図面 (/)

技術 オレフィン類重合用遷移金属含有触媒の活性評価方法

出願人 東邦チタニウム株式会社
発明者 齋藤雅由藤田孝清水禎出口健三
出願日 2008年10月21日 (11年5ヶ月経過) 出願番号 2008-270720
公開日 2010年5月6日 (9年10ヶ月経過) 公開番号 2010-100672
状態 特許登録済
技術分野 付加重合用遷移金属・有機金属複合触媒
主要キーワード 四極子モーメント X線回折法 多重パルス 化学シフト異方性 固体NMR装置 アルミナ酸化物 赤外吸収分光法 核磁気共鳴測定
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2010年5月6日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (5)

課題

触媒構造と関連付けてなるオレフィン類重合用触媒新規活性評価方法を提供する。

解決手段

オレフィン類重合用遷移金属含有触媒の活性評価方法であって、核磁気共鳴装置を用い、回転速度6KHz以上、磁場強度12テスラ以上の条件下で前記触媒中の遷移金属原子核核磁気共鳴させることにより、複数の遷移金属同位体ピークを有する核磁気共鳴スペクトルを得、前記同位体ピークのうちいずれかのピーク化学シフト値の大小により、触媒活性を評価することを特徴とするオレフィン類重合用遷移金属含有触媒の活性評価方法である。

概要

背景

近年、オレフィン重合用触媒として、チタンなどの遷移金属を必須成分として含む触媒が工業的に広く用いられるようになっており、得られるポリオレフィンの特性やその生産性を向上させるために、現在もなお研究開発が進められている。

ところで、上記触媒の重合特性等を評価するためには、得られた触媒を用いて実際にオレフィンモノマー重合させる必要があることから、上記触媒開発は、試行錯誤的に行われているのが実状である。

このような状況下、触媒の化学的構造、すなわち触媒成分である遷移金属の存在状態解析し、触媒特性と関連付けることによって、より優れた触媒を設計することが求められるようになっている。

従来より、オレフィン重合用触媒、特に塩化マグネシウム担体とし、これにチタンを担持した固体状チーグラーナッタ触媒において、その構成成分の存在状態を推定する方法として、X線回折法(以下、「XRD法」と略称する)、赤外吸収分光法(以下、「IR法」と略称する)、ラマン分光法(以下、「Raman法」と略称する)等を用いた方法が検討されている。

しかしながら、XRD法は、結晶性の高い無機化合物を含む触媒に対しては有効な手法であるが、非晶質系の材料を含む触媒に対しては検出ピーク広幅化するために、解析や定量が非常に困難になってしまう。さらに、IR法とRaman法は分析感度という面では有効であるが、同じようなスペクトルが複数ある場合、それぞれのピークが重なり、解析することが困難になる。

これまでのところ、オレフィンモノマー重合反応時活性種となる遷移金属元素、特にチタンについては、種々の仮説の下に、その存在状態についていくつかの報告がなされている(例えば非特許文献1〜非特許文献4参照)。しかしながら、これらの報告においては、分析機器による実験的なデータに基いた解析が殆どなされておらず、その提案は仮説にとどまっている。

このように、オレフィン重合触媒においては、特に活性種であるチタン等の遷移金属成分の存在状態が十分に解析されておらず、触媒構造と触媒特性との関係が効果的に検討されているとは言い難い状況にあった。
Journal of Polymer Science : Part A :Polymer Chemistry,Vol.26,477(1988)
Macromolecules,21,314(1988)
Makromol.Chem.,189,1531(1988)
Makromol.Chem.,Rapid Commum.,9,23(1988)

概要

触媒構造と関連付けてなるオレフィン類重合用触媒新規活性評価方法を提供する。オレフィン類重合用遷移金属含有触媒の活性評価方法であって、核磁気共鳴装置を用い、回転速度6KHz以上、磁場強度12テスラ以上の条件下で前記触媒中の遷移金属原子核核磁気共鳴させることにより、複数の遷移金属同位体ピークを有する核磁気共鳴スペクトルを得、前記同位体ピークのうちいずれかのピークの化学シフト値の大小により、触媒活性を評価することを特徴とするオレフィン類重合用遷移金属含有触媒の活性評価方法である。 なし

目的

このような状況下、本発明は、触媒構造と関連付けてなる、オレフィン類重合用遷移金属含有触媒の新規な活性評価方法を提供することを目的とするものである。

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

オレフィン類重合用遷移金属含有触媒活性評価方法であって、核磁気共鳴装置を用い、回転速度6KHz以上、磁場強度12テスラ以上の条件下で前記触媒中の遷移金属原子核核磁気共鳴させることにより、複数の遷移金属同位体ピークを有する核磁気共鳴スペクトルを得、前記同位体ピークのうちいずれかのピーク化学シフト値の大小により、触媒活性を評価することを特徴とするオレフィン類重合用遷移金属含有触媒の活性評価方法。

請求項2

前記遷移金属がチタンである請求項1に記載のオレフィン類重合用遷移金属含有触媒の活性評価方法。

請求項3

前記オレフィン類重合用遷移金属含有触媒がチタンおよびマグネシウムを含有するものである請求項1または請求項2に記載のオレフィン類重合用遷移金属含有触媒の活性評価方法。

請求項4

前記遷移金属同位体ピークの化学シフト値が、49Tiピークまたは47Tiピークの化学シフト値である請求項1〜請求項3のいずれか1項に記載のオレフィン類重合用遷移金属含有触媒の活性評価方法。

技術分野

0001

本発明は、遷移金属を含有するオレフィン類重合用触媒活性評価方法に関する。

背景技術

0002

近年、オレフィン重合用触媒として、チタンなどの遷移金属を必須成分として含む触媒が工業的に広く用いられるようになっており、得られるポリオレフィンの特性やその生産性を向上させるために、現在もなお研究開発が進められている。

0003

ところで、上記触媒の重合特性等を評価するためには、得られた触媒を用いて実際にオレフィンモノマー重合させる必要があることから、上記触媒開発は、試行錯誤的に行われているのが実状である。

0004

このような状況下、触媒の化学的構造、すなわち触媒成分である遷移金属の存在状態解析し、触媒特性と関連付けることによって、より優れた触媒を設計することが求められるようになっている。

0005

従来より、オレフィン重合用触媒、特に塩化マグネシウム担体とし、これにチタンを担持した固体状チーグラーナッタ触媒において、その構成成分の存在状態を推定する方法として、X線回折法(以下、「XRD法」と略称する)、赤外吸収分光法(以下、「IR法」と略称する)、ラマン分光法(以下、「Raman法」と略称する)等を用いた方法が検討されている。

0006

しかしながら、XRD法は、結晶性の高い無機化合物を含む触媒に対しては有効な手法であるが、非晶質系の材料を含む触媒に対しては検出ピーク広幅化するために、解析や定量が非常に困難になってしまう。さらに、IR法とRaman法は分析感度という面では有効であるが、同じようなスペクトルが複数ある場合、それぞれのピークが重なり、解析することが困難になる。

0007

これまでのところ、オレフィンモノマー重合反応時活性種となる遷移金属元素、特にチタンについては、種々の仮説の下に、その存在状態についていくつかの報告がなされている(例えば非特許文献1〜非特許文献4参照)。しかしながら、これらの報告においては、分析機器による実験的なデータに基いた解析が殆どなされておらず、その提案は仮説にとどまっている。

0008

このように、オレフィン重合触媒においては、特に活性種であるチタン等の遷移金属成分の存在状態が十分に解析されておらず、触媒構造と触媒特性との関係が効果的に検討されているとは言い難い状況にあった。
Journal of Polymer Science : Part A :Polymer Chemistry,Vol.26,477(1988)
Macromolecules,21,314(1988)
Makromol.Chem.,189,1531(1988)
Makromol.Chem.,Rapid Commum.,9,23(1988)

発明が解決しようとする課題

0009

このような状況下、本発明は、触媒構造と関連付けてなる、オレフィン類重合用遷移金属含有触媒新規な活性評価方法を提供することを目的とするものである。

課題を解決するための手段

0010

上記目的を達成するために、本発明者等は、核磁気共鳴分光法(以下、「NMR法」と略称する)に着目した。

0011

NMR法は、特定元素化学構造が推定できる分析法として幅広く利用され、非晶質物質や混合物であっても、その材料の機能発現部位をナノレベルで選択的に計測し、3次元化学構造とその動的性質ピンポイント解明できる方法として知られている。

0012

しかしながら、NMR法により、オレフィン類重合用遷移金属含有触媒を測定しようとすると、遷移金属元素の大部分が四極子モーメントを有するため(すなわち、核スピン量子数Iが1超となるため)、核四極子相互作用を生じて、得られる信号は幅広くなり、結果として遷移金属成分を含有する触媒中の遷移金属成分そのものの解析は困難であった。さらに、遷移金属は、化学シフト異方性信号(以下、「SSB」と略称する)、双極子−双極子相互作用および上記四極子相互作用が働くため、通常の回転速度(回転数6kHz未満)ではこれらの異方的相互作用を消去、低減することができず、極端に広幅化することから、スペクトル解析が困難であった。また、NMR法により測定するためには、その感度が高く核スピン量子数I=1/2である必要があるといった制約があることから、適用できる元素が、水素炭素ケイ素といった元素に限定されていた。

0013

このような状況下、本発明者等が鋭意検討したところ、核磁気共鳴装置を用い、回転速度6KHz以上、磁場強度12テスラ以上の条件下で触媒中の遷移金属原子核核磁気共鳴させることにより、複数の遷移金属同位体ピークを有する核磁気共鳴スペクトルを得、この同位体ピークの化学シフト値の大小によって触媒活性を評価することにより、上記技術課題を解決し得ることを見出し、本知見に基づいて本発明を完成するに至った。

0014

すなわち、本発明は、
(1)オレフィン類重合用遷移金属含有触媒の活性評価方法であって、
核磁気共鳴装置を用い、回転速度6KHz以上、磁場強度12テスラ以上の条件下で前記触媒中の遷移金属原子核を核磁気共鳴させることにより、複数の遷移金属同位体ピークを有する核磁気共鳴スペクトルを得、
前記同位体ピークのうちいずれかのピークの化学シフト値の大小により、触媒活性を評価する
ことを特徴とするオレフィン類重合用遷移金属含有触媒の活性評価方法、
(2)前記遷移金属がチタンである上記(1)に記載のオレフィン類重合用遷移金属含有触媒の活性評価方法、
(3)前記オレフィン類重合用遷移金属含有触媒がチタンおよびマグネシウムを含有するものである上記(1)または(2)に記載のオレフィン類重合用遷移金属含有触媒の活性評価方法、および
(4)前記遷移金属同位体ピークの化学シフト値が、49Tiピークまたは47Tiピークの化学シフト値である上記(1)〜(3)のいずれか1項に記載のオレフィン類重合用遷移金属含有触媒の活性評価方法
を提供するものである。

発明の効果

0015

本発明によれば、核磁気共鳴装置を用い、回転速度6KHz以上、磁場12テスラ以上の条件下で前記触媒中の遷移金属原子核を核磁気共鳴させることにより、複数の遷移金属同位体ピークを有する核磁気共鳴スペクトルを得、上記いずれかのピークのケミカルシフト値の大小によって触媒活性を評価することにより、触媒構造と関連付けてなるオレフィン類重合用触媒の新規な活性評価方法を提供することができる。

発明を実施するための最良の形態

0016

本発明は、オレフィン類重合用遷移金属含有触媒の活性評価方法に関するものであって、核磁気共鳴装置を用い、回転速度6KHz以上、磁場強度12テスラ以上の条件下で前記触媒中の遷移金属原子核を核磁気共鳴させることにより、複数の遷移金属同位体ピークを有する核磁気共鳴スペクトルを得、
前記同位体ピークのうちいずれかのピークの化学シフト値の大小により、触媒活性を評価することを特徴とするものである。

0017

本発明において、オレフィン類重合用遷移金属含有触媒としては、オレフィン類を重合し得る遷移金属を含有するものであれば特に制限されないが、塩化マグネシウムを担体とし、これにチタンを担持した固体状のチーグラーナッタ触媒であることが好ましい。

0018

遷移金属としては、第一遷移元素(3d遷移元素)、第二遷移元素(4d遷移元素)、第三遷移元素(4f遷移元素)および第四遷移金属元素の中で、核スピン量子数Iが1/2であるか1超である原子核を有するものから選ばれる1種以上を挙げることができる。

0019

具体的には、チタン、ジルコニウムハフニウム、鉄、ニッケルコバルトマンガンクロムなどから選ばれる一種以上が挙げられるが、特に好ましくはチタンを挙げることができる。

0020

また、遷移金属以外に触媒中に含んでよい金属原子としては、マグネシウム、アルミニウム、ケイ素等を挙げることができ、特に、触媒中に遷移金属であるチタンとともにマグネシウムを含むものが好ましい。

0021

その他、触媒中に含んでよい成分としては、塩素などのハロゲン原子電子供与性化合物を挙げることができる。

0022

電子供与性化合物としては、酸素原子あるいは窒素原子を含有する有機化合物を挙げることができ、例えば、アルコール類フェノール類エーテル類エステル類ケトン類、酸ハライド類、アルデヒド類アミン類アミド類ニトリル類イソシアネート類、Si−O−C結合を含む有機ケイ素化合物等が挙げられる。

0023

本発明の方法において、オレフィン類重合用遷移金属含有触媒は、公知の方法で調製することができ、例えば、チタンおよびマグネシウムを含有するオレフィン類重合用触媒は、チタン化合物およびマグネシウム化合物を公知の方法で接触させることにより調製することができる。

0024

上記チタン化合物としては、四塩化チタンなどのチタンハロゲン化合物ハロゲン化アルコキシチタン化合物、アルコキシチタン化合物などが挙げられる。

0025

また、上記マグネシウム化合物としては、二塩化マグネシウムなどのジハロゲン化マグネシウム、ジエトキシマグネシウムなどのジアルコキシマグネシウム、ハロゲン化アルコキシマグネシウム、ジアルキルマグネシウムハロゲン化アルキルマグネシウムジアリールオキシマグネシウム、ステアリン酸マグネシウムなどの脂肪酸マグネシウムなどを挙げることができ、あるいはこれらのマグネシウム化合物と、酸化ケイ素酸化アルミナ、ケイ素アルミナ酸化物混合品等を挙げることができる。

0026

本発明において、遷移金属含有触媒によって重合処理されるオレフィン類としては、エチレンプロピレン、1−ブテン、4−メチル−1−ペンテン等を挙げることができ、これ等のモノマーの他、ダイマートライマーテトラマー等のオリゴマーも含まれる。オレフィン類の重合反応単独重合反応であっても共重合反応であってもよい。

0027

本発明においては、核磁気共鳴装置を用い、回転速度6KHz以上、磁場強度12テスラ以上の条件下で触媒中の遷移金属核を核磁気共鳴させることにより、複数の遷移金属同位体ピークを有する核磁気共鳴スペクトルを得る。

0028

本明細書において、回転速度とは、触媒試料充填する試料管NMR試料管)の回転速度を意味し、この回転速度は10kHz以上であることが好ましく、15kHz以上であることがより好ましい。触媒試料の回転速度が6kHz以上であることにより、SSB等の異方的相互作用の強度を低減することができる。

0029

上記磁場強度は20テスラ以上が好ましく、25テスラ以上がより好ましい。磁場強度を12テスラ以上にすることにより、得られるピークの広幅化を抑制することができる。

0030

核四極子結合定数がゼロに近いような対称性の良い試料であれば、回転速度を6KHz以上にするだけでも、得られるピークの広幅化をある程度抑制することができるが、本発明において測定対象となる遷移金属は、核四極子結合定数がゼロより大きい対称性が悪い試料である。そこで、本発明においては、回転速度6KHz以上、磁場強度12テスラ以上とすることで、得られるピークの広幅化を抑制ならしめている。

0031

触媒試料を充填するNMR試料管は、直径1.7mm〜7.0mm程度であることが好ましく、入手容易性等を考慮すると直径4mm程度であることがより好ましい。また、測定時において、NMR試料管は、外部静磁場方向に対して54.7°の軸を中心に回転させることが好ましい。測定時に使用するプローブNMRプローブ)は、遷移金属を測定できるものであれば、特に制限されない。

0032

本発明において、核磁気共鳴スペクトルの測定は、高磁場を有する核磁気共鳴装置を用いて、サンプルを高速スピンさせながらチューニングし、パルス幅繰り返し時間およびパルスシーケンスなどを確認した後に、実施することが好ましい。核磁気共鳴測定方法は、遷移金属核が測定できる方法であれば特に制限されず、例えば、CPMAS(交差分極マジックアングルスピニング)法、MQMAS(多量子マジックアングルスピニング)法、CRAMPS多重パルス水素核高分解能)法等を挙げることができる。

0033

本発明においては、上記方法により、複数の遷移金属同位体ピークを有する核磁気共鳴スペクトルを得る。

0034

上記スペクトル中に検出される同位体ピークは、測定対象となる遷移金属によって異なるが、Ti原子を測定対象とする場合には、49Tiピークおよび47Tiピークを挙げることができる。

0035

そして、本発明においては、上記いずれかのピークの化学シフト値の大小により、触媒活性を評価する。

0036

NMR法において、化学シフト値はppm単位で表され、本発明者等の検討によれば、この触媒を構成する遷移金属原子核の化学シフト値が触媒活性と相関することが見出された。すなわち、化学シフト値が小さい場合には、触媒活性(オレフィン類の重合活性)が高くなり、化学シフト値が大きい場合には、触媒活性が低くなる。このため、予め同種条件下で測定した化学シフト値を基に検量線を作成しておくことにより、化学シフト値の大小から、触媒活性の程度を評価することが可能になる。

0037

上記化学シフト値は、測定対象となる遷移金属原子核と他の元素が相互作用する場合などに変化するものであり、例えば、測定対象となる遷移金属原子核が、酸素や塩素など電子密度が低い原子と相互作用した場合、検出される遷移金属ピークが低磁場側(化学シフト値の高い側)へシフトし、逆に炭素や珪素など電子密度が高い原子と相互作用した場合、高磁場側(化学シフト値の低い側)へシフトする。

0038

このため、本発明は、オレフィン類重合用触媒を構成する遷移金属の存在状態と関連付けした、新規な活性評価方法を提供し得るものである。

0039

次に、実施例を挙げて本発明を更に具体的に説明するが、本発明は、以下の実施例により何ら制限されるものではない。

0040

(実施例1)
(1)触媒調製
十分に窒素ガス置換された、内容積1Lのステンレス製振動ミルに、25mmのステンレスボールをball/pot比=0.8になるように入れ、次いで無水塩化マグネシウム30gと四塩化チタン6.0mlを添加し20時間共粉砕することにより、重合用触媒1を得た。
この時、触媒中のチタン含有量を測定したところ、5.3重量%であった。

0041

(2)核磁気共鳴測定
21.8テスラの磁場を有する日本電子(JEOL)社製 ECA−930固体NMR装置に、JEOL社製4mmMASプローブを装着し、MAS回転数20KHz、繰り返し時間1秒の測定条件下、外部標準試料に四塩化チタン(0ppm)を用いて、上記(1)で得た触媒を構成するチタン原子核の核磁気共鳴スペクトルを測定した。得られたスペクトルを図1に示す。
図1に示すように、得られた核磁気共鳴スペクトルにおいては、49Tiピークと、47Tiピークが検出されることが分かる。
そして、上記検出ピークの化学シフト値と、予め同種の条件で調製した触媒の化学シフト値を比較して、その大小により、触媒活性(重合活性)を評価することができる。

0042

(比較例1)
実施例1(2)において、9.4テスラの磁場を有する日本電子(JEOL)社製固体NMR装置を用いて15KHzの回転速度で測定した以外は、実施例1と同様にして、重合用触媒1の核磁気共鳴スペクトルを測定した。得られたスペクトルを図2に示す。
図2から分かるように、比較例1においては、15KHzという高速回転を行っているにも係らず、試料の対象性が悪いために100ppmから−100ppmにわたり非常にブロードなピークが1本検出されているだけである。Ti元素の同位体のうち、核磁気共鳴できるのは同位体番号が奇数番号のものであることから、本来、47Tiと49Tiの2本のピークが現れることが考えられるが、本例においては、その確認ができなかった。

0043

(実施例2〜5)
(1)触媒調製
固体触媒調製時の粉砕時間を、それぞれ、0時間、2時間、5時間および20時間とし、粉砕後に、遊離のTi成分が無くなるまでn−ヘプタンで十分に洗浄し、その後乾燥した以外は、実施例1(1)と同様にして、重合用触媒2〜5を得た。

0044

(2)NMR測定
(1)で得た重合用触媒2〜5を構成するチタン原子核の核磁気共鳴スペクトルを、実施例1(2)と同様の方法により測定した。得られたスペクトルを図3に示す。
図3に示すように、得られた核磁気共鳴スペクトルにおいては、49Tiピークと、47Tiピークが検出されることが分かる。

0045

(3)重合反応
十分に窒素置換された内容積1.5リットル攪拌機オートクレーブに、n−ヘプタン700ml、トルエチルアルミニウム0.88mmol、重合用触媒2〜5のいずれかをTi含有量として0.0176mmol、水素3.2リットル仕込みエチレンモノマーを0.7MPaの圧力で供給し、80℃で2時間重合反応を行ったときの触媒活性(重合活性)を、49Tiピークおよび47Tiピークの化学シフト値とともに表1に示す。
また、47Tiピークの化学シフト値と触媒活性との関係図、49Tiピークの化学シフト値と触媒活性との関係図を、図4および図5にそれぞれ示す。

0046

0047

表1、図4図5の結果より、本発明においては、49Tiピークの化学シフト値と触媒活性、47Tiピークの化学シフト値と触媒活性がそれぞれ相関し、これらのピークの化学シフト値の大小から、触媒活性を評価し得ることが分かる。また、上記化学シフト値は、遷移金属原子核の電子密度状態を表すものであることから、上記評価は、触媒構造と関連付けつつ行い得ることが分かる。

図面の簡単な説明

0048

実施例1で得られた核磁気共鳴スペクトルである。
比較例1で得られた核磁気共鳴スペクトルである。
実施例2〜実施例5で得られた核磁気共鳴スペクトルである。
実施例2〜実施例5で得られた核磁気共鳴スペクトルにおける47Tiピークの化学シフト値と触媒活性の関係図である。
実施例2〜実施例5で得られた核磁気共鳴スペクトルにおける49Tiピークの化学シフト値と触媒活性の関係図である。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ