合、毒素の濃度変化が大きくなる透析中期において、濃度変化が小さくなる透析初期あるいは透析後期よりもサンプリング間隔を短くすることで、正確な毒素除去量をより少ないサンプリング回数で算出することが可能となる。サンプリング間隔を変えた場合は容器も変えて、別な濃度として加重積算してもよい。
0036
図3の例では、サンプリングされた廃液の毒素濃度を濃度測定器27によりオンライン測定する。その測定値は制御演算部6に与えられる。これにより、透析中に除去される廃液中の毒素濃度の経時的変化を捉えることができる。また、流量計26により計測される単位時間当たりの廃液量を毒素濃度に乗じることにより、除去された毒素量を算出することができる。これにより、透析中において、透析処方を切り替えるタイミングを把握することが可能となる。
0038
図4の例では、血液をサンプリングするための電磁弁41が設けられ、血液および透析液の廃液サンプリングのタイミングがタイマ22により指示される。血液のサンプリングのタイミングは、透析液の廃液のサンプリングと同時でもよく、あるいは異なっていてもよい。
0040
本発明の適用範囲は上記実施形態に限定されることはない。本発明は、血液透析における毒素除去量を測定する毒素除去量測定方法および血液透析における透析液の廃液をサンプリングするサンプリング装置に対し、広く適用することができる。
0041
1透析器
11透析膜
21、41電磁弁(サンプリング手段)
22タイマ
23透析コントローラ
24容器
25、26流量計
27濃度測定器
31 制御演算部