図面 (/)

技術 金属酸化物ナノ粒子を高分散担持したカーボン、このカーボンを含有する電極材料、この電極材料を用いた電極及び電気化学素子

出願人 日本ケミコン株式会社有限会社ケー・アンド・ダブル
発明者 直井勝彦荻原信宏石本修一
出願日 2010年3月31日 (10年7ヶ月経過) 出願番号 2010-084607
公開日 2010年10月7日 (10年1ヶ月経過) 公開番号 2010-225590
状態 特許登録済
技術分野 炭素・炭素化合物 電気二重層コンデンサ等 電池の電極及び活物質 ナノ構造物
主要キーワード 出力電気 同心円筒 メソポーラス炭素 電気エネルギー貯蔵 SUSメッシュ 水酸化金属 貯蔵電極 せき板
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2010年10月7日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (6)

課題

液反応において反応を促進させ、さらにその反応を用いて金属酸化物ナノ粒子高分散担持させたカーボンを形成してなる電極材料、この電極材料からなる電極、及びこの電極を用いた電気化学素子を提供する。

解決手段

MxOz、AxMyOz、Mx(DO4)y、AxMy(DO4)z(ただし、M:金属元素A:アルカリ金属又はランタノイド元素)で表される一次粒子径1〜10nmの金属酸化物ナノ粒子を、カーボン粒子の表面に高分散担持させる。旋回する反応器内で反応物ずり応力遠心力を加えて、化学反応を促進させる反応を用い、化学反応の過程で、反応器内で反応物にずり応力と遠心力を加えて生成した金属酸化物ナノ粒子と、反応器内でずり応力と遠心力を加えて分散したカーボンとからなる。金属酸化物ナノ粒子は、カーボン表面、内表面に担持され、カーボンで包囲されている。このカーボンを窒素雰囲気熱処理して電極材料とする。

概要

背景

従来より、加水分解反応酸化反応重合反応縮合反応等、液相反応において金属酸化物金属水酸化物などの不溶性生成物を生成する反応方法が知られているが、このような反応方法としては、ゾルゲル法が代表的である。しかしながら、このゾル−ゲル法は金属塩の加水分解反応、重縮合反応等によるものであり反応速度は遅く、均一な生成物を得ることができない。その問題点を解決する方法として、触媒を用いて反応を促進する方法が知られている。このほか、反応性のよい反応物を用いたり(特許文献1)、撹拌方法を改善した例(特許文献2)がある。
さらに、このような液相反応によって生成される水酸化金属水和物が電気エネルギー貯蔵素子として用いられる試みがある(特許文献3)

概要

液反応において反応を促進させ、さらにその反応を用いて金属酸化物ナノ粒子高分散担持させたカーボンを形成してなる電極材料、この電極材料からなる電極、及びこの電極を用いた電気化学素子を提供する。MxOz、AxMyOz、Mx(DO4)y、AxMy(DO4)z(ただし、M:金属元素A:アルカリ金属又はランタノイド元素)で表される一次粒子径1〜10nmの金属酸化物ナノ粒子を、カーボン粒子の表面に高分散担持させる。旋回する反応器内で反応物にずり応力遠心力を加えて、化学反応を促進させる反応を用い、化学反応の過程で、反応器内で反応物にずり応力と遠心力を加えて生成した金属酸化物ナノ粒子と、反応器内でずり応力と遠心力を加えて分散したカーボンとからなる。金属酸化物ナノ粒子は、カーボン表面、内表面に担持され、カーボンで包囲されている。このカーボンを窒素雰囲気熱処理して電極材料とする。

目的

本発明は、従来にない液相反応において反応を促進する方法を用いて作成した金属酸化物ナノ粒子を高分散担持したカーボン、このカーボンを含有する電極材料、この電極材料を用いた電極及び電気化学素子を提供する

効果

実績

技術文献被引用数
2件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

旋回する反応器内で金属酸化物原料カーボンずり応力遠心力を加えて化学反応を促進させ、MxOz、AxMyOz、Mx(DO4)y、AxMy(DO4)z(ただし、M:金属元素A:アルカリ金属又はランタノイド元素)で表される一次粒子径1〜10nmの金属酸化物ナノ粒子を、カーボン粒子の表面に高分散担持させたことを特徴とするカーボン。

請求項2

前記金属酸化物ナノ粒子が、カーボン粒子の内表面に担持されていることを特徴とする請求項1に記載のカーボン。

請求項3

前記金属酸化物ナノ粒子が、カーボン粒子に包囲された状態で、カーボン粒子に高分散担持されていることを特徴とする請求項1または請求項2に記載のカーボン。

請求項4

前記金属酸化物が、酸化チタニウムである請求項1に記載のカーボン。

請求項5

請求項1から請求項4のいずれ1項に記載のカーボンを、窒素雰囲気熱処理してなる電極材料

請求項6

請求項5に記載の電極材料をバインダーと混合した後、成形して得られる電極

請求項7

請求項6に記載の電極を用いた電気化学素子

技術分野

0001

本発明は、金属酸化物ナノ粒子高分散担持したカーボン、このカーボンを含有する電極材料、この電極材料を用いた電極及び電気化学素子に関する。

背景技術

0002

従来より、加水分解反応酸化反応重合反応縮合反応等、液相反応において金属酸化物金属水酸化物などの不溶性生成物を生成する反応方法が知られているが、このような反応方法としては、ゾルゲル法が代表的である。しかしながら、このゾル−ゲル法は金属塩の加水分解反応、重縮合反応等によるものであり反応速度は遅く、均一な生成物を得ることができない。その問題点を解決する方法として、触媒を用いて反応を促進する方法が知られている。このほか、反応性のよい反応物を用いたり(特許文献1)、撹拌方法を改善した例(特許文献2)がある。
さらに、このような液相反応によって生成される水酸化金属水和物が電気エネルギー貯蔵素子として用いられる試みがある(特許文献3)

先行技術

0003

特開平8−239225号公報
特開11−60248号公報
特開2000−36441号公報

0004

しかしながら、このような方法によっても反応を促進することができず、結果として均一な生成物を得ることができないという問題点があった。また、電気エネルギー貯蔵素子として好適なナノ粒子とすることができないという問題点があった。そこで、本発明は、従来にない液相反応において反応を促進する方法を用いて作成した金属酸化物ナノ粒子を高分散担持したカーボン、このカーボンを含有する電極材料、この電極材料を用いた電極及び電気化学素子を提供することを目的とする。

課題を解決するための手段

0005

本発明の金属酸化物ナノ粒子を担持したカーボン、このカーボンを含有する電極、及びこの電極を用いた電気化学素子を作製するための反応方法は、化学反応過程で、旋回する反応器内で反応物にずり応力遠心力を加えて化学反応を促進することを特徴としている。この反応方法においては、反応物にずり応力と遠心力の双方の機械的エネルギーが同時に加えられることによって、このエネルギー化学エネルギー転化することによるものと思われるが、従来にない速度で化学反応を促進させることができる。

0006

さらに、この反応は、旋回する反応器内で反応物を含む薄膜を生成し、この薄膜にずり応力と遠心力を加えることによって、薄膜内の反応物に大きなずり応力と遠心力が加わり、さらに化学反応を促進することができる。

0007

そして、このような化学反応を促進させるには、外筒内筒同心円筒からなり、内筒の側面に貫通孔を備えるとともに、外筒の開口部にせき板を配置してなる反応器において、内筒の旋回による遠心力によって内筒内の反応物を内筒の貫通孔を通じて外筒の内壁面に移動させ、外筒の内壁面に反応物を含む薄膜を生成するとともに、この薄膜にずり応力と遠心力を加えることによって実現することができる。

0008

ここで、薄膜の厚みを5mm以下とすることによって、この反応方法の効果を高めることができる。この場合、反応器の内筒内の反応物に加えられる遠心力を1500N(kgms-2)以上とすることによって、本発明の反応方法の効果を高めることができる。また、この化学反応は金属塩の加水分解反応または縮合反応に用いることができる。以上の化学反応によって、金属酸化物ナノ粒子を形成することができる。

0009

本発明のカーボンは、化学反応の過程で、旋回する反応器内で反応物にずり応力と遠心力を加えて生成した金属酸化物ナノ粒子と、旋回する反応器内でずり応力と遠心力を加えて分散したカーボンとからなり、金属酸化物ナノ粒子を高分散担持させたカーボンであることを特徴としている。このような金属酸化物ナノ粒子を高分散担持させたカーボンは、金属酸化物ナノ粒子の生成とともにこの金属酸化物ナノ粒子とカーボンが均一分散され、反応終了とともにカーボンの表面に金属酸化物ナノ粒子を高分散担持させた状態となって形成される。このカーボンは前述した反応方法によって、反応物とカーボンを混合した状態で、反応させると同時に分散させることによって作成することができる。

0010

このカーボンは電気化学素子用電極材料として用いることができる。この電極はナノ化しているため、比表面積が格段に拡大しているので、リチウムイオン貯蔵電極として用いた場合には出力特性が向上し、プロトンの貯蔵電極として用いた場合には容量特性が向上する。したがって、この電極を用いることによって、高出力、高容量特性を有する電気化学素子を得ることができる。

発明の効果

0011

以上のように、前記の化学反応方法は、ずり応力と遠心力の双方が同時に反応物に加えられることによって、この機械的エネルギーが反応に必要な化学エネルギーに転化することによるものと思われるが、従来にない速度で化学反応が進行する。この方法を金属塩の加水分解、縮合反応に適用することによって、反応が瞬時に進行して本発明でカーボンに担持させる金属酸化物ナノ粒子を生成することができる。

0012

さらに、この化学反応過程で、反応物にカーボンを添加することにすることによって、金属酸化物ナノ粒子を高分散担持させたカーボンを得ることができ、このカーボンを電極として用いることによって、高出力、高容量特性を有する電気化学素子を実現すことができる。

図面の簡単な説明

0013

本発明の金属酸化物ナノ粒子を担持したカーボンを製造するための電気化学素子反応に用いる反応器の1例である。
実施例1において得られた酸化チタニウムナノ粒子を高分散担持させたケッチェンブラックTEM像である。
実施例3において得られた酸化ルテニウムナノ粒子を高分散担持させたカーボンナノチューブのTEM像である。
実施例1、2の充放電挙動を示す図である。
実施例1、2、比較例のレート特性を示す図である

0014

以下に本発明の金属酸化物ナノ粒子を担持したカーボンを製造するための化学反応方法について、さらに詳細に説明する。
この化学反応方法は、例えば図1に示すような反応器を用いて行うことができる。図1に示すように、反応器は開口部にせき板1−2を有する外筒1と貫通孔2−1を有し旋回する内筒2からなる。この反応器の内筒内部に反応物を投入し、内筒を旋回することによってその遠心力で内筒内部の反応物が内筒の貫通孔を通って外筒の内壁1−3に移動する。この時反応物は内筒の遠心力によって外筒の内壁に衝突し、薄膜状となって内壁の上部へずり上がる。この状態では反応物には内壁との間のずり応力と内筒からの遠心力の双方が同時に加わり、薄膜状の反応物に大きな機械的エネルギーが加わることになる。この機械的なエネルギーが反応に必要な化学エネルギー、いわゆる活性化エネルギーに転化するものと思われるが、短時間で反応が進行する。

0015

この反応において、薄膜状であると反応物に加えられる機械的エネルギーは大きなものとなるため、薄膜の厚みは5mm以下、好ましくは2.5mm以下、さらに好ましくは1.0mm以下である。なお、薄膜の厚みはせき板の幅、反応液の量によって設定することができる。

0016

この反応方法は反応物に加えられるずり応力と遠心力の機械的エネルギーによって実現できるものと考えられるが、このずり応力と遠心力は内筒内の反応物に加えられる遠心力によって生じる。したがって、本発明に必要な内筒内の反応物に加えられる遠心力は1500N(kgms-2)以上、好ましくは70000N(kgms-2)以上、さらに好ましくは270000N(kgms-2)以上である。

0017

以上の本発明の反応方法は液相反応であれば、加水分解反応、酸化反応、重合反応、縮合反応等様々な反応に適用することができる。

0018

なかでも、従来ゾル−ゲル法で行われていた金属塩の加水分解反応、縮合反応よる金属酸化物の生成に適用することによって、均一な金属酸化物ナノ粒子を形成することができる。

0019

金属酸化物の金属としては、Li, Al, Si, P, B, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Mo, Ru, Pb, Ag, Cd, In, Sn, Sb, W, Ce等を挙げることができる。酸化物としては、例えばMxOz、AxMyOz、Mx(DO4)y、AxMy(DO4)z(M:金属元素A:アルカリ金属又はランタノイド元素D: Be, B, Si, P, Ge等 )で表される酸化物であり、これらの固溶体とすることもできる。

0020

以上の金属酸化物ナノ粒子は電気化学素子用電極に好適な活物質として作用する。すなわち、ナノ粒子化することによって比表面積が格段に拡大して、出力特性、容量特性が向上する。

0021

さらに、このような金属塩の加水分解反応、縮合反応よる金属酸化物の生成反応において、反応過程でカーボンを加えることによって、金属酸化物ナノ粒子を高分散担持させたカーボンを得ることができる。すなわち、図1の反応器の内筒の内部に金属塩とカーボンを投入して、内筒を旋回して金属塩とカーボンを混合、分散する。さらに内筒を旋回させながら水酸化ナトリウムなどの触媒を投入して加水分解、縮合反応を進行させ、金属酸化物を生成するとともに、この金属酸化物とカーボンを分散状態で、混合する。反応終了とともに、金属酸化物ナノ粒子を高分散担持させたカーボンを形成することができる。

0022

ここで用いるカーボンとしては、ケッチェンブラック、アセチレンブラック等のカーボンブラック、カーボンナノチューブ、カーボンナノホーン無定形炭素炭素繊維天然黒鉛人造黒鉛活性炭メソポーラス炭素等を挙げることができ、これらの複合材を用いることもできる。

0023

以上の金属酸化物ナノ粒子を高分散担持させたカーボンは場合によっては焼成して、バインダーと混錬、成型し、電気化学素子の電極、すなわち電気エネルギー貯蔵用電極とすることができるが、この電極は高出力特性、高容量特性を示す。

0024

ここで、この電極を用いることができる電気化学素子は、リチウムイオンを含有する電解液を用いる電気化学キャパシタ電池、水系の電解液を用いる電気化学キャパシタ、電池である。すなわち、本発明の電極は、リチウムイオン、プロトンのレドックス反応を行うことができる。さらに金属種および酸化還元電位の異なる対極の選択によって、負極、正極として作動する。したがって、リチウムイオンを含有する電解液または水系の電解液を用い、対極として活性炭、リチウムがレドックス反応するカーボン、プロトンがレドックス反応する高分子、さらにはリチウムまたはプロトンがレドックス反応する金属酸化物を用いることによって、電気化学キャパシタ、電池を構成することができる。

0025

以下に実施例により本発明をさらに具体的に説明する。

0026

(実施例1)
旋回反応器の中に40mlのイソプロピルアルコール、1.25gのチタンテトラブトキシド、1gのケッチェンブラック(ケッチェン・ブラックインターナシナル社製、商品名:ケッチェンブラックEC600JD、空隙率78Vol.%、一次粒子径40nm、平均二次粒径337.8nm)を加え、反応器の中でこれらを撹拌した。さらに、1gの水を添加して、66,000N(kgms-2)の遠心力で10分間、内筒を旋回して外筒の内壁に反応物の薄膜を形成するとともに、反応物にずり応力と遠心力を加えて化学反応を促進させ、酸化チタニウムナノ粒子を高分散担持させたケッチェンブラックを得た。

0027

得られた酸化チタニウムナノ粒子を高分散担持させたケッチェンブラックをフィルターフォルダーに通してろ過し、100℃で6時間乾燥することにより、酸化チタニウムのナノ粒子がケッチェンブラックの内表面に高分散担持している構造体を得た。図2にこの構造体のTEM像を示す。図2においては、一次粒子径1〜10nmの酸化チタニウムナノ粒子がケッチェンブラックに高分散担持していることが分かる。

0028

(実施例2)
ケッチェンブラックに変えて、1gのカーボンナノチューブ(株式会社ジェムコ製)を用いて、実施例1と同様にして、酸化チタニウムナノ粒子を高分散担持させたカーボンナノチューブを得た。酸化チタニウムナノ粒子の一次粒子径は1〜10nmであった。

0029

(実施例3)
イソプロピルアルコール、チタンテトラブトキシド、ケッチェンブラックに変えて、40mlの水、1.965gの塩化ルテニウム、1gのカーボンナノチューブ(株式会社ジェムコ製)を用いて、実施例1と同様にして、酸化ルテニウムナノ粒子を高分散担持させたカーボンナノチューブを得た。図3にこの構造体のTEM像を示す。図3においては、一次粒子径1〜10nmの酸化ルテニウムナノ粒子がケッチェンブラックに高分散担持していることが分かる。

0030

(比較例)
従来のゾル−ゲル法によって、すなわち本発明の化学反応を行わず、実施例1と同様にして、酸化チタニウム粒子が担持したケッチェンブラックを得た。酸化チタニウム粒子の一次粒子径は10〜50nmであった。

0031

以上の結果から、比較例では10〜50nmにまで粒子成長して反応が終了しているが、実施例は1〜10nm粒子成長した時点で反応が終了しており、本発明の反応方法によって従来にない液相反応の促進が実現されていることが明らかである。

0032

実施例1、2、比較例で得られたサンプルについて400℃窒素雰囲気で12時間熱処理を行なった。熱処理したサンプルはバインダーと混合した後成形し、SUSメッシュ圧着することによって電極とした。この電極を真空乾燥した後、対極には金属リチウムを用い、電解液には1MLiPF6/EC-DEC(1:1vol%)を用いてセルを作製し、充放電挙動及びレート特性を調べた。結果を図4及び図5に示す。

0033

図4から、実施例1、実施例2の電極は、1.75〜2.0V付近プラトーを持つ。これはTi(III)からTi(IV)の酸化還元に対応しており、この電極が電気化学素子用エネルギー貯蔵酸化物複合電極として作動できることを示している。

実施例

0034

図5から、実施例1、実施例2の電極は、比較例1と比べ高い電流においても高い容量保持率を示しており、高出力電気化学素子用電極として有効である。

0035

1…外筒
1−2…せき板
1−3…内壁
2…内筒
2−1…貫通孔

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ