図面 (/)

技術 蓄電システム

出願人 パナソニック株式会社
発明者 廣部貴志飯田琢磨
出願日 2008年8月7日 (12年3ヶ月経過) 出願番号 2008-204539
公開日 2010年2月18日 (10年9ヶ月経過) 公開番号 2010-041883
状態 拒絶査定
技術分野 交流の給配電 電池等の充放電回路 二次電池の保守(充放電、状態検知) 電池の充放電回路
主要キーワード 山小屋 発煙発火 最小目標 最大電流制限値 風力発電量 総合開発 目標容量 予測パターン
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2010年2月18日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (15)

課題

過度充電電流値充電されるのを防止し、蓄電池長寿命化を実現することができる蓄電システムを提供する。

解決手段

蓄電システム1は、自然エネルギーから電力発電する発電部2と、発電部2によって発電された電力を貯蔵する蓄電池4と、蓄電池4の残容量を検出する残容量検出部5と、蓄電池4の充放電を制御する蓄電池制御部3と、負荷使用電力量時間変化負荷使用電力パターンとして蓄電池制御部3に入力する負荷使用電力パターン入力部6と、将来の発電部2の発電量の時間変化を発電予測パターンとして蓄電池制御部3に入力する発電予測パターン入力部7とを備え、蓄電池制御部3は、残容量と負荷使用電力パターンと発電予測パターンとに基づいて、充電電流値を制限する制限期間を決定し、制限期間内における充電電流値を算出する。

概要

背景

近年、地球環境保全及びCO2排出量削減の観点から、自然エネルギーを用いた蓄電システムの導入が活発に進められている。特に、風力発電装置太陽電池などの発電部を持つ蓄電システムについては、蓄電池を組み合わせることによって、出力電力を安定化させることが可能となっている。このような安定化は風力発電において特に用いられており、自然界の不安定な風力に対して安定的に電力を出力させるために、様々な提案がなされている。一般的に風力発電では、大型、小型に関わらず、ある一定時間の風力発電出力値を平均化した値を目標発電出力値とする方法が採用されている。

しかしながら、風力は気象条件に左右され、安定的に電力を供給することが困難である。そこで、発電出力平滑化する目的で、自然エネルギーの発電変化量予測し、不足分又は過剰分は二次電池からの充放電を行うことで、安定した出力を可能とする方法が提案されている(例えば、特許文献1参照)。

この提案によれば、負荷電力消費量を風力発電量のみで供給できない場合、蓄電池からの放電で補うことが可能という理由で、負荷に対する電力供給の安定性を向上させることが可能となっている。
特開2007−37226号公報

概要

過度充電電流値充電されるのを防止し、蓄電池の長寿命化を実現することができる蓄電システムを提供する。蓄電システム1は、自然エネルギーから電力を発電する発電部2と、発電部2によって発電された電力を貯蔵する蓄電池4と、蓄電池4の残容量を検出する残容量検出部5と、蓄電池4の充放電を制御する蓄電池制御部3と、負荷の使用電力量時間変化負荷使用電力パターンとして蓄電池制御部3に入力する負荷使用電力パターン入力部6と、将来の発電部2の発電量の時間変化を発電予測パターンとして蓄電池制御部3に入力する発電予測パターン入力部7とを備え、蓄電池制御部3は、残容量と負荷使用電力パターンと発電予測パターンとに基づいて、充電電流値を制限する制限期間を決定し、制限期間内における充電電流値を算出する。

目的

本発明は、上記の問題を解決するためになされたもので、過度の充電電流値で充電されるのを防止し、蓄電池の長寿命化を実現することができる蓄電システムを提供することを目的とするものである。

効果

実績

技術文献被引用数
3件
牽制数
6件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

自然エネルギーから電力発電する発電部と、前記発電部によって発電された電力を貯蔵する蓄電池と、前記蓄電池の残容量を検出する残容量検出部と、前記蓄電池の充放電を制御する蓄電池制御部と、負荷使用電力量時間変化負荷使用電力パターンとして前記蓄電池制御部に入力する負荷使用電力パターン入力部と、将来の前記発電部の発電量の時間変化を発電予測パターンとして前記蓄電池制御部に入力する発電予測パターン入力部とを備え、前記蓄電池制御部は、前記残容量検出部によって検出された前記残容量と、前記負荷使用電力パターン入力部によって入力された前記負荷使用電力パターンと、前記発電予測パターン入力部によって入力された前記発電予測パターンとに基づいて、充電電流値を制限する制限期間を決定し、前記制限期間内における充電電流値を算出することを特徴とする蓄電システム

請求項2

前記蓄電池制御部は、所定の時刻毎対応付けて前記蓄電池の充電容量を予め記憶しており、所定の時刻において検出される前記残容量と、予め記憶されている前記所定の時刻における前記充電容量とを前記制限期間内において比較し、予め記憶されている前記充電容量と前記残容量とが略一致しない場合、前記充電電流値を修正することを特徴とする請求項1記載の蓄電システム。

請求項3

前記蓄電池制御部は、前記発電予測パターンと前記負荷使用電力パターンとを重ね合わせ、前記発電量が前記使用電力量より多い時間帯充電時間帯とし、前記発電量が前記使用電力量より少ない時間帯を放電時間帯として決定し、前記充電時間帯における充電電流値と前記放電時間帯における放電電流値とを算出し、前記充電電流値を所定の電流値に制限した状態で充放電を開始してから、充電量が所定の目標容量に到達するまでの期間の開始時刻終了時刻とを前記制限期間の電流制限開始時刻電流制限終了時刻として決定することを特徴とする請求項1又は2記載の蓄電システム。

請求項4

前記蓄電池制御部は、前記蓄電池の用途毎目標とする最大の充電量を表す最大目標容量と目標とする最小の充電量を表す最小目標容量とを予め記憶しており、前記最大目標容量、現在の前記残容量、前記電流制限開始時刻及び前記電流制限終了時刻に基づいて、前記充電電流値を制限する場合の最大となる充電電流値を最大電流制限値として算出し、前記最小目標容量、現在の前記残容量、前記電流制限開始時刻及び前記電流制限終了時刻に基づいて、前記充電電流値を制限する場合の最小となる充電電流値を最小電流制限値として算出することを特徴とする請求項3記載の蓄電システム。

請求項5

前記蓄電池制御部は、前記最大電流制限値及び前記最小電流制限値を下記の(1)式及び(2)式に基づいて算出することを特徴とする請求項4記載の蓄電システム。最大電流制限値=(最大目標容量−現在の残容量)/(電流制限終了時刻−電流制限開始時刻)・・・(1)最小電流制限値=(最小目標容量−現在の残容量)/(電流制限終了時刻−電流制限開始時刻)・・・(2)

請求項6

前記蓄電池制御部は、前記制限期間内における前記発電量が増加している期間の充電電流値を前記最大電流制限値に設定し、前記制限期間内における前記発電量が減少している期間の充電電流値を前記最小電流制限値に設定することを特徴とする請求項4又は5記載の蓄電システム。

請求項7

商用電源をさらに備え、前記蓄電池制御部は、所定の時刻毎に対応付けて前記蓄電池の充電容量を予め記憶しており、前記電流制限開始時刻において、前記充電電流値を前記最小電流制限値に設定し、所定の時刻において検出される前記残容量が予め記憶されている前記所定の時刻における前記充電容量より小さい場合、前記最小電流制限値を所定の電流値だけ増加させるとともに、前記商用電源から追加で蓄電池に対して電力を供給させることを特徴とする請求項4又は5記載の蓄電システム。

請求項8

前記蓄電池制御部は、所定の時刻毎に対応付けて前記蓄電池の充電容量を予め記憶しており、前記電流制限開始時刻において、前記充電電流値を前記最大電流制限値に設定し、所定の時刻において検出される前記残容量が予め記憶されている前記所定の時刻における前記充電容量より大きい場合、前記最大電流制限値を所定の電流値だけ減少させることを特徴とする請求項4又は5記載の蓄電システム。

技術分野

0001

本発明は、自然エネルギーを利用した蓄電システムに関し、特にその蓄電システムに用いられる蓄電池長寿命化に関するものである。

背景技術

0002

近年、地球環境保全及びCO2排出量削減の観点から、自然エネルギーを用いた蓄電システムの導入が活発に進められている。特に、風力発電装置太陽電池などの発電部を持つ蓄電システムについては、蓄電池を組み合わせることによって、出力電力を安定化させることが可能となっている。このような安定化は風力発電において特に用いられており、自然界の不安定な風力に対して安定的に電力を出力させるために、様々な提案がなされている。一般的に風力発電では、大型、小型に関わらず、ある一定時間の風力発電出力値を平均化した値を目標発電出力値とする方法が採用されている。

0003

しかしながら、風力は気象条件に左右され、安定的に電力を供給することが困難である。そこで、発電出力平滑化する目的で、自然エネルギーの発電変化量予測し、不足分又は過剰分は二次電池からの充放電を行うことで、安定した出力を可能とする方法が提案されている(例えば、特許文献1参照)。

0004

この提案によれば、負荷電力消費量を風力発電量のみで供給できない場合、蓄電池からの放電で補うことが可能という理由で、負荷に対する電力供給の安定性を向上させることが可能となっている。
特開2007−37226号公報

発明が解決しようとする課題

0005

しかしながら、特許文献1に記載の発明は、発電システム自体の出力を安定化させることが目的であり、予測によって発電出力を上下させるものの、発電システムとして不足又は過剰である電力は、蓄電池からの充放電によって補っている。従って、風力発電量の変動が激しく、予測に対応できなかった場合、蓄電池からの大電流の充放電が、継続して行われ、蓄電池が発熱によって劣化し、寿命が短くなる虞がある。また、過充電又は過放電によって蓄電池が故障し、風力発電設備自体も使用不可となるという課題を有していた。

0006

また、一般的に街路灯山小屋などの独立電源といった特定の用途が多い小型風力発電では、負荷使用電力が増大する時間帯が決まっている。このことから、毎日、負荷使用電力が少なく、かつ発電量が増大する時間帯をあらかじめ知ることができる。この時間帯は、蓄電池に対して過大な電流による充放電が行われる時間帯でもある。この過大な電流による充放電は蓄電池を発熱させ、特性を劣化させ、寿命を低下させるという課題を有していた。

0007

本発明は、上記の問題を解決するためになされたもので、過度充電電流値充電されるのを防止し、蓄電池の長寿命化を実現することができる蓄電システムを提供することを目的とするものである。

課題を解決するための手段

0008

本発明に係る蓄電システムは、自然エネルギーから電力を発電する発電部と、前記発電部によって発電された電力を貯蔵する蓄電池と、前記蓄電池の残容量を検出する残容量検出部と、前記蓄電池の充放電を制御する蓄電池制御部と、負荷の使用電力量時間変化負荷使用電力パターンとして前記蓄電池制御部に入力する負荷使用電力パターン入力部と、将来の前記発電部の発電量の時間変化を発電予測パターンとして前記蓄電池制御部に入力する発電予測パターン入力部とを備え、前記蓄電池制御部は、前記残容量検出部によって検出された前記残容量と、前記負荷使用電力パターン入力部によって入力された前記負荷使用電力パターンと、前記発電予測パターン入力部によって入力された前記発電予測パターンとに基づいて、充電電流値を制限する制限期間を決定し、前記制限期間内における充電電流値を算出する。

0009

この構成によれば、発電部によって、自然エネルギーから電力が発電され、発電部により発電された電力が蓄電池に貯蔵される。残容量検出部によって、蓄電池の残容量が検出され、蓄電池制御部によって、蓄電池の充放電が制御される。また、負荷使用電力パターン入力部によって、負荷の使用電力量の時間変化が負荷使用電力パターンとして蓄電池制御部に入力され、発電予測パターン入力部によって、将来の発電部の発電量の時間変化が発電予測パターンとして蓄電池制御部に入力される。そして、蓄電池制御部によって、残容量検出部により検出された残容量と、負荷使用電力パターン入力部により入力された負荷使用電力パターンと、発電予測パターン入力部により入力された発電予測パターンとに基づいて、充電電流値を制限する制限期間が決定され、制限期間内における充電電流値が算出される。

0010

したがって、蓄電池の残容量と負荷使用電力パターンと発電予測パターンとに基づいて、蓄電システムでの充電量が増大する期間が充電電流値を制限する制限期間として決定され、制限期間内における充電電流値が算出されるので、過度の充電電流値で充電されるのを防止し、蓄電池の長寿命化を実現することができる。

0011

また、上記の蓄電システムにおいて、前記蓄電池制御部は、所定の時刻毎対応付けて前記蓄電池の充電容量を予め記憶しており、所定の時刻において検出される前記残容量と、予め記憶されている前記所定の時刻における前記充電容量とを前記制限期間内において比較し、予め記憶されている前記充電容量と前記残容量とが略一致しない場合、前記充電電流値を修正することが好ましい。

0012

この構成によれば、自然エネルギーの発電量が少なく、蓄電池の残容量が目標とする充電容量よりも少なかったとしても、制限期間内における充電電流値を修正することで、予め設定した充電容量に到達させることができる。

0013

また、上記の蓄電システムにおいて、前記蓄電池制御部は、前記発電予測パターンと前記負荷使用電力パターンとを重ね合わせ、前記発電量が前記使用電力量より多い時間帯を充電時間帯とし、前記発電量が前記使用電力量より少ない時間帯を放電時間帯として決定し、前記充電時間帯における充電電流値と前記放電時間帯における放電電流値とを算出し、前記充電電流値を所定の電流値に制限した状態で充放電を開始してから、充電量が所定の目標容量に到達するまでの期間の開始時刻終了時刻とを前記制限期間の電流制限開始時刻電流制限終了時刻として決定することが好ましい。

0014

この構成によれば、発電予測パターンと負荷使用電力パターンとが重ね合わされ、発電量が使用電力量より多い時間帯が充電時間帯とし、発電量が前記使用電力量より少ない時間帯が放電時間帯として決定される。そして、充電時間帯における充電電流値と放電時間帯における放電電流値とが算出される。その後、充電電流値を所定の電流値に制限した状態で充放電を開始してから、充電量が所定の目標容量に到達するまでの期間の開始時刻と終了時刻とが制限期間の電流制限開始時刻と電流制限終了時刻として決定される。

0015

したがって、充電電流値の制限を開始する電流制限開始時刻と、充電電流値の制限を終了する電流制限終了時刻とを決定することができ、電流制限開始時刻と電流制限終了時刻とに基づいて充放電を制御することができる。

0016

また、上記の蓄電システムにおいて、前記蓄電池制御部は、前記蓄電池の用途毎に目標とする最大の充電量を表す最大目標容量と目標とする最小の充電量を表す最小目標容量とを予め記憶しており、前記最大目標容量、現在の前記残容量、前記電流制限開始時刻及び前記電流制限終了時刻に基づいて、前記充電電流値を制限する場合の最大となる充電電流値を最大電流制限値として算出し、前記最小目標容量、現在の前記残容量、前記電流制限開始時刻及び前記電流制限終了時刻に基づいて、前記充電電流値を制限する場合の最小となる充電電流値を最小電流制限値として算出することが好ましい。

0017

この構成によれば、蓄電池の用途毎に目標とする最大の充電量を表す最大目標容量と目標とする最小の充電量を表す最小目標容量とが予め記憶されている。そして、最大目標容量、現在の残容量、電流制限開始時刻及び電流制限終了時刻に基づいて、充電電流値を制限する場合の最大となる充電電流値が最大電流制限値として算出される。また、最小目標容量、現在の残容量、電流制限開始時刻及び電流制限終了時刻に基づいて、充電電流値を制限する場合の最小となる充電電流値が最小電流制限値として算出される。

0018

したがって、充電電流値を制限する場合の最大となる充電電流値が最大電流制限値と、充電電流値を制限する場合の最小となる充電電流値が最小電流制限値とを算出することができ、最大電流制限値と最小電流制限値とに基づいて充放電を制御することができる。

0019

また、上記の蓄電システムにおいて、前記蓄電池制御部は、前記最大電流制限値及び前記最小電流制限値を下記の(1)式及び(2)式に基づいて算出することが好ましい。

0020

最大電流制限値=(最大目標容量−現在の残容量)/(電流制限終了時刻−電流制限開始時刻)・・・(1)
最小電流制限値=(最小目標容量−現在の残容量)/(電流制限終了時刻−電流制限開始時刻)・・・(2)
この構成によれば、上記の(1)式及び(2)式に基づいて最大電流制限値及び最小電流制限値が算出されるので、算出された最大電流制限値と最小電流制限値とに基づいて充放電を制御することができる。

0021

また、上記の蓄電システムにおいて、前記蓄電池制御部は、前記制限期間内における前記発電量が増加している期間の充電電流値を前記最大電流制限値に設定し、前記制限期間内における前記発電量が減少している期間の充電電流値を前記最小電流制限値に設定することが好ましい。

0022

この構成によれば、制限期間内における発電量が増加している期間の充電電流値が最大電流制限値に設定され、制限期間内における発電量が減少している期間の充電電流値が最小電流制限値に設定される。したがって、最大電流制限値と最小電流制限値とを適切に用いて充放電を制御することができる。

0023

また、上記の蓄電システムにおいて、商用電源をさらに備え、前記蓄電池制御部は、所定の時刻毎に対応付けて前記蓄電池の充電容量を予め記憶しており、前記電流制限開始時刻において、前記充電電流値を前記最小電流制限値に設定し、所定の時刻において検出される前記残容量が予め記憶されている前記所定の時刻における前記充電容量より小さい場合、前記最小電流制限値を所定の電流値だけ増加させるとともに、前記商用電源から追加で蓄電池に対して電力を供給させることが好ましい。

0024

この構成によれば、所定の時刻毎に対応付けて蓄電池の充電容量が予め記憶されている。そして、電流制限開始時刻において、充電電流値が最小電流制限値に設定され、所定の時刻において検出される残容量が予め記憶されている所定の時刻における充電容量より小さい場合、最小電流制限値が所定の電流値だけ増加されるとともに、商用電源から追加で蓄電池に対して電力が供給される。

0025

したがって、蓄電システムが商用電源を備える場合、途中で充電容量が不足したとしても商用電源から直ちに充電することが可能であるので、最小電流制限値を用いることによって、蓄電池の発熱を抑えることができ、蓄電池の長寿命化を実現することができる。

0026

また、上記の蓄電システムにおいて、前記蓄電池制御部は、所定の時刻毎に対応付けて前記蓄電池の充電容量を予め記憶しており、前記電流制限開始時刻において、前記充電電流値を前記最大電流制限値に設定し、所定の時刻において検出される前記残容量が予め記憶されている前記所定の時刻における前記充電容量より大きい場合、前記最大電流制限値を所定の電流値だけ減少させることが好ましい。

0027

この構成によれば、所定の時刻毎に対応付けて蓄電池の充電容量が予め記憶されている。そして、電流制限開始時刻において、充電電流値が最大電流制限値に設定され、所定の時刻において検出される残容量が予め記憶されている所定の時刻における充電容量より大きい場合、最大電流制限値が所定の電流値だけ減少される。

0028

したがって、最大電流制限値を用いて充電を開始し、蓄電池の残容量が予め記憶されている所定の充電容量よりも大きくなった場合、最大電流制限値が所定の電流値だけ減少されるので、自然エネルギーによって発電された電力を効率よく蓄電池に充電することができる。

発明の効果

0029

本発明によれば、蓄電池の残容量と負荷使用電力パターンと発電予測パターンとに基づいて、蓄電システムでの充電量が増大する期間が充電電流値を制限する制限期間として決定され、制限期間内における充電電流値が算出されるので、過度の充電電流値で充電されるのを防止し、蓄電池の長寿命化を実現することができる。

発明を実施するための最良の形態

0030

以下添付図面を参照しながら、本発明の実施の形態について説明する。尚、以下の実施の形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定する性格のものではない。

0031

図1は、本発明の一実施の形態における蓄電システム1の構成を示すブロック図である。図1において、蓄電システム1は、発電部2、蓄電池制御部3、蓄電池4、残容量検出部5、負荷使用電力パターン入力部6及び発電予測パターン入力部7を備える。

0032

発電部2は、自然エネルギーから電力を発電する。自然エネルギーとは、風力、太陽光及び地熱など、利用者によって発電量を任意の出力に制御することが不可能であるエネルギーのことを指す。火力発電原子力発電及び水力発電は、燃料又は水量によって出力制御が可能なため、本蓄電システムでは対象外とする。風力発電の場合、発電部2は、例えば風車で構成される。なお、発電部2を構成する風車の基数や、水平軸風車及び垂直軸風車などの風車の型は問わない。発電部2によって発電された発電量は、蓄電池制御部3に入力される。

0033

蓄電池4は、発電部2によって発電された電力を貯蔵する。蓄電池4は、全ての種類の2次電池使用可能であるが、ニッケル水素電池又はリチウムイオン電池が好ましい。ニッケル水素電池は、リチウムイオン電池に比べて体積エネルギー密度が小さく設備が大きくなる。しかし、発煙発火に至る危険性は少なく安全である。一方、リチウムイオン電池は、過充電及び過放電に弱く安全のために必要なコストが大きい。しかし、体積エネルギー密度が高いため、設備にかかるコストは小さくて済む。一般的にこれらの二次電池は充電時に大電流を流すと発熱し電池特性が劣化するため、寿命が短くなることが知られている。

0034

残容量検出部5は、蓄電池4の残容量を検出し、検出した残容量を蓄電池制御部3に伝える。検出方法は、電流値を積算した電流積算値により残容量を検出する方法、電流積算値と電圧補正とにより詳細に残容量を検出する方法など、残容量が検出できるのであれば、いずれの方法を用いても良い。

0035

負荷使用電力パターン入力部6は、負荷の使用電力量の時間変化を負荷使用電力パターンとして蓄電池制御部3に入力する。負荷は、蓄電システム1に接続されており、発電部2によって発電された電力又は蓄電池4に貯蔵されている電力を消費する。負荷使用電力パターンは、利用者によって入力される。現在、自然エネルギー発電の利用先として、山小屋の電源牧場の電源、及び街路灯又は防犯灯など小型の負荷装置に対する独立電源として良く用いられている。これらの用途では使用電力の傾向が大きく異なり、負荷使用電力パターンもそれぞれ異なる。

0036

発電予測パターン入力部7は、蓄電システム1が設置されている地域、使用されている時期、又は使用している自然エネルギーの特徴などから予測される将来の発電部2の発電量の時間変化を発電予測パターンとして蓄電池制御部3に入力する。発電予測パターンは、利用者によって入力される。一般的に、風力発電では、上空地表面との温度差が大きくなる日中に風力が強くなり、発電量が多くなる傾向がある。また、太陽光発電では、日光発電パネル照射する日中に発電量が多くなる。

0037

図2は、一般的な風力予測パターンの一例を示す図である。図2において、縦軸は風力を表し、横軸は時間を表している。図2では、1日(24時間)の風力の変化を風力予測パターンとして表している。図2に示す風力予測パターンにより風力発電の発電予測パターンは図3のようになる。図3は、発電予測パターンの一例を示す図である。図3において、縦軸は発電量を表し、横軸は時間を表している。図3では、1日(24時間)の発電量の変化を発電予測パターンとして表している。図3に示すように、風力の時間変化と発電量の時間変化とは、略同一となっている。風力は、地形季節及び時間帯などに応じて推測可能であり、また、NEDO新エネルギー産業技術総合開発機構)より提供されている「局所風況予測モデル」(LAWEPS:Local Area Wind Energy Prediction System)を用いて予測を行っても良い。

0038

蓄電池制御部3は、充電及び放電のいずれを行うかを決定すると共に、充電時及び放電時における電流値とを決定し、蓄電池4の充放電を制御する。蓄電池制御部3は、残容量検出部5によって検出された蓄電池4の残容量と、負荷使用電力パターン入力部6によって入力された負荷使用電力パターンと、発電予測パターン入力部7によって入力された発電予測パターンとに基づいて、充電電流値を制限する制限期間を決定し、制限期間内における充電電流値を算出する。また、蓄電システム1の設置場所が、電力会社に売電不可能な場所である場合、蓄電池制御部3は、蓄電池4に充電できなかった電力を負荷に消費させる。蓄電システム1の設置場所が、電力会社に売電可能な場所である場合、蓄電池制御部3は、蓄電池4に充電できなかった電力を電力会社に売電する。

0039

具体的に、蓄電池制御部3は、所定の時刻毎に対応付けて蓄電池4の充電容量を予め記憶している。蓄電池制御部3は、所定の時刻において検出される残容量と、予め記憶されている所定の時刻における充電容量とを制限期間内において比較し、予め記憶されている充電容量と残容量とが略一致しない場合、充電電流値を修正する。

0040

また、蓄電池制御部3は、発電予測パターンと負荷使用電力パターンとを重ね合わせ、発電量が使用電力量より多い時間帯を充電時間帯とし、発電量が使用電力量より少ない時間帯を放電時間帯として決定する。そして、蓄電池制御部3は、充電時間帯における充電電流値と放電時間帯における放電電流値とを算出する。蓄電池制御部3は、充電電流値を所定の電流値に制限した状態で充放電を開始してから、充電量が所定の目標容量に到達するまでの期間の開始時刻と終了時刻とを制限期間の電流制限開始時刻と電流制限終了時刻として決定する。

0041

さらに、蓄電池制御部3は、蓄電池4の用途毎に目標とする最大の充電量を表す最大目標容量と目標とする最小の充電量を表す最小目標容量とを予め記憶している。蓄電池制御部3は、最大目標容量、現在の残容量、電流制限開始時刻及び電流制限終了時刻に基づいて、充電電流値を制限する場合の最大となる充電電流値を最大電流制限値として算出する。また、蓄電池制御部3は、最小目標容量、現在の残容量、電流制限開始時刻及び電流制限終了時刻に基づいて、充電電流値を制限する場合の最小となる充電電流値を最小電流制限値として算出する。

0042

蓄電池制御部3は、制限期間内における発電量が増加している期間の充電電流値を最大電流制限値に設定し、制限期間内における発電量が減少している期間の充電電流値を最小電流制限値に設定する。

0043

次に、本実施の形態に係る蓄電システム1の動作について説明をする。図4及び図5は、本実施の形態に係る蓄電システム1の動作について説明するためのフローチャートである。なお、以下の説明では、蓄電システム1が、自然エネルギーとして風力を用い、山小屋での独立電源として使用されている場合を想定する。

0044

まず、ステップS1において、発電部2は、発電を開始する。次に、ステップS2において、蓄電池制御部3は、現在の時刻が所定の時刻であるか否かを判断する。なお、ここでの所定の時刻とは、1日のうちの電流制限開始時刻、電流制限終了時刻、最大電流制限値及び最小電流制限値を算出する時刻であり、例えば午前0時である。ここで、所定の時刻でないと判断された場合(ステップS2でNO)、所定の時刻になるまで、発電が行われる。

0045

一方、所定の時刻であると判断された場合(ステップS2でYES)、ステップS3において、発電予測パターン入力部7は、発電予測パターンを蓄電池制御部3に入力する。本蓄電システム1が一般的な海岸線に設置されている場合、蓄電システム1の利用者は、海岸線の風力状況を自治体などより入手し、図3に示すような発電予測パターンを作成する。利用者は、作成した発電予測パターンを発電予測パターン入力部7に対して入力する。発電予測パターン入力部7は、利用者によって作成された発電予測パターンを受け付ける。

0046

次に、ステップS4において、負荷使用電力パターン入力部6は、負荷使用電力パターンを蓄電池制御部3に入力する。山小屋は登山客の休憩場所として用いられるため、一般的に朝食時、昼食時、夕食時及び夜間時に電力を使用する。一方、その他の時間帯では、利用客は登山に出ているため、電力はほとんど使用されない。したがって、山小屋での負荷使用電力パターンとしては図6のようなパターンが得られる。

0047

図6は、負荷使用電力パターンの一例を示す図である。図6において、縦軸は電力を表し、横軸は時間を表している。図6では、負荷が使用する1日(24時間)の電力の変化を負荷使用電力パターンとして表している。図6に示すように、山小屋における1日(24時間)の負荷使用電力パターンは、朝食時、昼食時、夕食時及び夜間時に使用電力が増加している。蓄電システム1の利用者は、図6に示すような負荷使用電力パターンを作成し、作成した負荷使用電力パターンを負荷使用電力パターン入力部6に対して入力する。負荷使用電力パターン入力部6は、利用者によって作成された負荷使用電力パターンを受け付ける。

0048

ここで、ステップS3の処理とステップS4の処理とはどちらを先に行っても良く、ステップS3の処理とステップS4の処理とは順不同である。

0049

次に、ステップS5において、蓄電池制御部3は、発電予測パターンと負荷使用電力パターンとに基づいて、1日のうちの、充電を行う充電時間帯と、放電を行う放電時間帯とを決定する。すなわち、蓄電池制御部3は、発電予測パターンと、負荷使用電力パターンとを重ね合わせ、発電量が負荷使用電力量より多い時間帯を充電時間帯とし、発電量が負荷使用電力量より少ない時間帯を放電時間帯として決定する。

0050

図7は、充電が行われる時間帯と、放電が行われる時間帯との分布を示す図である。図7において、縦軸は電力を表し、横軸は時間を表している。図7では、図3に示す発電予測パターンと、図6に示す負荷使用電力パターンとを重ね合わせている。図7に示すように、午前8時から10時の時間帯及び午後14時から17時の時間帯に、負荷使用電力量と発電量との差が大きくなっていることが分かる。

0051

次に、ステップS6において、蓄電池制御部3は、充電時間帯における充電電流値及び放電時間帯における放電電流値を算出する。すなわち、蓄電池制御部3は、負荷使用電力パターンにおける負荷使用電力と、発電予測パターンにおける発電予測電力との差分値を算出し、差分値に応じた充電電流値及び放電電流値を算出する。

0052

図8は、充電電流値及び放電電流値の時間変化の一例を示す図である。図8において、縦軸は電流値を表し、横軸は時間を表している。図8に示すように、負荷使用電力と発電予測電力との差分値が大きくなるほど、充放電時における電流値は大きくなっている。

0053

次に、ステップS7において、蓄電池制御部3は、充電電流値を所定の電流値に制限した状態で充放電を開始してから、充電量が所定の目標容量に到達するまでの期間の開始時刻と終了時刻とを制限期間の電流制限開始時刻と電流制限終了時刻として決定する。具体的に、蓄電池制御部3は、例えば0.1Cの充電電流値で充放電を行った場合の充電量が所定の目標容量と同等の値を得ることができる期間を制限期間として決定し、制限期間の開始される時刻を電流制限開始時刻として決定し、制限期間の終了される時刻を電流制限終了時刻として決定する。なお、1Cは、ある蓄電池を1時間で満充電にするために必要な電流値を表す。

0054

ここで、制限期間について図8を用いて具体的に説明する。図8において、7時から17時までの連続した充放電の時間帯を考える。7時から17時までの時間帯において、9時に充電電流が4Aとなり、16時に充電電流が5Aとなり、それぞれ0.1C(3A)を超えている。また、7時から17時までの総充電量は28Ahである。このとき、目標容量まで25Ahの充電が必要とすると、0.1C(3A)に電流値を制限したとしても、7時から17時までの総充電量は十分に目標容量に達することができる。したがって、蓄電池制御部3は、7時から17時までの期間を制限期間として決定する。

0055

このように、充電電流値の制限を開始する電流制限開始時刻と、充電電流値の制限を終了する電流制限終了時刻とを決定することができ、電流制限開始時刻と電流制限終了時刻とに基づいて充放電を制御することができる。

0056

なお、本実施の形態では、電流制限開始時刻と電流制限終了時刻とを決定する際に用いられる所定の電流値は0.1Cとしているが、本発明は特にこれに限定されず、1C以下であればどのような値であってもよい。また、所定の電流値は、利用者によって設定され、蓄電池制御部3に予め記憶される。

0057

また、本実施の形態では、蓄電池制御部3は、充電電流値を所定の電流値に制限した状態で充放電を開始してから、充電量が所定の目標容量に到達するまでの期間を制限期間としているが、本発明は特にこれに限定されず、蓄電池制御部3は、例えば10時間という単位時間を予め決めておき、所定の単位時間内において例えば0.1Cの所定の充電電流値で充放電した場合の充電量が所定の目標容量と同等となる期間を制限期間として決定してもよい。さらに、蓄電池制御部3は、充電電流値の制限を開始する電流制限開始時刻を予め決めておき、電流制限開始時刻から例えば0.1Cの所定の充電電流値で充放電を開始し、総充電量が所定の目標容量に到達した時刻を電流制限終了時刻として決定してもよい。

0058

次に、ステップS8において、蓄電池制御部3は、ステップS7で決定した電流制限開始時刻を設定する。図8の場合、7時が電流制限開始時刻として設定される。次に、ステップS9において、蓄電池制御部3は、ステップS7で決定した電流制限終了時刻を設定する。図8の場合、17時が電流制限終了時刻として設定される。

0059

次に、ステップS10において、蓄電池制御部3は、最大目標容量及び最小目標容量を決定する。蓄電池の定格容量が30Ahであり、電流制限終了時刻後の用途が、充放電を繰り返すサイクル用途である場合、目標容量は例えば15Ahである。一方、蓄電池の定格容量が30Ahであり、電流制限終了時刻後の用途が、常時充電状態で維持され、非常時に放電されるバックアップ用途である場合、目標容量は例えば25Ahである。この目標容量に利用者によって許容可能な許容範囲加算されることで、最大目標容量と最小目標容量とが決定される。

0060

すなわち、蓄電池制御部3は、用途毎に最大目標容量と最小目標容量とを決定する。サイクル用途であれば、目標容量の許容範囲は±2Ahとなり、最大目標容量は、15+2=17Ahとなり、最小目標容量は、15−2=13Ahとなる。また、バックアップ用途であれば、目標容量の許容範囲は±2Ahとなり、最大目標容量は、25+2=27Ahとなり、最小目標容量は、25−2=23Ahとなる。なお、目標容量の許容範囲は、使用用途によって異なるため、ユーザにより任意に設定可能である。なお、最大目標容量と最小目標容量とは、ユーザによって入力され、蓄電池制御部3に予め記憶される。

0061

ここで、ステップS8,9,10の処理はどの処理を先に行っても良く、ステップS8の処理とステップS9の処理とステップS10の処理とは順不同である。

0062

次に、ステップS11において、蓄電池制御部3は、現在の時刻が電流制限開始時刻であるか否かを判断する。ここで、電流制限開始時刻でないと判断された場合(ステップS11でNO)、蓄電池制御部3は、電流制限開始時刻になるまで所定時間ごとに現在の時刻が電流制限開始時刻であるか否かを判断する。

0063

一方、電流制限開始時刻であると判断された場合(ステップS11でYES)、ステップS12において、残容量検出部5は、蓄電池4の現在の残容量を検出する。

0064

次に、ステップS13において、蓄電池制御部3は、最大目標容量、現在の残容量、電流制限開始時刻及び電流制限終了時刻に基づいて、充電電流値を制限する場合の最大となる充電電流値を最大電流制限値として算出し、最小目標容量、現在の残容量、電流制限開始時刻及び電流制限終了時刻に基づいて、充電電流値を制限する場合の最小となる充電電流値を最小電流制限値として算出する。

0065

具体的に、蓄電池制御部3は、ステップS7,10,12で得られた電流制限開始時刻、電流制限終了時刻、最大目標容量、最小目標容量及び現在の残容量を用いて、充電時における最大電流制限値及び最小電流制限値を、下記の(3)式及び(4)式を用いて算出する。

0066

最大電流制限値=(最大目標容量−現在の残容量)/(電流制限終了時刻−電流制限開始時刻)・・・(3)
最小電流制限値=(最小目標容量−現在の残容量)/(電流制限終了時刻−電流制限開始時刻)・・・(4)
例えば、最大目標容量が25Ahであり、午前7時の段階で5Ahが既に充電されており、午前7時から午後17時まで電流値を制限する場合、最大電流制限値は次式のように算出される。

0067

最大電流制限値=(25Ah−5Ah)/(17h−7h)=2.0A
また、例えば、最小目標容量が20Ahであり、午前7時の段階で5Ahが既に充電されており、午前7時から午後17時まで電流値を制限する場合、最小電流制限値は次式のように算出される。

0068

最小電流制限値=(20Ah−5Ah)/(17h−7h)=1.5A
図9は、最大電流制限値及び最小電流制限値で充電した場合における充電容量と時間との関係を示す図である。図9の充電容量の時間変化B1に示すように、電流制限開始時刻において既に5Ah充電されており、1.5Aの最小電流制限値で充電を行った場合、10時間後の電流制限終了時刻における充電容量は20Ahとなっている。また、図9の充電容量の時間変化B2に示すように、電流制限開始時刻において既に5Ah充電されており、2.0Aの最大電流制限値で充電を行った場合、10時間後の電流制限終了時刻における充電容量は25Ahとなっている。

0069

このように、充電電流値を制限する場合の最大となる充電電流値が最大電流制限値と、充電電流値を制限する場合の最小となる充電電流値が最小電流制限値とを算出することができ、最大電流制限値と最小電流制限値とに基づいて充放電を制御することができる。また、上記の(3)式及び(4)式に基づいて最大電流制限値及び最小電流制限値が算出されるので、算出された最大電流制限値と最小電流制限値とに基づいて充放電を制御することができる。

0070

次に、ステップS14において、蓄電池制御部3は、算出した最大電流制限値及び最小電流制限値に基づいて、充電時における電流値を制限する。発電が効率的に進んだ場合、電流値は増加し、発電が行われない場合、電流値は減少する。そこで、蓄電池制御部3は、発電量が増加している場合、最大電流制限値を用いて充電時における電流値を制限し、発電量が減少している場合、最小電流制限値を用いて充電時における電流値を制限する。

0071

図10は、電流制限を行った場合の充放電電流分布の一例を示す図である。図3に示す発電予測パターンでは、午前6時から午後13時までの期間と午後15時から午後16時までの期間とに発電量は増加し、午後13時から午後15時までの期間と午後16時以降とに発電量は減少している。そのため、図10に示すように、蓄電池制御部3は、電流制限開始時刻である午前7時から電流制限終了時刻である午後17時までの制限期間のうち、発電量が増加している期間A,Cは、最大電流制限値2.0Aで制御し、発電量が減少している期間B,Dは、最小電流制限値1.5Aで制御する。

0072

このように、制限期間内における発電量が増加している期間の充電電流値が最大電流制限値に設定され、制限期間内における発電量が減少している期間の充電電流値が最小電流制限値に設定される。したがって、最大電流制限値と最小電流制限値とを適切に用いて充放電を制御することができる。

0073

なお、本実施の形態では、蓄電池制御部3は電流制限値を一定に保っているが、本発明は特にこれに限定されず、電流制限値を一定に保つ必要はない。図11は、充電容量の時間変化の一例を示す図である。予測される充電容量が、電流値を制限する制限期間の始めに増加し、その後減少する場合、図11の充電容量の時間変化C1のように、蓄電池制御部3は、電流値を制限する制限期間の始めにおいて、算出した電流制限値よりも高い電流制限値で充電し、その後、算出した電流制限値よりも低い電流制限値で充電しても構わない。このように、電流値を制限する制限期間の前半と後半とで変化する電流制限値を用いることで、早めに蓄電池4に充電しておき、自然エネルギーの変化による蓄電池4の充電不足を避けることが可能になる。

0074

同様に、予測される充電容量が、電流値を制限する制限期間の始めに減少し、その後増加する場合、図11の充電容量の時間変化C2のように、蓄電池制御部3は、電流値を制限する制限期間の始めにおいて、算出した電流制限値よりも低い電流制限値で充電し、その後、算出した電流制限値よりも高い電流制限値で充電しても構わない。このように、電流値を制限する制限期間の前半と後半とで変化する電流制限値を用いることで、電流値を制限する制限期間の後半に得られる発電量を失うことなく、効率的に充電することが可能になる。

0075

なお、風力は日によってばらつきがあるため、十分な量の充放電が行えるとは限らない。そこで、本実施の形態において、蓄電池制御部3は、制限時間の任意の時間における充放電量予定通りとなっているかを確認する。

0076

すなわち、ステップS15において、蓄電池制御部3は、現在の時刻が所定の時刻であるか否かを判断する。ここで、所定の時刻でないと判断された場合(ステップS15でNO)、ステップS17の処理に移行する。なお、ステップS15の判断処理は、例えば8時から17時までの1時間毎に行われる。

0077

一方、所定の時刻であると判断された場合(ステップS15でYES)、ステップS16において、蓄電池制御部3は、充電量が適正値であるか否かを判断する。具体的には、蓄電池制御部3は、所定の時刻と、所定の時刻における適正な充電量とを対応付けたテーブルデータを予め記憶している。蓄電池制御部3は、所定の時刻になると、予め記憶しているテーブルデータを参照し、所定の時刻に対応する充電量を読み出す。そして、蓄電池制御部3は、読み出した充電量と、現在の充電量とを比較し、現在の充電量が適正であるか否かを判断する。なお、蓄電池制御部3は、読み出した充電量と、現在の充電量とが略一致する場合、現在の充電量が適正であると判断する。ここで、略一致する場合とは、値が完全に一致する場合だけでなく、例えば±1Ah程度の誤差を有する場合も含まれる。

0078

ここで、充電量が適正値でないと判断された場合(ステップS16でNO)、ステップS7の処理へ戻り、蓄電池制御部3は、再度、電流制限開始時刻及び電流制限終了時刻を決定する。

0079

このように、自然エネルギーの発電量が少なく、蓄電池4の残容量が目標とする充電容量よりも少なかったとしても、制限期間内における充電電流値を修正することで、予め設定した充電容量に到達させることができる。

0080

一方、充電量が適正値であると判断された場合(ステップS16でYES)、ステップS17において、蓄電池制御部3は、現在の時刻が電流制限終了時刻であるか否かを判断する。ここで、電流制限終了時刻でないと判断された場合(ステップS17でNO)、ステップS14の処理へ戻る。一方、電流制限終了時刻であると判断された場合(ステップS17でYES)、蓄電池制御部3は、電流値の制限を終了し、ステップS2の処理へ戻る。

0081

このように、蓄電池4の残容量と負荷使用電力パターンと発電予測パターンとに基づいて、蓄電システム1での充電量が増大する期間が充電電流値を制限する制限期間として決定され、制限期間内における充電電流値が算出されるので、過度の充電電流値で充電されるのを防止し、蓄電池の長寿命化を実現することができる。

0082

従来のように、蓄電システム自体の出力を安定化させることを目的とし、予測によって発電出力を上下させる場合、蓄電システムとして不足又は過剰である電力は、蓄電池4からの充放電によって補われる。従って、風力発電量の変動が激しく、予測に対応できなかった場合、蓄電池4からの大電流の充放電が継続して行われ、蓄電池4が発熱によって劣化し、寿命が短くなる虞がある。

0083

図12は、従来の蓄電システムにおいて、満充電による充電の停止が発生した場合の充放電電流の一例を示す図であり、図13は、従来の蓄電システムにおいて、風速カットアウト風速に達した場合の充放電電流の一例を示す図である。

0084

図12に示すように、大電流での充電が継続することによって、午後17時前に満充電になることで、途中で充電が終了することがある。また、図13に示すように、午前9から午前10時までの期間及び午後15時から午後17時までの期間において、風力が強くなり、風速がカットアウト風速に達することで、急遽に充電が終了することがある。このように、風力に依存して蓄電池4の充放電電流値を決定すると、不要な大電流での充電を行い、発熱等により蓄電池の損傷を促進させる虞がある。

0085

なお、本実施の形態では、主に風力発電について説明しているが、本発明は特にこれに限定されず、太陽光発電にも適用可能である。太陽光発電の場合、風力に比較して発電予測パターンは周期的及び規則的に変化する。そのため、蓄電池に対しての充放電電流も、規則的に大電流が流れることとなり、蓄電池が発熱し、劣化の進行が早くなる。

0086

また、太陽電池の場合、晴れの際は、電流制限を行ったとしても発電が高い確率で行われ、目標容量に未達となることが少ない。したがって、本実施の形態で示した蓄電システム1と同様に、太陽光発電における蓄電システムは、太陽光発電での発電予測パターン、負荷使用電力予測パターン、蓄電池4の残容量とに基づいて、充電電流値を制限する制限期間を決定し、制限期間内における最大電流制限値及び最小電流制限値を算出して、充電電流値を制限する。これにより、蓄電池4への過大な電流による充放電が制限され、蓄電池4の長寿命化を実現することができる。

0087

なお、本実施の形態における蓄電システム1は、商用電源を備えておらず、独立電源として用いられているが、本発明は特にこれに限定されず、商用電源を備えてもよい。図14は、本実施の形態の変形例における蓄電システムの構成を示すブロック図である。

0088

図14に示す蓄電システム11は、発電部2、蓄電池制御部3、蓄電池4、残容量検出部5、負荷使用電力パターン入力部6、発電予測パターン入力部7及び商用電源8を備える。なお、図14に示す蓄電システム11において、図1に示す蓄電システム1と同じ構成については同じ符号を付し、説明を省略する。

0089

商用電源8は、蓄電池制御部3を介して蓄電池4に接続されている。このとき、充電量が不足した場合、商用電源8から追加の充電も可能であるため、常に最小電流制限値を用いて充電することも可能である。

0090

すなわち、蓄電池制御部3は、所定の時刻毎に対応付けて蓄電池4の充電容量を予め記憶している。蓄電池制御部3は、電流制限開始時刻において、充電電流値を最小電流制限値に設定し、所定の時刻において検出される残容量が予め記憶されている所定の時刻における充電容量より小さい場合、最小電流制限値を所定の電流値だけ増加させるとともに、商用電源8から追加で蓄電池4に対して電力を供給させる。

0091

ここで、商用電源8を備える蓄電システム11の具体的な動作について図4及び図5のフローチャートを用いて説明する。図4のステップS1〜図5のステップS13までの処理が行われる。次に、図5のステップS14において、蓄電池制御部3は、算出した最小電流制限値に基づいて、充電時における電流値を制限する。

0092

次に、ステップS15において、蓄電池制御部3は、現在の時刻が所定の時刻であるか否かを判断する。ここで、所定の時刻でないと判断された場合(ステップS15でNO)、ステップS17の処理に移行する。

0093

一方、所定の時刻であると判断された場合(ステップS15でYES)、ステップS16において、蓄電池制御部3は、充電量が適正値であるか否かを判断する。なお、ステップS16の処理については上述の通りである。

0094

ここで、充電量が適正値でないと判断された場合(ステップS16でNO)、蓄電池制御部3は、現在の充電量が予め記憶されている所定の充電量より小さいか否かを判断する。ここで、現在の充電量が予め記憶されている所定の充電量以上であると判断された場合、ステップS7の処理へ戻り、蓄電池制御部3は、再度、電流制限開始時刻及び電流制限終了時刻を算出する。

0095

一方、現在の充電量が予め記憶されている所定の充電量より小さいと判断された場合、蓄電池制御部3は、最小電流制限値を増加させるとともに、商用電源8からの電力の供給を開始する。なお、このとき、蓄電池制御部3は、ステップS13で算出された最小電流制限値に所定の値を加えることで最小電流制限値を増加させているが、本発明は特にこれに限定されない。すなわち、蓄電池制御部3は、ステップS13で算出された最小電流制限値に所定の時間毎に所定の値を加えることで最小電流制限値を徐々に増加させてもよい。

0096

一方、充電量が適正値であると判断された場合(ステップS16でYES)、ステップS17の処理へ移行し、ステップS17及びステップS18の処理が行われる。

0097

このように、蓄電システム11が商用電源8を備える場合、途中で充電容量が不足したとしても商用電源8から直ちに充電することが可能であるので、最小電流制限値を用いることによって、蓄電池4への充電量が制限され、蓄電池4の発熱を抑えることができ、蓄電池4の長寿命化をさらに実現することができる。また、発電量が過多となり、電力が余剰となった場合には、電力会社に対して売電することも可能である。

0098

また、蓄電システムが、商用電源を備えておらず、独立電源として用いられる場合、発電部2によって発電された電力を効率的に充電させる必要があるため、常に最大電流制限値を用いることも可能である。この場合、最大電流制限値を用いたとしても、発熱が抑えられる範囲内で充電が行われるため、蓄電池の寿命が短縮する可能性は低い。また、発電量が過多となり、電力が余剰となった場合には、蓄電池制御部3内での負荷によって消費される。

0099

さらに、電流制限開始時刻から最大電流制限値で充電を開始し、所定の時刻において、残容量が予め記憶されている充電容量より大きい場合、最大電流制限値を減少させてもよい。すなわち、蓄電池制御部3は、所定の時刻毎に対応付けて蓄電池4の充電容量を予め記憶している。蓄電池制御部3は、電流制限開始時刻において、充電電流値を最大電流制限値に設定し、所定の時刻において検出される残容量が予め記憶されている所定の時刻における充電容量より大きい場合、最大電流制限値を所定の電流値だけ減少させる。

0100

具体的に、図5のステップS16で充電量が適正値でないと判断された場合、蓄電池制御部3は、現在の充電量が予め記憶されている所定の充電量より大きいか否かを判断する。ここで、現在の充電量が予め記憶されている所定の充電量以下であると判断された場合、ステップS7の処理へ戻る。

0101

一方、現在の充電量が予め記憶されている所定の充電量より大きいと判断された場合、蓄電池制御部3は、最大電流制限値を減少させる。なお、このとき、蓄電池制御部3は、ステップS13で算出された最大電流制限値から所定の値を減算することで最大電流制限値を減少させているが、本発明は特にこれに限定されない。すなわち、蓄電池制御部3は、ステップS13で算出された最大電流制限値から所定の時間毎に所定の値を減算することで最大電流制限値を徐々に減少させてもよい。

0102

この場合、最大電流制限値を用いて充電を開始し、蓄電池4の残容量が予め記憶されている所定の充電容量よりも大きくなった場合、最大電流制限値が所定の電流値だけ減少されるので、自然エネルギーによって発電された電力を効率よく蓄電池4に充電することができる。

0103

本発明に係る蓄電システムは、過度の充電電流値で充電されるのを防止し、蓄電池の長寿命化を実現することができ、自然エネルギーを利用した蓄電システムとして有用である。

図面の簡単な説明

0104

本発明の一実施の形態における蓄電システムの構成を示すブロック図である。
一般的な風力予測パターンの一例を示す図である。
発電予測パターンの一例を示す図である。
本実施の形態に係る蓄電システムの動作について説明するための第1のフローチャートである。
本実施の形態に係る蓄電システムの動作について説明するための第2のフローチャートである。
負荷使用電力パターンの一例を示す図である。
充電が行われる時間帯と、放電が行われる時間帯との分布を示す図である。
充電電流値及び放電電流値の時間変化の一例を示す図である。
最大電流制限値及び最小電流制限値で充電した場合における充電容量と時間との関係を示す図である。
電流制限を行った場合の充放電電流分布の一例を示す図である。
充電容量の時間変化の一例を示す図である。
従来の蓄電システムにおいて、満充電による充電の停止が発生した場合の充放電電流の一例を示す図である。
従来の蓄電システムにおいて、風速がカットアウト風速に達した場合の充放電電流の一例を示す図である。
本実施の形態の変形例における蓄電システムの構成を示すブロック図である。

符号の説明

0105

1,11蓄電システム
2発電部
3蓄電池制御部
4蓄電池
5残容量検出部
6負荷使用電力パターン入力部
7発電予測パターン入力部
8 商用電源

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ