図面 (/)

技術 被検者の健康に関連する状態を表示するための代謝監視、方法および装置

出願人 ダイアベティスツールズスウェーデンアーベー
発明者 リリュエリードラルスグスタフマグヌッソンウルフフレドリク
出願日 2010年2月4日 (10年10ヶ月経過) 出願番号 2010-022797
公開日 2010年7月8日 (10年5ヶ月経過) 公開番号 2010-148884
状態 特許登録済
技術分野 生体の呼吸・聴力・形態・血液特性等の測定 診断用測定記録装置
主要キーワード セルフコントロール ステップ長 低周波数エネルギー 水泳選手 導出値 自主管理 二次基準 経時データ
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2010年7月8日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (20)

課題

理解するのがより容易で、ランニングコストをより低下させ、被検者が用いるのにより快適でかつよりやる気を起こさせる、被検者の健康に関連する状態を示すための改善された考え方を提供することにある

解決手段

侵襲的な第1の測定方法によって得られた第1の生物学的量サンプルのシーケンスと、非侵襲的な第2の測定方法によって得られた第2の生物学的量のサンプルのシーケンスを有し、第1の生物学的量は、第2の生物学的量よりも正確な被検者の健康に関連する状態の表示を与え、第1の生物学的量のサンプルが存在しないある一定の期間に対して、第2の量のサンプルを用いて、第1の生物学的量の推定値を提供するためのプレディクタ(30)と、被検者の健康に関連する状態の表示が得られるように、推定値または該推定値から導出されたデータを出力するための出力インターフェース(25)とを有する。

概要

背景

哺乳類生理的信号および生化学的信号、例えば血糖サンプリング信号血圧信号および他の監視信号は、長期にわたってサンプリングされる場合、ノイズが非常に多く、高い変動性を有する可能性がある。従って、その後にデータの正確な解釈を行う前に、そのようなノイズを減少させることが重要である。さらに、生化学的信号は、性質侵襲的であることが多く、かつそのような測定を適用することは、不快、高額、または複雑となる可能性がある。本発明案は、適切なフィルタ処理方法を用いることによってそのような信号の解釈における精度を向上させ、かつ非侵襲的代替測定値を用いることによって不快および費用を低減することを目指す

糖尿病は、流行伝染病のような勢いで地球規模で増加しており、医療の巨額な費用負担象徴している。1型糖尿病は、糖尿病症例全体の約10%を占めている。従って、2型糖尿病は、糖尿病症例全体の約90%を占め、かつ確実に増加している。アメリカ合衆国においてだけでも、人口の最大7%が糖尿病を有している可能性があると推定されている。1億の個人太り過ぎであり、従って2型糖尿病になる危険性が高い。この傾向が持続すれば、2030年には、米国の成人人口の100%が太り過ぎとなる。米国における間接費を含んだ糖尿病の年間総費用は、1997年には約1,000億米ドル見積もられた。サウジアラビアでは、人口の最大25%が糖尿病に関連する疾患を有している可能性があると推定されている。世界保健機関(WHO)は、2025年までに糖尿病患者が全世界で3億人に増加すると予測している。この地球規模の流行傾向を覆すためのさまざまな試みがなされてきたが、今日まで、これは不成功に終わっている。

1型糖尿病(以前はインスリン依存性糖尿病、IDDM:insulin dependent diabetes mellitusと呼ばれていた)は、通常絶対的インスリン欠乏を引き起こす不可逆性ベータ細胞破壊によって特定される。2型糖尿病(以前は非インスリン依存性糖尿病、NIDDM:non−insulin dependent diabetes mellitusと呼ばれていた)は、遺伝的要因と環境的要因との両方を含むと考えられる異質性疾患として特定される。2型糖尿病は、その大部分においてライフスタイルに関連する疾患であり、不健全食習慣と相まった現代座りがちなライフスタイルが問題の主要な原因であると考えられている。2型糖尿病患者は一般に、生存のためのインスリン治療を必要としない。2型糖尿病の一般的な症状は、渇き頻尿眠気けん怠感、体重超過味覚発汗、さまざまな視覚ぼけ血糖値の上昇、アセトン呼気および尿糖である。患者検査によって、座りがちなライフスタイル、および飽和脂肪と精製炭化物の多い食事に対する明確な嗜好が明らかになるのがきわめて一般的である。

インスリン抵抗性は、2型糖尿病および肥満を含むさまざまな内科的疾患によって個人を特徴付け、また多くの心臓血管の異常および代謝系の異常に関連して発生する一般的な代謝異常である。インスリン抵抗性は、身体がインスリンに適切に反応することができないことと定義される。インスリン抵抗症候群とも命名されているシンドローム−Xまたはメタボリック症候群とは、2型糖尿病および関連する心循環器疾患の発生を予測する、代謝系危険因子生理的危険因子の群である。これは、肥満、高血圧、インスリン抵抗性、耐糖能異常および異常脂質血症の5つの主要な異常によって一般に特徴付けられる。西洋諸国におけるメタボリック症候群の罹患率は、25%〜35%である。老化は通常、インスリン抵抗性と関係があり、ベータ細胞機能の低下および肥満は、インスリン抵抗性ならびに高インスリン血症と関係がある。

糖尿病性自律神経障害(DAN:diabetic autonomic neuropathy)は、糖尿病の重大かつ最も一般的な合併症のうちの1つである。ほとんどの2型糖尿病患者は、自律神経系(ANS:autonomic nervous system)の機能の低下が先行する心循環器疾患で死亡する。これは、初期段階で気付かれることはほとんどなく、2型糖尿病を、長い年月をかけてゆっくりと進行し、かつほとんどの場合、後期において発見されるまで患者が気付かない「分かりにくい」疾患としている。DANは、日常生活の通常の活動を行う能力を損ない、生活の質を低下させ、死の危険性を増大させる。DANは、体全体の多くの臓器系、例えば胃腸系、性尿器系、および心臓血管系に影響を及ぼす。DANは、血糖値上昇の「毒性」作用に関連する神経繊維の破壊および損失の結果である。従って、DANの発症を防止しかつその進行を遅くするにあたっては、集中的な血糖コントロールが必要不可欠となる。ANSの問題点およびDANは、心拍変動(HRV:heart rate variability)解析の評価によって検知に成功することが可能である。

高血圧症は、西欧の人々の主要な健康障害であり、心臓血管の疾患に関連性を有する。動脈硬化は、高血圧症の原因と結果の両方となる可能性があるが、最近の研究では、動脈硬化が高血圧症の典型的な前兆現象であり、また動脈硬化が遺伝的な根拠を有する可能性が高いことが示唆されている。2型糖尿病患者の大多数(50%超)が、高血圧症を患っている。従って、糖尿病患者の血圧をコントロールすることが急務である。2型糖尿病では、ライフスタイルの改善または投薬もしくは両方の組み合わせによって血圧を130/80未満に維持することが推奨されている。

インスリン抵抗性および2型糖尿病は、血漿リポタンパク値の変化と関連性を有する。2型糖尿病を有する患者の最大70%が、脂質疾患を有する。冠状動脈性心臓病は、2型糖尿病を有する患者の間での主な死亡原因である。肥満、高血圧症、および高血糖症と共に、異常脂質血症は、冠状動脈性心臓病の大きな一因となっている。軽度の異常脂質血症でさえも、冠状動脈性心臓病の危険因子を高める可能性がある。これらの危険因子は加法的または相乗的でさえあるので、ライフスタイル改善に対する戦略では、高血糖症だけでなく、異常脂質血症にも重点的に取り組むべきである。2型糖尿病における異常脂質血症は通常、より粥腫発生性のより小さくかつより密度の高いLDL粒子を示すので、コレステロール低下の標的には、上昇した中性脂肪(TG:triglyceride)の低下のみならず、超低密度リポタンパク質VLDL:very−low−density lipoprotein)および低密度リポタンパク質(LDL:low−density lipoprotein)の低下を含めるべきである。

精神的ストレス、血圧の上昇および心拍数の上昇は、現代社会によくある問題である。現代の仕事およびライフスタイルは、体を動かす度合いが少なく、ハイテク関連の仕事は、座りがちなライフスタイルをもたらすことが多い。高レベルストレスが持続する要求度の高い仕事はよくあるものであり、負の努力報酬因子は、ストレスによって誘発される疾患の一因となる可能性がある。精神的ストレスが収縮期血圧および心拍数の増大のみならず、高血糖値のように、新陳代謝に影響を及ぼす可能性があることはよく知られている。カフェインニコチンアルコールコカインおよびアンフェタミンのようなさまざまな興奮剤も、収縮期血圧および心拍数を増大させる。

エネルギーおよび脂肪分の高い現代型の食生活は、インスリン抵抗性ならびに関連する障害と関係がある。しかしながら、インスリン抵抗性の正確な原因は明らかではない。遺伝的素因食事脂肪の質および量を含む環境要因両方とも血漿グルコースを正常な血漿インスリン値で適切に処理する能力の喪失発現する原因となる。時間効率のよい食事と組み合わせられた糖度が高く、脂肪が多くかつ味のよい食品により、ファストフード店人気を得ている。即効性のある高エネルギー炭水化物消費増大は、血糖過剰およびインスリン過剰となって現れ、その後、血糖不足および嗜眠状態到来し、再び即効性のある炭水化物等の新たな摂取を要求する。この周期的応答は、新陳代謝系の調節システム打撃を与えていることが多い。このような一過性刺激は、長期的には有害であり、インスリン抵抗性および高インスリン値、2型糖尿病進行の早期開始の一因であると考えられている。上述のライフスタイルに関連する問題は現在、過去に前例のない大きさの健康障害を生み出している。

従って、身体活動有酸素フィットネスは、2型糖尿病に関連する疾患と闘うにあたって不可欠なものである。心臓が心臓血管系に酸素を供給する能力および効率を高めると同時に筋肉インスリン感受性および酸素摂取量を向上させる身体活動によって、心臓血管系の健康状態を改善することが最も重要な課題である。心臓の機能は、あらゆる筋肉と同様に、訓練によってより強くかつより効率的になることができる。わずか10%の減量によって、通常、血糖および脂質値に好ましい効果が示される。特に、腹部の脂肪の塊を減らすことが重要である。

身体活動およびエネルギーの消費は、患者の通常の日常活動中に患者を拘束しない種々の方法で推定することができる。歩数計加速度計心拍メータ等のようなさまざまな方法が存在する。1つの評判のよい方法では、簡単な方式によって、歩いた歩数を計算するかまたは歩くことによって消費されたカロリー概算する。他の方法では、一軸加速度計二軸加速度計または三軸加速度計を用いて、身体の動きおよび加速に関連するエネルギーの消費を計算する。別の方法では、プレチスモグラフ(光を指または耳たぶに通し、心拍数および身体活動を計算する装置)に基づく脈拍監視を用いる。別の評判のよい1つの装置、パルスウォッチは、電極を有するチェストストラップを用いてEKG信号を測定し、消費カロリーおよび身体活動に関連する他のパラメータを計算することができる特別設計の腕時計型計算機に、EKGパルスを送信する。しかしながら、身体活動の量を計るもっとも簡単な方法は、行った日々の努力および実行した身体活動の強度および持続時間に関して、例えば1から5までの段階に基づいて、日常活動を単に大まかに推定することである。さらに入念な計算方法および報告方法には、身体活動の強度の正確な指標である、MET:metabolic equivalentテーブル(代謝当量)またはMET方式が含まれる。現代の非活動的で座りがちなライフスタイルは、健康ジムの大市場、および身体の健康を改善するためのさまざまな健康関連製品ならびに身体トレーニングプログラムマーケティング開放をもたらしている。この好ましい傾向にもかかわらず、2型糖尿病に関連する疾患は、驚くべき速度で急速に増加している。

高い危険性、過体重、座りがちで糖尿病の傾向を有する個人に、ライフスタイルを変えるように動機付けることは困難である。関連する健康上の危険性と身体トレーニングの必要性および/または食習慣の修正ならびに/もしくはストレスを取り除く処理の必要性を単に個人に告げるだけでは十分ではないことが多い。健康度の低い個人は、他人に検査されたり、ジムでトレーニングを行うことを強制されるのを快く受け止めないことが多い。太りすぎの個人が自分の身体健康度の低さによって恥ずかしさを感じるのはよくあることであり、屈辱を回避するために、リハビリテーションプログラムに参加することを拒否する。本発明者は、そのような不利益な傾向を打破する唯一の方法は、好ましくは家庭プライベートに、自身の代謝機能を監視するための簡素で直感的な道具を用いることにより、実体験で人々を教育することであると確信している。次いで、個人は、関連する問題についての理解を自ら得とくし、かつライフスタイルを変更するために必要な範囲および強度に対する洞察力を得ることができる。

個人用血糖メータを用いた自己監視は、通常、インスリンの自律的管理を支援するために、1型インスリン依存性糖尿病(IDDM)患者に対して必要なものである。一方、顕在性2型糖尿病または2型糖尿病寸前の患者に血糖監視が処方されるのは、あまり一般的ではない。尿グルコース測定用の尿用ディップスティックを用いた自己監視は、今日ではほとんど廃止されており、腎閾値が広い範囲にわたって個人によって異なるという事実により、用いられることはほとんどない。さらに、この方法は、腎閾値を下回るグルコース値を測定することができず、長い遅延を呈しかつ感度が低いので、血糖監視を利用するのが好ましい。

最近の研究では、2型糖尿病を有する患者に対する食事と併せたBG監視用血糖メータの利用に関するいくつかの利点が報告されている。この考えは、患者に対する食事の代謝効果についての知識を得るために、食前および食後のグルコース値を監視することである。その後、患者は、食後にグルコース値がどのように上昇するかを経験によって学習し、さまざまな種類の食物の摂取に関連するグルコースの変動について、自身にフィードバックすることができる。この考えは、食物摂取バランスをとることであり、精製された即効性の炭水化物を減らすことが、食後の血糖超過を低減することになる。そのような超過は、自律神経系に長期にわたる損傷を引き起こし、最終的には糖尿病および糖尿病性神経障害に至る可能性があることが分かっている。このような形の自己監視は、持続するのが煩わしくかつ非現実的であり、本方法の強度に関連する動機付けの欠如により、患者がこのような検査の試みから脱落するのはまれなことではない。血糖メータおよび道具を患者が日中持ち歩く必要があり、レストランで食事を取っている際に、検査が人目にさらされることもある。そのような煩わしい手順を患者の長期的な日常慣行の一部として含むことには、さほど成功の可能性はない。さらに、日中何本かの血糖用スティックおよび何本かの指穿刺用ランセットを消費するので、費用も無視できない。さらに、そのような検査は性質上侵襲の少ないものであるが、患者にとっては痛みを伴い、かつ非常に不快である可能性がある。さらに、結果の論理的解釈および直観的解釈の余地がほとんど与えられず、従って、患者が治療の目的を得るために一連不都合を理解しかつ管理することが困難となる。

世界保健機関(WHO:The World Health Organisation)および米国糖尿病協会(ADA:American Diabetes Association)は、糖尿病の異なる段階間で区別をつけるために、特定の血糖の範囲およびレベルを設けている。症状のある患者を診断する空腹時グルコース濃度(WHO基準、1999年)を以下に示す。空腹時サンプグルコース濃度は、mmol/Lで示す。

診療所で血糖値を評価する際に、残念なことであるが、強い生物的変動および分析的変動の存在を見逃すことがかなりある。従って、測定値間に大幅な変動が存在し、経験の少ない医師が測定値の解釈を誤る可能性があり、この疾患の等級付けおよび診断の精度が低下する結果となる。

診療所において血液サンプル採取される場合、いくつかの要因が、下記のような測定結果の精度に影響を及ぼす。
1.診療所の分析機器の次善の較正。図1の実例を参照されたい。
2.グルコース保存料解糖を完全には防止しないことによる、解糖による血液サンプルの老化。
3.神経質な「針恐怖症」患者による「白衣高血糖」、高BG値。図2の実例を参照されたい。
4.時間帯の増加に関連する空腹時BG値の持続的低下。
5.時間依存性のインスリン感受性、従って日ごとに異なる感受性
6.月経による女性の周期的なホルモンの変化。
7.BGは、一過性の急性感染症外傷性ストレスおよび単なる風邪またはインフルエンザによって変化する可能性がある。

上記の不確実性に関連し、本発明者は、適切な後処理方法およびフィルタ処理方法と併せた、十分な精度を有する血糖メータを用いた家庭内における管理された状態下での血糖監視によって診断分類の精度が改善されると確信している。本発明者はこれを、すでに実施されている臨床検査室での測定および現行習慣と比較して優れていると確信している。

高インスリン値(高インスリン血症)は、高血糖値が最終的に顕在化するかなり前に血流に現れるが、高血糖値はそれでも典型的な2型糖尿病症候群分類に留まっている。インスリン値は、仮に用いられるとしても、臨床的な研究の目的以外では、糖尿病のリスクマーカまたは診断用手段として用いられることはまれである。驚くべき事実である。従って、低血糖値は、その疾患の存在を否定する。

酸素飽和度の監視は、手術室における患者のみならず、応急処置下の患者についての一般的な方法である。現在では広く用いられているパルスオキシメータ赤外線吸収を利用して血液ヘモグロビンの酸素飽和度を監視する機器)の発明以前は、手術中患者の心拍数と収縮期血圧の積(RPP:Rate−Pressure−Product)を計算して患者の心臓の状態および酸素利用量を確かめるのが一般的な方法であった。RPP(二重積とも呼ばれる)は、心臓の酸素利用量のかなり正確な測定値であり、収縮期血圧に心拍数を乗じることによって得られる(RPP=sBP×HR/100)。パルスオキシメータの導入後、現在RPPはほとんど用途を見出していないが、トレッドミル運動負荷試験等の間の心臓の酸素消費量を示すスポーツ医学に用いられることがある。RPPは、ストレスおよび興奮性薬物の使用も示す。

患者に対する負担を軽減するために、本発明者は、空腹時血糖サンプルのみが正確な長期にわたる2型糖尿病に関連する疾患の監視および治療に必要であると断言する。まばらに、例えば1週間に1回サンプリングされた血糖測定値でさえも、日々のBGの正確な予測のための本発明の実施形態に関しては十分と言ってよい。空腹時血糖値通常食後の血糖偏位の相対的大きさを示すので、日中の食前および食後の血糖測定のようなより集中的で煩わしい血糖監視は、必要であるとはみなされない。従って、より高い空腹時血糖値は、より高い食後血糖値に反映され、逆もまた同様である。これは、ライフスタイル改善期間中断時の0h、1hおよび2hにおいてサンプリングされた複数の3サンプル経口的ブドウ糖負荷試験(OGTT:oral glucose tolerance test)によって示すことができる。図3を参照されたい。より低い空腹時BGと共にライフスタイルが改善され、食後BG値も下降傾向をたどっているのが分かる。しかしながら、食後1hのBG測定値は、もちろん、必要であると考えられる場合の空腹時BGの代替値として用いることができる。しかしながら、これはより煩わしく、従って、上に説明したように、さほど現実的ではない。

本発明の追加の実施形態では、BG値は、好ましくは血圧と心拍数(心拍数と収縮期血圧の積)のみから予測され、プレディクタ初期較正および初期設定手続きの場合を除き、痛みを伴う指穿刺または侵襲的手技を不要にしている。本発明の別の実施形態では、痛みを伴う指穿刺の必要頻度がより少なくされている。

本発明案は、例えば身体活動の強度、血糖、血圧および心拍数のような特定の生理的パラメータを測定しかつ分析する直観的方法を患者に提供する。さらに、脂質値、総コレステロール、中性脂肪、体温、体重、肥満度指数およびウエストヒップ比のような重要な患者データは、格納しかつ処理を施すことができる。そのような測定に続き、適切なフィルタ処理アルゴリズムを用いてデータに処理および最適化が施され、その後、患者の行動、進歩および結果を即座にフィードバックするために、直観的方法で患者に示される。

本発明の好ましい実施形態は、以下のステップを含む。
好ましくは毎日、身体活動のレベルを推定または測定し、好ましくはこの情報をデータベース収集するステップ。
空腹時および/または食後の血糖値をある程度頻繁に測定し、密にもしくはまばらにサンプリングし、好ましくはこの情報をデータベースに収集するステップ。
収縮期拡張期血圧および心拍数を頻繁に測定し、密にサンプリングし、好ましくはこの情報をデータベースに収集するステップ。
収縮期血圧と心拍数とから収縮期血圧と心拍数との積を計算するステップ。
体重、体温、血中脂質等のような任意の他の関連する生理的パラメータを測定し、好ましくはこの情報をデータベースに収集するステップ。
統計的処理手法および/または信号処理手法を用いて、上記のデータに低域通過フィルタ処理、高度化、誤り訂正および欠損データ補間を施すステップ。
予測手法を適用し、好ましくは心拍数と収縮期血圧の積から血糖値を予測するステップ。
ノイズを低減させるために適切なアルゴリズムによって得られたデータを結合および/またはフィルタ処理し、そのようして得られた情報を提示用に明確化および改善するステップ。
処理、高度化および/または予測が実行されたデータを、患者パラメータを容易に解釈することができるように、直観的かつ理解しやすい方法で傾向として患者に提示するステップ。

上記のことから、糖尿病に関連する疾患の代謝監視が、少なくとも被検者の現在の状態を評価するために不可欠であることが明らかとなる。生命維持に必要な生物学的パラメータの密なサンプリングにより、いくつかの利点が提供される。主な利点は、被検者が自分の現在の状態を継続的に知り、それにより被検者の健康状態が低下しない点である。別の利点は、例えば身体活動の欠如またはより悪い場合には良好な栄養状態の欠如、もしくはよりよい場合には十分な身体活動およびよく管理された食事と関連する、患者の現在の状態におけるなんらかの変化または傾向についての概説を、患者が継続的に受け取る点である。さらに別の重要な利点は、被検者が自分の状態の即時フィードバックを受け取り、進行しつつある傾向に基づいて自分のライフスタイルを調整することができる点である。本発明による効率的な代謝監視に対する前提条件は、被検者が生命維持に必要な生物学的パラメータを監視することである。例えば、血糖値、血圧および心拍数は起床時に測定することができ、身体活動は日中等に測定することができる。

指穿刺は侵襲が少ないと見なすことができるが、正確な血糖監視には侵襲的測定が必要となる。現在、精度において侵襲的測定に匹敵可能な他の方法はない。被検者が自分の指を穿刺して少量の血液をサンプリングし、該少量の血液がその後分析装置内で検査され、該分析装置が血糖値を出力する。侵襲の少ない方法でさえ費用のかかるものであり、かつ不快感を経験することが多く、従って、患者および疾患管理に否定的な影響を有する可能性がある。

概要

理解するのがより容易で、ランニングコストをより低下させ、被検者が用いるのにより快適でかつよりやる気を起こさせる、被検者の健康に関連する状態を示すための改善された考え方を提供することにある侵襲的な第1の測定方法によって得られた第1の生物学的量のサンプルのシーケンスと、非侵襲的な第2の測定方法によって得られた第2の生物学的量のサンプルのシーケンスを有し、第1の生物学的量は、第2の生物学的量よりも正確な被検者の健康に関連する状態の表示を与え、第1の生物学的量のサンプルが存在しないある一定の期間に対して、第2の量のサンプルを用いて、第1の生物学的量の推定値を提供するためのプレディクタ(30)と、被検者の健康に関連する状態の表示が得られるように、推定値または該推定値から導出されたデータを出力するための出力インターフェース(25)とを有する。

目的

心臓が心臓血管系に酸素を供給する能力および効率を高めると同時に筋肉のインスリン感受性および酸素摂取量を向上させる身体活動によって、心臓血管系の健康状態を改善することが最も重要な課題である

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

被検者の健康に関連する状態を示すための装置であって、測定方法によって得られた生物学的量の生のサンプルのシーケンスを受信するための入力インターフェース(20)と、処理済のシーケンスを取得するために、前記生のサンプルのシーケンスを処理するためのプロセッサ(24)であって、前記プロセッサは、前記生のシーケンスのサンプルおよび補間済みサンプルを有する補間済みシーケンスを得るために、ある時刻に、先行時刻における1つ以上のサンプルもしくは後続時刻における1つ以上のサンプルを用いて前記生物学的量の欠損サンプルに対して、前記補間済みサンプルを提供するためのインターポレイタを含む、プロセッサ(24)と、フィルタ処理されたシーケンスを得るために、前記処理済のシーケンスをフィルタ処理するためのフィルタ(22)であって、前記フィルタ処理されたシーケンスは、有効な変動およびフィルタ処理前の前記処理済のシーケンスと比較して低減された非有効な変動を有する、フィルタ(22)と、傾向を得るために、前記フィルタ処理されたシーケンスを処理するため、または前記フィルタ処理されたシーケンスから得られた高度化されたシーケンスを処理するための、および前記フィルタ処理されたシーケンスまたは前記高度化されたシーケンスの前記傾向として、少なくとも増加の表示、減少の表示または横ばいの表示を出力するための出力インターフェース(25)であって、前記傾向は、前記被検者の前記健康に関連する状態の有効な変動を表わす、出力インターフェース(25)と、を備える装置。

請求項2

前記フィルタ処理されたシーケンスから前記高度化されたシーケンスを取得するための第2のプロセッサ(27)であって、前記第2のプロセッサは、コンバイナ増幅器、または前記フィルタ処理されたシーケンスを修正するための信号処理手段を含む、請求項1に記載の装置。

請求項3

記入インターフェース(20)は、さらなる測定方法により取得された異なる生物学的量のさらなる生のシーケンスを受信するために構成され、前記フィルタ(22)は、さらなるフィルタ処理されたシーケンスを得るために前記さらなる生のシーケンスをフィルタ処理するために構成され、前記第2のプロセッサ(27)は、前記高度化されたシーケンスを取得するために、前記フィルタ処理されたシーケンスと前記さらなるフィルタ処理されたシーケンスとを組み合わせるための前記コンバイナを含む、請求項2に記載の装置。

請求項4

前記入力インターフェースは、さらなる測定方法によって取得された異なる生物学的量のさらなる生のシーケンスを受信するために構成され、前記プロセッサ(24)は、組み合わされた生のシーケンスを得るために、前記生のシーケンスと前記さらなる生のシーケンスを組み合わせるためのコンバイナ(27)をさらに含む、請求項1に記載の装置。

請求項5

前記測定方法は、血糖または血漿グルコースの測定であり、前記さらなる測定方法は、心拍数測定、血圧測定または心拍数と血圧の積を得るための方法である、請求項3に記載の装置。

請求項6

前記コンバイナ(27)は、サンプルワイズ乗算を行うために用意される、請求項3ないし請求項5のいずれかに記載の装置。

請求項7

前記生物学的量は、前記被検者の血糖値血中脂質値または血中インスリン値である、請求項1ないし請求項6のいずれかに記載の装置。

請求項8

前記健康に関連する状態は、糖尿病関連またはグルコース関連もしくはインスリン関連の代謝障害である、請求項1ないし請求項7のいずれかに記載の装置。

請求項9

前記生物学的量は、血糖値である、請求項1ないし請求項8のいずれかに記載の装置。

請求項10

前記フィルタは、低域通過フィルタである、請求項2ないし請求項9のいずれかに記載の装置。

請求項11

前記低域通過フィルタは、生シーケンスまたは処理済みシーケンスの周波数低周波数エネルギーが前記生シーケンスまたは前記処理済みシーケンスの総エネルギーの所定の部分を有するように設定された遮断周波数を有する、請求項10に記載の装置。

請求項12

フィルタ処理済み試験信号を得るために前記サンプルをフィルタ処理して低域通過フィルタに対して、複数の異なる遮断周波数を決定するステップと、残差表示を取得するために、各フィルタ処理済み試験信号に関して、前記生シーケンスとフィルタ処理済み試験信号との間の差に基づいて残差値導出するステップと、前記残差表示に基づいて、サンプルの前記生シーケンスに個別に合わせた遮断周波数を決定するステップとを用いて前記遮断周波数を決定するために用意された遮断周波数計算機により構成される、請求項10または請求項11に記載の装置。

請求項13

前記遮断周波数計算機は、低遮断周波数に対する残差エネルギーを用いて第1の線を決定し、高遮断周波数に対する残差エネルギーを用いて第2の線を決定し、前記遮断周波数を示す、前記第1の線と前記第2の線の交差点を見つけることによって、前記遮断周波数を決定するために用意されている、請求項12に記載の装置。

請求項14

前記出力インターフェース(25)は、前記減少の表示、前記増加の表示または前記横ばいの表示が聴覚的に、光学的に、または機械的に互いに異なるように、音響標識、光標識または機械的標識によって前記傾向を示すために用意されている、請求項1に記載の装置。

請求項15

前記出力インターフェース(25)は、前記フィルタ処理済みシーケンスまたは高度化されたシーケンスの実効値、および前記フィルタ処理済みシーケンスまたは前記高度化されたシーケンスの時間的に先行する値から前記傾向を導出しかつ出力するために用意されている、請求項1または請求項14に記載の装置。

請求項16

被検者の健康に関する状態を示す方法であって、前記方法は、測定方法によって得られた生物学的量の生のサンプルのシーケンスを受信する工程と、処理済のシーケンスを取得するために、前記生のシーケンスを処理する工程(24)であって、前記処理する工程は、前記生のシーケンスのサンプルおよび補間済みサンプルを有する補間済みシーケンスを得るために、ある時刻に、先行時刻における1つ以上のサンプルもしくは後続時刻における1つ以上のサンプルを用いて前記生物学的量の欠損サンプルに対して、前記補間済みサンプルを提供するための補間処理する工程を含む、処理する工程(24)と、フィルタ処理されたシーケンスを得るために、前記処理済のシーケンスをフィルタ処理する工程(22)であって、前記フィルタ処理されたシーケンスは、有効な変動およびフィルタ処理前の前記処理済のシーケンスと比較して低減された非有効な変動を有する、フィルタ処理する工程(22)と、傾向を得るために、前記フィルタ処理されたシーケンスを処理するため、または前記フィルタ処理されたシーケンスから得られた高度化されたシーケンスを処理するための工程(25)、および前記フィルタ処理されたシーケンスまたは前記高度化されたシーケンスの傾向として、少なくとも増加の表示、減少の表示または横ばいの表示を出力するための出力する工程であって、前記傾向は、前記被検者の前記健康に関連する状態の有効な変動を表す、工程と、を含む方法。

請求項17

コンピュータに、被検者の健康に関する状態を示す方法を実行させるためのプログラムであって、前記プログラムは、測定方法によって得られた生物学的量の生のサンプルのシーケンスを受信する工程と、処理済のシーケンスを取得するために、前記生のシーケンスを処理する工程(24)であって、前記処理する工程は、前記生のシーケンスのサンプルおよび補間済みサンプルを有する補間済みシーケンスを得るために、ある時刻に、先行時刻における1つ以上のサンプルもしくは後続時刻における1つ以上のサンプルを用いて前記生物学的量の欠損サンプルに対して、前記補間済みサンプルを提供するための補間処理する工程を含む、処理する工程(24)と、フィルタ処理されたシーケンスを得るために、前記処理済のシーケンスをフィルタ処理する工程(22)であって、前記フィルタ処理されたシーケンスは、有効な変動およびフィルタ処理前の前記処理済のシーケンスと比較して低減された非有効な変動を有する、フィルタ処理する工程(22)と、傾向を得るために、前記フィルタ処理されたシーケンスを処理するため、または前記フィルタ処理されたシーケンスから得られた高度化されたシーケンスを処理するための工程(25)、および前記フィルタ処理されたシーケンスまたは前記高度化されたシーケンスの傾向として、少なくとも増加の表示、減少の表示または横ばいの表示を出力するための出力する工程であって、前記傾向は、前記被検者の前記健康に関連する状態の有効な変動を表わす、工程と、を含む方法を実行させるためのプログラム。

技術分野

0001

本発明は、患者データフィルタ処理予測および傾向分析を用いることによる、ノイズを有する生理的信号および生化学的信号の解釈の改善に関するものであり、2型糖尿病または糖尿病に関連する疾患を有する患者動機付けセルフコントロールおよび自主管理の向上を目指す方法および装置ならびに/またはコンピュータプログラム製品を開示する。本発明は、心臓酸素利用、従って体調および身体の健康を監視し、興奮剤および薬物の乱用ならびに心理的および情緒ストレスを表示する。本発明は、まばらな血液サンプリングによる血糖予測のみならず、無痛非侵襲的な血糖の代替測定値利用法、および代謝能力標識を開示する。本発明は、使いやすさと相まった低コストの長期的代謝監視を提供し、かつユーザの努力をほとんど必要としない直観的方法で、この疾患に関連する代謝系の機能に関する患者の認識を生み出す。より少ない費用ヘルスケアシステムに対するより少ない負担、患者の長寿および生活の質の向上は、本発明案を用いることから得ることができる。

背景技術

0002

哺乳類の生理的信号および生化学的信号、例えば血糖サンプリング信号血圧信号および他の監視信号は、長期にわたってサンプリングされる場合、ノイズが非常に多く、高い変動性を有する可能性がある。従って、その後にデータの正確な解釈を行う前に、そのようなノイズを減少させることが重要である。さらに、生化学的信号は、性質侵襲的であることが多く、かつそのような測定を適用することは、不快、高額、または複雑となる可能性がある。本発明案は、適切なフィルタ処理方法を用いることによってそのような信号の解釈における精度を向上させ、かつ非侵襲的な代替的測定値を用いることによって不快および費用を低減することを目指す。

0003

糖尿病は、流行伝染病のような勢いで地球規模で増加しており、医療の巨額な費用負担象徴している。1型糖尿病は、糖尿病症例全体の約10%を占めている。従って、2型糖尿病は、糖尿病症例全体の約90%を占め、かつ確実に増加している。アメリカ合衆国においてだけでも、人口の最大7%が糖尿病を有している可能性があると推定されている。1億の個人太り過ぎであり、従って2型糖尿病になる危険性が高い。この傾向が持続すれば、2030年には、米国の成人人口の100%が太り過ぎとなる。米国における間接費を含んだ糖尿病の年間総費用は、1997年には約1,000億米ドル見積もられた。サウジアラビアでは、人口の最大25%が糖尿病に関連する疾患を有している可能性があると推定されている。世界保健機関(WHO)は、2025年までに糖尿病患者が全世界で3億人に増加すると予測している。この地球規模の流行傾向を覆すためのさまざまな試みがなされてきたが、今日まで、これは不成功に終わっている。

0004

1型糖尿病(以前はインスリン依存性糖尿病、IDDM:insulin dependent diabetes mellitusと呼ばれていた)は、通常絶対的インスリン欠乏を引き起こす不可逆性ベータ細胞破壊によって特定される。2型糖尿病(以前は非インスリン依存性糖尿病、NIDDM:non−insulin dependent diabetes mellitusと呼ばれていた)は、遺伝的要因と環境的要因との両方を含むと考えられる異質性疾患として特定される。2型糖尿病は、その大部分においてライフスタイルに関連する疾患であり、不健全食習慣と相まった現代座りがちなライフスタイルが問題の主要な原因であると考えられている。2型糖尿病患者は一般に、生存のためのインスリン治療を必要としない。2型糖尿病の一般的な症状は、渇き頻尿眠気けん怠感、体重超過味覚発汗、さまざまな視覚ぼけ血糖値の上昇、アセトン呼気および尿糖である。患者の検査によって、座りがちなライフスタイル、および飽和脂肪と精製炭化物の多い食事に対する明確な嗜好が明らかになるのがきわめて一般的である。

0005

インスリン抵抗性は、2型糖尿病および肥満を含むさまざまな内科的疾患によって個人を特徴付け、また多くの心臓血管の異常および代謝系の異常に関連して発生する一般的な代謝異常である。インスリン抵抗性は、身体がインスリンに適切に反応することができないことと定義される。インスリン抵抗症候群とも命名されているシンドローム−Xまたはメタボリック症候群とは、2型糖尿病および関連する心循環器疾患の発生を予測する、代謝系危険因子生理的危険因子の群である。これは、肥満、高血圧、インスリン抵抗性、耐糖能異常および異常脂質血症の5つの主要な異常によって一般に特徴付けられる。西洋諸国におけるメタボリック症候群の罹患率は、25%〜35%である。老化は通常、インスリン抵抗性と関係があり、ベータ細胞機能の低下および肥満は、インスリン抵抗性ならびに高インスリン血症と関係がある。

0006

糖尿病性自律神経障害(DAN:diabetic autonomic neuropathy)は、糖尿病の重大かつ最も一般的な合併症のうちの1つである。ほとんどの2型糖尿病患者は、自律神経系(ANS:autonomic nervous system)の機能の低下が先行する心循環器疾患で死亡する。これは、初期段階で気付かれることはほとんどなく、2型糖尿病を、長い年月をかけてゆっくりと進行し、かつほとんどの場合、後期において発見されるまで患者が気付かない「分かりにくい」疾患としている。DANは、日常生活の通常の活動を行う能力を損ない、生活の質を低下させ、死の危険性を増大させる。DANは、体全体の多くの臓器系、例えば胃腸系、性尿器系、および心臓血管系に影響を及ぼす。DANは、血糖値上昇の「毒性」作用に関連する神経繊維の破壊および損失の結果である。従って、DANの発症を防止しかつその進行を遅くするにあたっては、集中的な血糖コントロールが必要不可欠となる。ANSの問題点およびDANは、心拍変動(HRV:heart rate variability)解析の評価によって検知に成功することが可能である。

0007

高血圧症は、西欧の人々の主要な健康障害であり、心臓血管の疾患に関連性を有する。動脈硬化は、高血圧症の原因と結果の両方となる可能性があるが、最近の研究では、動脈硬化が高血圧症の典型的な前兆現象であり、また動脈硬化が遺伝的な根拠を有する可能性が高いことが示唆されている。2型糖尿病患者の大多数(50%超)が、高血圧症を患っている。従って、糖尿病患者の血圧をコントロールすることが急務である。2型糖尿病では、ライフスタイルの改善または投薬もしくは両方の組み合わせによって血圧を130/80未満に維持することが推奨されている。

0008

インスリン抵抗性および2型糖尿病は、血漿リポタンパク値の変化と関連性を有する。2型糖尿病を有する患者の最大70%が、脂質疾患を有する。冠状動脈性心臓病は、2型糖尿病を有する患者の間での主な死亡原因である。肥満、高血圧症、および高血糖症と共に、異常脂質血症は、冠状動脈性心臓病の大きな一因となっている。軽度の異常脂質血症でさえも、冠状動脈性心臓病の危険因子を高める可能性がある。これらの危険因子は加法的または相乗的でさえあるので、ライフスタイル改善に対する戦略では、高血糖症だけでなく、異常脂質血症にも重点的に取り組むべきである。2型糖尿病における異常脂質血症は通常、より粥腫発生性のより小さくかつより密度の高いLDL粒子を示すので、コレステロール低下の標的には、上昇した中性脂肪(TG:triglyceride)の低下のみならず、超低密度リポタンパク質VLDL:very−low−density lipoprotein)および低密度リポタンパク質(LDL:low−density lipoprotein)の低下を含めるべきである。

0009

精神的ストレス、血圧の上昇および心拍数の上昇は、現代社会によくある問題である。現代の仕事およびライフスタイルは、体を動かす度合いが少なく、ハイテク関連の仕事は、座りがちなライフスタイルをもたらすことが多い。高レベルのストレスが持続する要求度の高い仕事はよくあるものであり、負の努力/報酬因子は、ストレスによって誘発される疾患の一因となる可能性がある。精神的ストレスが収縮期血圧および心拍数の増大のみならず、高血糖値のように、新陳代謝に影響を及ぼす可能性があることはよく知られている。カフェインニコチンアルコールコカインおよびアンフェタミンのようなさまざまな興奮剤も、収縮期血圧および心拍数を増大させる。

0010

エネルギーおよび脂肪分の高い現代型の食生活は、インスリン抵抗性ならびに関連する障害と関係がある。しかしながら、インスリン抵抗性の正確な原因は明らかではない。遺伝的素因食事脂肪の質および量を含む環境要因両方とも血漿グルコースを正常な血漿インスリン値で適切に処理する能力の喪失発現する原因となる。時間効率のよい食事と組み合わせられた糖度が高く、脂肪が多くかつ味のよい食品により、ファストフード店人気を得ている。即効性のある高エネルギー炭水化物消費増大は、血糖過剰およびインスリン過剰となって現れ、その後、血糖不足および嗜眠状態到来し、再び即効性のある炭水化物等の新たな摂取を要求する。この周期的応答は、新陳代謝系の調節システム打撃を与えていることが多い。このような一過性刺激は、長期的には有害であり、インスリン抵抗性および高インスリン値、2型糖尿病進行の早期開始の一因であると考えられている。上述のライフスタイルに関連する問題は現在、過去に前例のない大きさの健康障害を生み出している。

0011

従って、身体活動有酸素フィットネスは、2型糖尿病に関連する疾患と闘うにあたって不可欠なものである。心臓が心臓血管系に酸素を供給する能力および効率を高めると同時に筋肉インスリン感受性および酸素摂取量を向上させる身体活動によって、心臓血管系の健康状態を改善することが最も重要な課題である。心臓の機能は、あらゆる筋肉と同様に、訓練によってより強くかつより効率的になることができる。わずか10%の減量によって、通常、血糖および脂質値に好ましい効果が示される。特に、腹部の脂肪の塊を減らすことが重要である。

0012

身体活動およびエネルギーの消費は、患者の通常の日常活動中に患者を拘束しない種々の方法で推定することができる。歩数計加速度計心拍メータ等のようなさまざまな方法が存在する。1つの評判のよい方法では、簡単な方式によって、歩いた歩数を計算するかまたは歩くことによって消費されたカロリー概算する。他の方法では、一軸加速度計二軸加速度計または三軸加速度計を用いて、身体の動きおよび加速に関連するエネルギーの消費を計算する。別の方法では、プレチスモグラフ(光を指または耳たぶに通し、心拍数および身体活動を計算する装置)に基づく脈拍監視を用いる。別の評判のよい1つの装置、パルスウォッチは、電極を有するチェストストラップを用いてEKG信号を測定し、消費カロリーおよび身体活動に関連する他のパラメータを計算することができる特別設計の腕時計型計算機に、EKGパルスを送信する。しかしながら、身体活動の量を計るもっとも簡単な方法は、行った日々の努力および実行した身体活動の強度および持続時間に関して、例えば1から5までの段階に基づいて、日常活動を単に大まかに推定することである。さらに入念な計算方法および報告方法には、身体活動の強度の正確な指標である、MET:metabolic equivalentテーブル(代謝当量)またはMET方式が含まれる。現代の非活動的で座りがちなライフスタイルは、健康ジムの大市場、および身体の健康を改善するためのさまざまな健康関連製品ならびに身体トレーニングプログラムマーケティング開放をもたらしている。この好ましい傾向にもかかわらず、2型糖尿病に関連する疾患は、驚くべき速度で急速に増加している。

0013

高い危険性、過体重、座りがちで糖尿病の傾向を有する個人に、ライフスタイルを変えるように動機付けることは困難である。関連する健康上の危険性と身体トレーニングの必要性および/または食習慣の修正ならびに/もしくはストレスを取り除く処理の必要性を単に個人に告げるだけでは十分ではないことが多い。健康度の低い個人は、他人に検査されたり、ジムでトレーニングを行うことを強制されるのを快く受け止めないことが多い。太りすぎの個人が自分の身体健康度の低さによって恥ずかしさを感じるのはよくあることであり、屈辱を回避するために、リハビリテーションプログラムに参加することを拒否する。本発明者は、そのような不利益な傾向を打破する唯一の方法は、好ましくは家庭プライベートに、自身の代謝機能を監視するための簡素で直感的な道具を用いることにより、実体験で人々を教育することであると確信している。次いで、個人は、関連する問題についての理解を自ら得とくし、かつライフスタイルを変更するために必要な範囲および強度に対する洞察力を得ることができる。

0014

個人用血糖メータを用いた自己監視は、通常、インスリンの自律的管理を支援するために、1型インスリン依存性糖尿病(IDDM)患者に対して必要なものである。一方、顕在性2型糖尿病または2型糖尿病寸前の患者に血糖監視が処方されるのは、あまり一般的ではない。尿グルコース測定用の尿用ディップスティックを用いた自己監視は、今日ではほとんど廃止されており、腎閾値が広い範囲にわたって個人によって異なるという事実により、用いられることはほとんどない。さらに、この方法は、腎閾値を下回るグルコース値を測定することができず、長い遅延を呈しかつ感度が低いので、血糖監視を利用するのが好ましい。

0015

最近の研究では、2型糖尿病を有する患者に対する食事と併せたBG監視用血糖メータの利用に関するいくつかの利点が報告されている。この考えは、患者に対する食事の代謝効果についての知識を得るために、食前および食後のグルコース値を監視することである。その後、患者は、食後にグルコース値がどのように上昇するかを経験によって学習し、さまざまな種類の食物の摂取に関連するグルコースの変動について、自身にフィードバックすることができる。この考えは、食物摂取バランスをとることであり、精製された即効性の炭水化物を減らすことが、食後の血糖超過を低減することになる。そのような超過は、自律神経系に長期にわたる損傷を引き起こし、最終的には糖尿病および糖尿病性神経障害に至る可能性があることが分かっている。このような形の自己監視は、持続するのが煩わしくかつ非現実的であり、本方法の強度に関連する動機付けの欠如により、患者がこのような検査の試みから脱落するのはまれなことではない。血糖メータおよび道具を患者が日中持ち歩く必要があり、レストランで食事を取っている際に、検査が人目にさらされることもある。そのような煩わしい手順を患者の長期的な日常慣行の一部として含むことには、さほど成功の可能性はない。さらに、日中何本かの血糖用スティックおよび何本かの指穿刺用ランセットを消費するので、費用も無視できない。さらに、そのような検査は性質上侵襲の少ないものであるが、患者にとっては痛みを伴い、かつ非常に不快である可能性がある。さらに、結果の論理的解釈および直観的解釈の余地がほとんど与えられず、従って、患者が治療の目的を得るために一連不都合を理解しかつ管理することが困難となる。

0016

世界保健機関(WHO:The World Health Organisation)および米国糖尿病協会(ADA:American Diabetes Association)は、糖尿病の異なる段階間で区別をつけるために、特定の血糖の範囲およびレベルを設けている。症状のある患者を診断する空腹時グルコース濃度(WHO基準、1999年)を以下に示す。空腹時サンプグルコース濃度は、mmol/Lで示す。

0017

0018

診療所で血糖値を評価する際に、残念なことであるが、強い生物的変動および分析的変動の存在を見逃すことがかなりある。従って、測定値間に大幅な変動が存在し、経験の少ない医師が測定値の解釈を誤る可能性があり、この疾患の等級付けおよび診断の精度が低下する結果となる。

0019

診療所において血液サンプル採取される場合、いくつかの要因が、下記のような測定結果の精度に影響を及ぼす。
1.診療所の分析機器の次善の較正図1の実例を参照されたい。
2.グルコース保存料解糖を完全には防止しないことによる、解糖による血液サンプルの老化。
3.神経質な「針恐怖症」患者による「白衣高血糖」、高BG値図2の実例を参照されたい。
4.時間帯の増加に関連する空腹時BG値の持続的低下。
5.時間依存性のインスリン感受性、従って日ごとに異なる感受性
6.月経による女性の周期的なホルモンの変化。
7.BGは、一過性の急性感染症外傷性ストレスおよび単なる風邪またはインフルエンザによって変化する可能性がある。

0020

上記の不確実性に関連し、本発明者は、適切な後処理方法およびフィルタ処理方法と併せた、十分な精度を有する血糖メータを用いた家庭内における管理された状態下での血糖監視によって診断分類の精度が改善されると確信している。本発明者はこれを、すでに実施されている臨床検査室での測定および現行習慣と比較して優れていると確信している。

0021

高インスリン値(高インスリン血症)は、高血糖値が最終的に顕在化するかなり前に血流に現れるが、高血糖値はそれでも典型的な2型糖尿病症候群分類に留まっている。インスリン値は、仮に用いられるとしても、臨床的な研究の目的以外では、糖尿病のリスクマーカまたは診断用手段として用いられることはまれである。驚くべき事実である。従って、低血糖値は、その疾患の存在を否定する。

0022

酸素飽和度の監視は、手術室における患者のみならず、応急処置下の患者についての一般的な方法である。現在では広く用いられているパルスオキシメータ赤外線吸収を利用して血液ヘモグロビンの酸素飽和度を監視する機器)の発明以前は、手術中患者の心拍数と収縮期血圧の積(RPP:Rate−Pressure−Product)を計算して患者の心臓の状態および酸素利用量を確かめるのが一般的な方法であった。RPP(二重積とも呼ばれる)は、心臓の酸素利用量のかなり正確な測定値であり、収縮期血圧に心拍数を乗じることによって得られる(RPP=sBP×HR/100)。パルスオキシメータの導入後、現在RPPはほとんど用途を見出していないが、トレッドミル運動負荷試験等の間の心臓の酸素消費量を示すスポーツ医学に用いられることがある。RPPは、ストレスおよび興奮性薬物の使用も示す。

0023

患者に対する負担を軽減するために、本発明者は、空腹時血糖サンプルのみが正確な長期にわたる2型糖尿病に関連する疾患の監視および治療に必要であると断言する。まばらに、例えば1週間に1回サンプリングされた血糖測定値でさえも、日々のBGの正確な予測のための本発明の実施形態に関しては十分と言ってよい。空腹時血糖値通常食後の血糖偏位の相対的大きさを示すので、日中の食前および食後の血糖測定のようなより集中的で煩わしい血糖監視は、必要であるとはみなされない。従って、より高い空腹時血糖値は、より高い食後血糖値に反映され、逆もまた同様である。これは、ライフスタイル改善期間中断時の0h、1hおよび2hにおいてサンプリングされた複数の3サンプル経口的ブドウ糖負荷試験(OGTT:oral glucose tolerance test)によって示すことができる。図3を参照されたい。より低い空腹時BGと共にライフスタイルが改善され、食後BG値も下降傾向をたどっているのが分かる。しかしながら、食後1hのBG測定値は、もちろん、必要であると考えられる場合の空腹時BGの代替値として用いることができる。しかしながら、これはより煩わしく、従って、上に説明したように、さほど現実的ではない。

0024

本発明の追加の実施形態では、BG値は、好ましくは血圧と心拍数(心拍数と収縮期血圧の積)のみから予測され、プレディクタ初期較正および初期設定手続きの場合を除き、痛みを伴う指穿刺または侵襲的手技を不要にしている。本発明の別の実施形態では、痛みを伴う指穿刺の必要頻度がより少なくされている。

0025

本発明案は、例えば身体活動の強度、血糖、血圧および心拍数のような特定の生理的パラメータを測定しかつ分析する直観的方法を患者に提供する。さらに、脂質値、総コレステロール、中性脂肪、体温、体重、肥満度指数およびウエストヒップ比のような重要な患者データは、格納しかつ処理を施すことができる。そのような測定に続き、適切なフィルタ処理アルゴリズムを用いてデータに処理および最適化が施され、その後、患者の行動、進歩および結果を即座にフィードバックするために、直観的方法で患者に示される。

0026

本発明の好ましい実施形態は、以下のステップを含む。
好ましくは毎日、身体活動のレベルを推定または測定し、好ましくはこの情報をデータベース収集するステップ。
空腹時および/または食後の血糖値をある程度頻繁に測定し、密にもしくはまばらにサンプリングし、好ましくはこの情報をデータベースに収集するステップ。
収縮期拡張期血圧および心拍数を頻繁に測定し、密にサンプリングし、好ましくはこの情報をデータベースに収集するステップ。
収縮期血圧と心拍数とから収縮期血圧と心拍数との積を計算するステップ。
体重、体温、血中脂質等のような任意の他の関連する生理的パラメータを測定し、好ましくはこの情報をデータベースに収集するステップ。
統計的処理手法および/または信号処理手法を用いて、上記のデータに低域通過フィルタ処理、高度化、誤り訂正および欠損データ補間を施すステップ。
予測手法を適用し、好ましくは心拍数と収縮期血圧の積から血糖値を予測するステップ。
ノイズを低減させるために適切なアルゴリズムによって得られたデータを結合および/またはフィルタ処理し、そのようして得られた情報を提示用に明確化および改善するステップ。
処理、高度化および/または予測が実行されたデータを、患者パラメータを容易に解釈することができるように、直観的かつ理解しやすい方法で傾向として患者に提示するステップ。

0027

上記のことから、糖尿病に関連する疾患の代謝監視が、少なくとも被検者の現在の状態を評価するために不可欠であることが明らかとなる。生命維持に必要な生物学的パラメータの密なサンプリングにより、いくつかの利点が提供される。主な利点は、被検者が自分の現在の状態を継続的に知り、それにより被検者の健康状態が低下しない点である。別の利点は、例えば身体活動の欠如またはより悪い場合には良好な栄養状態の欠如、もしくはよりよい場合には十分な身体活動およびよく管理された食事と関連する、患者の現在の状態におけるなんらかの変化または傾向についての概説を、患者が継続的に受け取る点である。さらに別の重要な利点は、被検者が自分の状態の即時フィードバックを受け取り、進行しつつある傾向に基づいて自分のライフスタイルを調整することができる点である。本発明による効率的な代謝監視に対する前提条件は、被検者が生命維持に必要な生物学的パラメータを監視することである。例えば、血糖値、血圧および心拍数は起床時に測定することができ、身体活動は日中等に測定することができる。

0028

指穿刺は侵襲が少ないと見なすことができるが、正確な血糖監視には侵襲的測定が必要となる。現在、精度において侵襲的測定に匹敵可能な他の方法はない。被検者が自分の指を穿刺して少量の血液をサンプリングし、該少量の血液がその後分析装置内で検査され、該分析装置が血糖値を出力する。侵襲の少ない方法でさえ費用のかかるものであり、かつ不快感を経験することが多く、従って、患者および疾患管理に否定的な影響を有する可能性がある。

発明が解決しようとする課題

0029

本発明の目的は、従来の方法と比較して、理解するのがより容易で、ランニングコストをより低下させ、被検者が用いるのにより快適でかつよりやる気を起こさせる、被検者の健康に関連する状態を示すための改善された考え方を提供することにある。

課題を解決するための手段

0030

この目的は、請求項1に記載の装置、請求項16に記載の方法または請求項17に記載のコンピュータプログラム製品によって達成される。

0031

本発明は、新たな代替的測定値および予測の導入によって、ユーザの不快および費用を低減することを目指す。

0032

本発明は、高精度の侵襲的測定方法を、代理的な非侵襲的測定方法で部分的に置き換えることができることを発見したことに基づいている。被検者に対する影響力に関しては、高精度の侵襲的測定方法は一般に、費用のかかる、不快かつ「ハードな」測定方法を表し、一方で、非侵襲的測定方法は、低価格、快適かつ「ソフト」な測定方法である。

0033

プレディクタは、まばらにサンプリングされた侵襲的データおよび密にサンプリングされた非侵襲的データに基づいて、密にサンプリングされた侵襲的データを生成する。従って、被検者は、毎日または先行技術において必要な頻度で痛みを伴う指穿刺を行う必要はなく、さほど頻繁ではない、例えば週1回の指穿刺に戻ることができるであろう。被検者は、例えば毎日、簡単で痛みのない非侵襲的な血圧関連の測定方法を実行するだけでよく、従って、これは、被検者に対して大きい影響力は有しない。

0034

別の好ましい実施形態では、プレディクタには、非侵襲的測定から導出された2以上の生物学的量が供給される。

0035

本発明によれば、2つの測定値または生物学的量に対する唯一の前提条件は、両方の測定値が被検者の健康に関連する状態と相関関係を有することである。

0036

さらに、本発明は、有効な信号変動の抽出および非有効な信号変動の除去のための低域通過フィルタ処理方法を用いることによって、ノイズを有する生理的信号の解釈における精度を向上させることを目指す。

0037

ここで、図面を参照し、本発明の範囲または意識を限定することなく、説明に役立つ実例として本発明を説明する。

図面の簡単な説明

0038

図1は、2つの異なる機会および診療所から得た空腹時BG値を示した図である。各機会について、検査室における測定値が、同一銘柄の3台の高品質BGメータから得た3つの測定値の平均値と比較されている。(棒1、2および4は正確であると思われる)。
図2は、3つの異なる検査機会に対する「針恐怖症」の影響を示した図である。ここでは、看護師が針を使用している際にBG値が大幅に上昇している。測定値は、同一銘柄の3台の高品質BGメータの平均値である。
図3は、3つの異なる機会から得た3つのOGTTを示した図である。わずか3サンプルのみがBG動態を十分に表現することができている。
図4は、傾向(低域通過フィルタ処理済み信号)と共にケーススタディ(点)によって提供された生の空腹時BG測定値を示した図である。WHO規制値も示す。
図5は、WHO規制値によれば、検査の際に患者の診断が機会に大きく左右されるので、一般的な検査室におけるBG測定には強い不確実性があることを示した図である。
図6は、生の空腹時BG測定値(ケーススタディから得た)の自己相関関数(acf)の推定を示した図である。acfは、信号に経時依存性があることを明白に示している。
図7は、生の空腹時BG測定値の分布ヒストグラムを示した図であり、それらがほぼ正規分布していることを示している。
図8は、ケーススタディにおけるBGメータ1と2、1と3および2と3との間の測定差を示した図である。
図9は、生の空腹時BG測定値(ケーススタディから得た)のペリオドグラムを示した図である。ほどんどのエネルギーが低周波数帯域内にある。従って、より高い周波数は有益な情報をほとんどまたは全く含んでおらず、従って、廃棄してもよい。
図10は、低域通過フィルタ周波数応答を示した図である。この遮断周波数は典型例であることに留意されたい。
図11は、0と1の間での遮断周波数に対する空腹時BGサンプルのフィルタ処理により生サンプルフィルタ処理済みサンプルとの間に残差または差が生成されることを示した図である。各遮断周波数に対する二乗残差の平均値は、図11カーブを生成する。このカーブは、適切な遮断周波数が選択されていることを示す、2本の交差する直線によって示されたクロスオーバーブレークポイントを有する。
図12は、低域通過フィルタによって処理された空腹時BGサンプルのペリオドグラムを示した図である。
図13は、生の収縮期血圧のサンプルを、上記と同じ低域通過フィルタ処理方法によって生成したその傾向と共に示した図である。
図14は、相関関係を示す空腹時BGおよび身体活動の傾向を示した図である。
図15は、100サンプルについて長方形移動窓法によって生成されたBGの傾向とRPPの傾向との間の相関関係(点線)を示した図である。相関有意性中実線、1−P)は、有意性に対して>.95でなければならない。
図16は、100サンプルについて長方形移動窓法によって生成されたBGの傾向導出値とRPPの傾向導出値との間の相関関係(点線)を示した図である。相関有意性(中実線、1−P)は、有意性に対して>.95でなければならない。
図17は、特定されたシステムブラックボックス手法によって表すことができることを示した図である。
図18は、低域通過フィルタ処理されたBG予測の結果を示した図である。この例では、予測フィルタは7日目毎に更新されている。
図19は、相関関係を示す代謝能力指数の傾向および身体活動の傾向を示した図である。
図20は、本コンピュータプログラム製品の第1ページスクリーンダンプを示した図である。
図21は、フィルタ/傾向装置のブロック図である。
図22aは、第2のプロセッサを有する図21の装置のブロック図である。
図22bは、第1のプロセッサを有する図21の装置のブロック図である。
図23は、本発明の一実施形態のブロック図である。

実施例

0039

図21に、フィルタ/傾向装置を示すためのブロック図、すなわち被検者の健康に関連する状態を示すための装置のブロック図を示す。この装置は、被検者の健康状態に関連する、有効な変動および非有効な変動を有する生物学的量のサンプルの生シーケンス図21中の矢印21)を受信するための入力インターフェース20を含む。

0040

特定の実施形態に応じて、入力インターフェースは、例えばキーボードを介した手入力ケーブル無線機赤外線または他の手段により、分析装置から、生シーケンスを形成するこれらの生物学的量のサンプルを取得する。分析装置は、例えば血液サンプルを分析し、血糖値、血圧、心拍数、身体活動または関心のある任意の他の生物学的量を、入力インターフェース20内の電子バッファメモリもしくは類似の手段に出力する。従って、入力インターフェース20の出力の時点で、サンプルのシーケンスとしての生シーケンスが得られ、該生シーケンスを、ブロック20とブロック22を結ぶ矢印23によって示すように、フィルタ装置22に入力することができる。

0041

あるいは、または付加的に、生シーケンスを処理して処理済みシーケンスを取得するために、該生シーケンスを第1のプロセッサ24に入力し、それを、プロセッサ24によって処理された後に、フィルタ装置22内でフィルタ処理することもできる。

0042

第1のプロセッサ24は、ブロック20による生シーケンス出力を用いて処理済みのシーケンスを取得するために用意されたプレディクタ、インターポレイタまたは任意の他の手段を含むことができる。この接続形態では、第1のプロセッサは、後に概説するように、結合済み生シーケンスを得るために2つ以上の生シーケンスを結合するためのコンバイナも含むことができ、次いで、該結合済み生シーケンスを、フィルタ装置22によってフィルタ処理することができる。

0043

フィルタ22は、サンプルの生シーケンスまたはサンプルの生シーケンスから導出されたサンプルの処理済みシーケンスをフィルタ処理し、フィルタ処理済みシーケンスを取得するために用意されている。ここでは、低域通過フィルタであるのが好ましいフィルタが、非有効な変動の影響力と比較して有効な変動の影響力をより強く有するフィルタ処理済みシーケンスを取得するために、非有効な変動を減少させるように構成されているか、または完全に除去することさえできるように構成されていることに留意すべきである。

0044

本装置は、フィルタ処理済みシーケンスまたはフィルタ処理済みシーケンスから得られた高度化されたシーケンスを出力するための出力インターフェース25をさらに備えており、この出力インターフェースは、被検者の健康に関連する状態の有効な変動を表す、フィルタ処理済みシーケンスまたは高度化されたシーケンスの傾向として、少なくとも増加の表示、減少の表示または横ばいの表示を出力するために用意されている。図21から明らかとなるように、出力インターフェース25は、矢印26で示すように、フィルタ22によるフィルタ処理済みシーケンス出力直接処理する。あるいは、本発明による装置は、フィルタ処理済みシーケンスを用いて高度化されたシーケンスを導出するための第2のプロセッサ27をさらに含む。特定の環境に応じて、第2のプロセッサ27は、出力すべき高度化されたシーケンスを取得するためのフィルタ処理済みシーケンスを修正するために図22aに示すようなコンバイナを含むことができるか、または増幅器等のような何らかの信号処理手段を含むことができる。

0045

出力インターフェース25に関しては、ここでは、傾向表示は、もちろん、完全なフィルタ処理済みシーケンスまたは高度化されたシーケンスを示す、図20に示すようなグラフ表示とすることができることに留意すべきである。あるいは、出力インターフェースは、傾向が上昇している際には上向き矢印または有色光を表示することによりもしくは他の表示手段により、傾向が下降している際には下向き矢印または異なる有色光を示すことによりもしくは他の表示手段により、あるいは何も実行しないかまたは何らかの他の信号を示すことによって横ばいの表示があることを示すことにより、簡潔に傾向を示すこともできる。

0046

当然ながら、これは、増加状態減少状態または横ばい状態を示すために特定の知覚表示を出力する、例えば視覚障害者または聴覚障害者用感覚認知インターフェースによって行うこともできる。当然ながら、増加状況に対する音または強い振動、減少状態に対する弱い振動もしくは横ばい状況に対する微弱な振動などの機械的手段によって、そのような表示を合図で伝えることができる。あるいは、各表示に対して互いに異なる周波数の振動を作ることができる。あるいは、振動による表示手段とは別に、キーを上昇させ、これによってキーが上昇されていない状態と比較してユーザがキーの上昇を感じるような任意の他の機械マーキングも用いることができる。

0047

図22aに、図21の第2のプロセッサ27の一実施形態を示す。この実施形態では、コンバイナは、例えば心拍数のフィルタ処理済みシーケンスのサンプルに血圧のフィルタ処理済みシーケンスのサンプルを乗じてフィルタ処理済みの心拍数と収縮期血圧との積を表す高度化されたシーケンスを取得するためのサンプルワイズコンバイナである。

0048

図22bに第1のプロセッサ24の一実施形態を示しているが、この場合には、フィルタ処理の前に、例えば血圧と心拍数とが結合、すなわちサンプルワイズで乗じられる。これは、図22bの実施形態が、生の心拍数と収縮期血圧との積の非有効な変動を減少させるために後でフィルタ22によってフィルタ処理される、生の心拍数と収縮期血圧との積の形成を示していることを意味する。

0049

図23に、第1の生物学的量のサンプルが存在しないある一定の期間に対して第1の生物学的量の推定値を提供するためのプレディクタ30を含む、本発明による独創的な装置を示す。図17および図20に関連して詳細に概説するように、侵襲的測定による測定値は、非侵襲的測定による1つまたはそれ以上の測定値を用いて予測されるのが好ましい。特定の状況に応じて、プレディクタは、自由継続のプレディクタまたは規則的もしくは不規則時間間隔で更新されるプレディクタとすることができる。

0050

本発明は、「知識は意欲を与える」という単純な概念に基づいており、患者のライフスタイル改善を促進する。本発明は、広く証明された従来の患者測定に基づいた傾向分析を用いることにより、新たな方法で患者を監視し、かつ患者の状態を示す新たな改善された方法を提示する。そのような改善された情報は、治療計画ならびに追跡調査のために、患者および/またはその医師が利用することができる。本発明は、パフォーマンスフィードバックを用いることによって患者を動機付けしかつ教育する。そのようにすることで、患者は、そのライフスタイル修正を進展させることができる。

0051

2型糖尿病に関連する疾患では、食習慣の変更およびライフスタイルの変更が必要であることを医師が患者に告げるのが現在の慣行であるが、必要な変更のレベルを患者が判断しかつ理解するのは通常困難である。この疾患の「無症候」性により、患者を動機付けるのは困難となることが多い。ライフスタイルの修正が過度に積極的に実行されると、極度の疲労と動機付けの喪失により、患者が断念してしまう可能性がある。その一方で、それが十分に真に実行されなければ、所望の効果は得られないことになる。本発明案の利点は、ライフスタイル変更の適切なレベルが直観的な方法で明確に患者に示され、その結果、やる気をそぐような過努力が回避される点である。

0052

本発明者は、表示された「過不足のない」アプローチのレベルによるこの方法が、持続的な動機付けおよびリハビリテーション成功への鍵であると確信している。これは、明確な傾向表示と組み合わせた新たなマルチパラメータ生理監視方法を用いて達成される。この方法により、セルフコントロールが促進され、行ったよい行動および努力に対しては患者が報われ、また患者が前進しそこねた場合にはマイナス表示が与えられる。このようなパフォーマンスフィードバックの瞬時表示は、少ない通院毎にのみ医師によって与えられる非常に長期にわたるフィードバックを用いた従来の医療慣行よりはるかに優れておりかつそれとは完全に異なるものである。

0053

本発明では、いくつかの患者パラメータは1日に1回または1週間に1回でも頻繁にサンプリングされ、他のパラメータはそれほど頻繁にはサンプリングされない、最低限の患者の関与ならびに努力を必要とする新たな方法および/または新たな装置について説明する。頻繁にサンプリングされるパラメータは、朝にベッドサイドで容易に実行することができ、日中機器または道具を持ち歩く必要はない。それほど頻繁にはサンプリングされない患者パラメータは、例えば診療所で行うことができる。

0054

密にまたはまばらに、等間隔もしくは非等間隔でサンプリングされる、頻繁にサンプリングされる生理的患者パラメータは、
血糖
身体活動
血圧
心拍数
体温
体重
肥満度指数
からなることができる。

0055

実質的にそれほど頻繁にはサンプリングされない患者パラメータは、
HbA1c
インスリン
脂質
アルブミン値
関心のある他の関連パラメータ
からなることができる。

0056

血糖値を家庭で評価する際には、測定機器の分析の変動が低くかつ患者の生物学的変動よりも実質的に少ないことが重要である。さもなければ、測定は無意味なものとなる。残念なことに、いくつかの個人用血糖メータは、容認し難いほど高い分析の変動を有しており、それらを、正確な血糖測定に対しては信頼性および有効性の低いものにしている。一方で、いくつかの市販されている低コストの個人用血糖メータは、適切なデータの後処理が行われるならば、例えば空腹時BGの確実な測定に対して十分な精度を有することが分かっている。その一方で、より高い精度が求められる場合、例えば、数分以内に2回以上の連続測定を行い、続いて、後処理の段階で平均することができる。複数の血糖メータを同時に使用して変動を低減し、結果を平均することもできる。これは、高い精度が必要とされる臨床的研究において実行されるのが好ましく、また、該研究に用いられて本発明案が検証されてきた。

0057

血糖値測定機器の多少の分析の変動と相まった血糖値の強い生物学的変動により、かなりのデータ散乱が見られ、ノイズを有する信号の解釈を困難にしている。約10ヶ月にわたる典型的な空腹時BGのシーケンスを実証する図4を参照されたい。データにノイズが非常に多く含まれているので、患者を正確に診断するのに困難があり、その結果高い生物学的変動を示していることに留意されたい。経時データ幅広い範囲にわたって散乱しており、従って、患者のBGは、正常値から糖尿病値にまで及んでいる。我々のケーススタディのための患者に対する各WHO基準を満たす日数を考慮すれば、興味深いグラフが得られる。図5を参照されたい。257日の37%において、この患者は完全に正常であると評価された。257日の57%において、この患者は空腹時血糖異常を有する。257日の7%において、この患者は顕性糖尿病を有する。

0058

上述のBGの強い変動性に基づき、本発明者は、現在の糖尿病基準では次善の診断に帰着し、従って改正の必要があると強く確信している。BGの解釈をより正確にするために、多数のBGデータの低域通過フィルタ処理が必要である。しかしながら、これは短期間の変動を減少させて変動の詳細を不明瞭化することになるので、データを過度にフィルタ処理しないことが重要である。最適な濾過および過濾過の回避は、後に説明する残差分析によって得ることができる。

0059

BGの測定は極度にノイズが多いように思われるが、それをホワイトノイズと見なすことはできない。明確にするためには、依存関係が明らかな推定自己相関関数(acf)を見るとよい(推定acfが本発明者らの長期にわたる空腹時BGに基づいている図6を参照されたい)。このケーススタディでは、測定値はほぼ正規分布している(図7参照)。測定値の変動がより大きかった場合、それは間違いなく対数正規分布することになろう。

0060

同一銘柄の3台の高品質BGメータを用いる本発明者の測定戦略により、分析誤差を計算することができる。これは、一度に2台のBGメータを比較することによって行われており、これにより、約0.35mmol/Lの標準偏差を有する3つのほぼ正規分布したケースが生成される(図8参照)。3台のメータによって生成されたデータ系列BG1、BG2およびBG3は、相互およびN(m,σ)に依存しない。

は、次の式で表される算術平均である。

ここで、標準偏差σは、数(n)に対する値が3である各比較についてほぼ同一である。2つの正規分布したデータ系列の変動は加算性であるという統計規則を用いることにより、次の式が得られる。

0061

従って、ケーススタディで用いた3台のメータの平均値の標準偏差は、約0.14mmol/Lである。

0062

ノイズを有するデータの明瞭な傾向提示を達成するためには、データを低域通過フィルタで処理することが必要であり、これは、スペクトル解析によって行うことができる。図9に、ほとんどのエネルギーが低周波帯域内に見出されるのが分かるペリオドグラムを示す。低域通過フィルタ処理は、周波数領域内での乗算によって行われている。

ここで、Hは周波数領域内のFIR低域通過フィルタであり(ランダムに選択した遮断周波数に対する周波数応答に関しては、図10を参照されたい)、そして、生測定値BG(t)は、フーリエ変換される。次いで、SLP逆フーリエ変換によって時間領域に戻し変換される。従って、残差を生成することができる。

0063

0064

特定の遮断周波数fdは0と1との間にある(離散周波数)。fdが0から1へ増加すると、二乗残差の平均を計算することができ、この場合、Nはfdの各値に対する残差ベクトルの長さである。

0065

0066

これにより、異なるfdに対する残差の挙動を説明するカーブが生成される(図11参照)。最適な遮断周波数を見つけるには、図11における交差部に対する周波数を選択しなければならない。図11における直線の主な目的は、残差カーブ中断の位置を明確にすることである。同じ残差分析を他の生物学的測定および信号に適用することができる。そのように設計されていると、低域通過フィルタがデータを処理し、不必要な高い周波数は、LPフィルタおよびBG測定値のゼロパッドフーリエ変換を乗じることによって除去されることになる(図12参照)。

0067

周波数領域および時間領域内の選択された遮断周波数を用いたLPフィルタ処理の結果を、それぞれ、図12および図4に示す。

0068

代替的に、畳み込みを用いて、時間領域で同様のフィルタ処理を行ってもよい。他の種類の低域通過フィルタも、当業者は用いることができる。

0069

血圧は、両腕で測定し、次いで、変動を減少させるために、低域通過フィルタ処理することができる。血圧は、手首、指または他の部位で測定することもできる。脈波伝搬時間(PWTT:Pulse−Wave−Transition−Time)の推定も、血圧を測定するのに用いることができる。これは、心臓が例えばEKGR波を生成するときから開始して、プレチスモグラフにより指において検出される血液のパルス密度の変化によって脈波に軽度の伝播差が生じるときまで脈波伝搬時間を測定することによって血圧を推定するものである。さらに、収縮期のデータ、拡張期のデータおよび脈のデータから平均動脈圧MAP:Mean Arterial Pressure)ならびに脈圧(PP:Pulse Pressure)を計算し、このデータを図形として提示するのは好都合であるかもしれない。

0070

同じように、身体活動データは通常、日常活動における大きな変動またはおおまかな推定によって散乱する。従って、そのようなデータを上記と同様の方法である期間にわたって低域通過フィルタ処理することは、これによって身体活動データの解釈がより容易となるので好都合である。身体活動は、単純に強度等級に基づいて推定してもよい。そのような等級は、下記の日常活動の等級付けからなることができる。

0071

非常に軽い(休憩する、読みものをする、座っている、運転する等)
軽い(歩く、掃除する、ピアノを弾く、ゆっくり歩く)
中程度(速歩、軽いジョギング、軽く自転車に乗る、スケート、軽いウェイトトレーニング)
激しい(水泳ランニング、激しいジョギング、競輪、フットボールバスケットボール等)
非常に激しい(ボクシング漕艇、登山、激しいウェイトトレーニング)

0072

より正確な推定には、MET:metabolic equivalent(代謝当量)を用いることができる。1METは、安静エネルギー消費量に相当し、軽い活動は<3METS、中程度の活動は3METS〜5.9METS、激しい活動は6METS〜8.9METS、または非常に激しい活動は>9METSの活動に相当する。MET活動表は、MET値、体重および経過時間を乗じることによって行われる消費カロリー(kcal)の簡単な計算に利用することができる。身体活動を推定するコスト効率の良い方法は、歩数計を用いる方法である。本発明の例示的なグラフ中の収集された活動データは、内蔵タイマと組み合わせて用い、日中または行われた身体活動中に消費されたおよそのカロリーを計算する歩数計を用いたものである。エネルギー消費量を消費カロリーとして示すのは、これが一般に用いられておりかつ分かりやすい用語であるので、実際的である。

0073

心拍数データも、日毎の大きい変動によって散乱する。従って、そのようなデータを上記と同様の方法で低域通過フィルタ処理することは、これによって心拍数データの解釈がより容易となるので好都合である。

0074

本発明の追加の実施形態では、収縮期血圧および拡張期血圧ならびに心拍数が、好ましくは毎日、両腕において測定される。次いで、両腕からのデータを平均および低域通過フィルタ処理し、変動を減少させることができる。患者の体調を推定するために、心拍数と収縮期血圧との積(RPP)を得るために、収縮期血圧と心拍数との積が計算される。RPP=収縮期BP*心拍数/100。心臓の酸素利用量をおおまかに示すのに加え、RPPは、精神的および情緒的なストレスと同時に、カフェイン、ニコチン、コカインならびにアンフェタミンのような刺激性薬物の存在を明らかにする。従って、本発明者は、RPPが患者の全体的な健康に関連する状態を確認するためにBGと共に評価すべき重要なパラメータであることを教示する。RPPの個別の構成要素自体と同時にRPPの傾向提示を達成するために、BGの傾向を生成したものに類似した低域通過フィルタ方式を用いることができる。各腕の別個長期平均に基づき、左腕右腕との間の何らかの血圧差を評価することも、医師にとって価値があるかもしれない。

0075

同様に、安静時の朝の血圧データは、分析の変動に加え、日毎の大きい変動によって散乱する。患者または医師に単一点での血圧測定を行わせることは、BPデータにも存在する大きいノイズレベルにより、さほど意味があるとは考えられない。従って、そのようなデータを低域通過フィルタ処理する必要があり、これにより血圧データをより正確かつより容易に解釈することができるようになる。図13を参照されたい。

0076

上述の方法でフィルタ処理された身体活動およびBG値から表示されたデータを同時に比較することにより、血糖値が身体活動に反比例するように、身体活動の改善が血糖値の低下をもたらすことが分かる。しかしながら、極度の身体活動は、血糖値を上昇させ、特定の条件下では、実際には逆の効果を有する可能性がある。従って、患者に例えばグラフィカルに示されたそのようなデータを同時に提示することにより、患者は、所定の標的目標をかなえるためのその身体活動の努力および他のライフスタイルに関連する努力を容易に取り入れることができる。現在、これは、なされた努力を過大視する必要なく、グラフに進捗状況によって示されるように、日々時宜を得た方法で血糖、RPPおよび活動の標的目標に向かって単に努力しながら、正確かつ直観的な方法で達成することができる。図14を参照されたい。新たな興味深い非相関関係もグラフにおいて観察することができることに留意すべきである。図15を参照されたい。例えば、患者がインフルエンザまたはウイルス感染症罹患している際は、BG値が予想外にかつ身体活動の改善に関係なく上昇する可能性がある。身体活動を増加させている際には、BG値も上昇する可能性があり、一方でRPPは減少し、相関関係は負となる。あるいは、患者がストレスの多い状況に遭遇すると、RPPは、BGよりも上昇する可能性がある。従って、そのような状況下では、負に相関する事象疑うことができるであろう。従って、RPP、BGおよび活動間の時間窓付き相関係数を計算し、これをグラフに示すことにより、患者の状態の新たな興味深い指標が提供され、そのような負の相関関係を見て、経験のあるユーザが新たな結論を出すことができる。

0077

本発明の別の実施形態では、新たな方法を提示する。この方法において、本発明者は、RPPの動態がBGの動態とよく相関しかつ身体活動のレベルに反比例し、従って、RPPはBGの変動および動態を予測するのに用いることができることを発見した。図15および図16を参照されたい。

0078

本発明のさらに別の実施形態では、毎日のBGの代替的測定値を計算するために、予測フィルタと共にRPPを用いることができる。この新たなBG予測法は、血液をサンプリングすることが不可能、非現実的であるかまたは患者が痛みおよび不都合を感じる場合に、好都合に用いることができる。そのような状況下では、BG測定値は、BG値に対してRPPプレディクタを較正するために、治療の開始時点または介入期間においてのみ使用するとよい。そのような較正が行われた後は、患者は、RPP測定にのみ戻り、例えば医師を訪問する際にのみ、BG測定を受けるとよい。以下に説明するように、本発明のさらに別の実施形態では、BG予測フィルタは、例えば1週間に1回、まばらに更新される。従って、予測フィルタの初期トレーニングには、まず、密にサンプリングされた測定値のデータシーケンスが必要となる。このトレーニングシーケンスの長さは、例えば1週間から1ヶ月とすることができる。その後は、予測フィルタは、まばらに更新することができる。本予測方法案は、x1とx2(x2をいくつかの測定量の組み合わせとすることができることに留意されたい)との間に相関関係が検出される場合に、信号x2の中から任意の信号x1を予測するために用いることができる。

0079

従って、BGとRPPの両方を、2型糖尿病に関連する疾患におけるセルフコントロールの向上およびライフスタイル変更の重要な指標として用いることができる。RPPは、特に、座りがちなライフスタイルからより活動的なライフスタイルへの変更または強度の異なる身体活動期間間での変更のようなライフスタイル変更の過渡的段階下で、BGに対して相互関係を示す。従って、BGの導出値とRPPの導出値は、強い相関関係を有する(図16参照)。そのような状況下では、RPPとBGの両方のパラメータの傾向が、高い相関関係を示しながら同じように変化する。人間が「代謝平衡」状態にある定常状態条件下では、RPPとBGとの間の相関関係は、他の代謝過程からのデータ内の過剰なノイズにより、さほど顕著ではないかもしれない。従って、予測フィルタは、密にサンプリングされたRPPデータから日々のBGデータを予測するために用いられる。RPPを用いたBGの予測は、血糖用スティックまたは指穿刺用ランセットを全くまたはごくわずかしか使用する必要がないので、経済的で無痛の方法であることに言及する必要がある。従って、RPPを計算するための血圧測定は、BG検査に必要となるようなどのような消耗品も必要としない。本予測方法案は、そのような方法が煩わしい、非現実的または非経済的等に思われる他のBG測定および今後のBG測定にも用いることができる。そのような方法は、涙液唾液または皮膚と接触する機器等からのBG値の測定からなることができる。

0080

本発明は、まばらにサンプリングされた血液サンプルを用いることによって、高い精度でRPPから日々のBGを予測する。予測は、2つの異なるアプローチ、ARXおよびFIR−Wienerによって進めることができる。先に述べたように、予測方法には、トレーニング用の一連のデータが必要となる。そのようなまばらにサンプリングされたBG値は、高度なフィルタプレディクタを更新するために用いられる。従って、血液サンプリングまたは指穿刺による外傷性感覚を有する患者に対しては、そのような痛みを伴う活動を、例えば1週につき1サンプルに減らし、それでもなお、プレディクタによって、まばらにサンプリングされたBG値から正確な日々のBG値を予測することができる。本システムは、BG、入力信号xおよびホワイトノイズと共に伝達関数を用いて特定される。xは、1つの変数ベクトルまたはいくつかの変数のマトリックスとすることができる。変数の例は、心拍数と収縮期血圧との積、収縮期血圧、拡張期血圧、脈拍、平均動脈圧、脈圧または身体活動のような測定値とすることができる。この特定は、我々がBGおよびxは同一の基本的パラメータによって部分的に影響を受けると仮定しているので行うことができる。これらのパラメータの中に、我々は、例えば身体活動、食習慣、ストレス、ウイルスおよび過体重を見出す。従って、我々は、本システムを以下の仮説によって提示することができる。

0081

上式は、ノイズ部分e(t)がE[e(t)]=0を有する確率的ホワイトノイズである線形システムの説明である。より広い意味では、本システムは、ブラックボックスの原理によって説明することができる(図17参照)。GおよびHは、伝達関数であり、θは、多項式係数を含むベクトルである。さらに、qは、シフト演算子である。心拍数と収縮期血圧との積はBGと最も高い相関関係を有するので、それを用いるのが最も好ましい。従って、以下の例は、BGデータおよびRPPデータを用いている。

0082

システムが特定される際の重要な前処理は、平均値を引くことである。これは次の式によって得られる。

ここで、Nは測定数である。伝達関数G(θ,q)およびH(θ,q)を推定するのにはいくつかの方法があり、ARX、ARMAX、OEおよびBox−Jenkinsのようなモデルについて述べることができる。この場合は、直線回帰と呼ばれる直進予測アルゴリズムを提供するARXを論じる。Box−Jenkinsは最も複雑なモデルであり、他のモデルはその特例である。検査は、異なるモデル−アプローチ間で最小限の差を示した。

0083

ARXモデルは次の式として書くことができる。

ここで、多項式係数は、収集して次の式として書くことができる。

0084

さらに、式2は次の式として書き直すことができる。

ここで、

および (11)

nkは遅延である。

0085

ベクトルθ、旧BG値および旧RPP値最適要素が与えられれば、BGを予測することが可能である。予測は、旧BG値と旧RPP値を含むθおよび回帰ベクトルφが分かれば計算される。

0086

0087

ノイズ項e(t)がφのメンバではないことに留意されたい。さらに、θとφとの積によって予測が得られる。

0088

この例では、プレディクタはワンステッププレディクタとして設計されており、各予測に対してそれが再トレーニングするので適応できるようになる。プレディクタの他のステップ長および他の種類のプレディクタを、当業者は用いることができる。

0089

時刻t−1におけるθの各計算に対して、BG(t)の推測または予測が生成されることになる。従って、時刻tにおいては、予測誤差を行うことがあり得る。

0090

長さNのトレーニングシーケンスに対しては二次基準がある。

0091

従って、次の式を与えるθを選択するのは容易である。

(「arg min」は最小引数である)

0092

次の式に示す予測誤差がある。

0093

従って、二次基準(11)を、次の式として書くことができる。

ここで、 (18)

および、

0094

RNが反転可能であれば、その式は次のように書くことができる。

0095

もし次の式が成立すれば、(19)の末尾部分は常にゼロである。

また、RNが正の符号に定まっていることから、これは最小値を提供する。従って、この項の残りの部分がθに依存しないことから、式(22)が満たされたときに、VN(θ)の最適最小値が得られる。このプレディクタを改善するには、本物のBGサンプルが採取される際に入手可能な残差情報を用いることができる。改善された振幅トラッキングのための今後の予測に追加するために、この残差を指数関数的に重み付けすることができる。

0096

一例として、図18に、7日目毎にのみ本物のBGサンプルで更新される場合のプレディクタの結果を示す。本発明の別の実施形態では、プレディクタはフリーランで、短いBGシーケンスによって最初にのみ更新される。

0097

別の予測例として、ノイズを最適に抑える強力なプレディクタであるFIR−Wienerフィルタを実装することができる。将来のBGサンプルを説明する変数は、次の式として書くことができる(もちろん、BGは本案における一例に過ぎず、BGを、密にサンプリングされる変数と相関性を有する他の何らかのまばらにサンプリングされる変数に代えることができる)。従って、予測値BGを次の式として生成する。

0098

0099

BG測定値およびRPP測定値を含むベクトルを生成する。

0100

ここで、tは式中の旧BG値の数、MはBGの検査間隔である。TはRPPの旧値を表し、kは予測されるステップの数(k<M)である。

0101

さらに、自己相関関数および相互相関関数を含むマトリックスを推定する。これらの推定値を計算するために、我々は、トレーニングシーケンスとして、既知の測定値のシーケンスを用いる。

0102

0103

次式に示すとおり相互相関も推定する。

0104

ここで、次の式としてフィルタを生成することができる(各予測に対して1つ、kは予測ステップの指標である)。

0105

これが予測値をもたらす。

0106

関連性に対して時系列データの分析を行うべきであり、また閾値を上回るデータの脱落または外れ値には、隣接するデータの平均値を用いて代入することができる。測定し忘れることもあること、あるいは人手による測定値の解釈において誤ることもあるのは通常のことであるので、これは重要なことである。被検者が装置を忘れたり休暇に出かけたりした等の状況では、長いデータ脱落を補間する必要があるかもしれない。線形補間は、線形回帰予測法の代替案でもある。例えば、BGの測定値が毎週1回取られる場合、既知のBGデータのベクトルは、毎日サンプリングされるBGベクトルのダウンサンプル版となる。これは、任意の補間間隔M日(またはサンプル)に対して次の式で説明することができる。

次いで、BGM内の要素間にM−1サンプルに基づいて直線を適用することによって、線形補間が行われる。一例として、図18に、7日目毎の本物のBGサンプルによる補間の結果を示す。線形補間は、データが欠損している非等距離の日々に対しても行うことができる。

0107

さらに、本発明の別の実施形態では、欠損データのシーケンスに基づいて線形補間と予測との間で自動的に切り換えるのが好ましいかもしれない。切り換えの適切な時点は、過去の既知のデータの残差分析によって決定することができる。残差は、特定のシーケンス内の線形補間を施されたデータが生データと比較されるケース1と、全く同じシーケンス内の予測データが生データと比較されるケース2との2つのケースから生成される。言うまでもなく、これは同一の間隔/シーケンスにおいて行われ、これらの2つのケース間での有益な比較結果が提供される。その目標は、残差をできる限り小さく維持することであり、その結果、2つのケースの交差部から、二乗残差の平均値である切り換え点を決定することができる。

0108

BGとRPPの合計または因子分解は、本発明者が代謝能力指標(MPI:Metabolic Performance Index)と呼ぶ代謝能力指標として用いることができる。これは、いくつかの異常および疾患を対象とすることができる指標であり、従って2型糖尿病に関連する疾患におけるセルフコントロールの促進およびライフスタイル変更の明確な指標とすることができる。図19を参照されたい。先の表示は、MPIインジケータ運動選手等に対するスポーツトレーニングにおいて有利に利用することができることを示している。

0109

本発明者は、本発明案による代謝監視・表示装置が患者にとって自己管理のための非常に価値のある資産となると同時に、医師が患者の状態を明確かつ正確に評価し、追跡を行うための新たな道具となり、従って有用な治療用具として用いることができると確信している。ソフトウェア製品のあるバージョンスクリーンショット図20に示す。このマルチパラメータ代謝監視・表示装置は、そのトレーナが出力データを積極的に用いてその後の訓練を指導し能力を向上させることができる、ランナーあるいは水泳選手等といった運動選手のようないずれかの人間、または競走馬あるいは競争のようないずれかの哺乳動物身体状況および向上を監視するのに用いることができることも確信している。

0110

新たなハードウェアの開発に対する代替案として、標準的な実績のある技術および大量生産型の消費者向け医療監視装置データ収集用に用いることができ、この場合、コンピュータプログラム製品およびコンピュータデスクトップラップトップパームトップまたはスマートフォン)を用いて、実際的かつ直観的な方法で情報を収集、ダウンロード、分析および提示することができる。さらに、マイクロプロセッサと身体活動用加速度計と表示用画面とを含む、インテリジェント血糖監視装置または血糖監視装置と血圧監視装置とを組み合わせたインテリジェントな装置を構築することができる。本発明は、計算、アナログ信号もしくはデジタル信号の格納および/または伝送などのさまざまな種類の用途に対して、ソフトウェアとハードウェアチップの両方およびDSPに実装することができる。

0111

説明した実施形態は、単に本発明の原理を例証するためのものにすぎない。本明細書に説明した装置および詳細の変更および変形形態は当業者には明らかであろうことが分かる。従って、特許請求の範囲によってのみ限定され、実施形態の記載および説明の目的で本明細書に提示した特定の詳細によって限定されるものではないことを意図している。

0112

20入力インターフェース
22フィルタ装置
24 第1のプロセッサ
25出力インターフェース
27 第2のプロセッサ
30 プレディクタ

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ