図面 (/)

技術 学習機能を備える駆動制御装置及びこれを含む建設機械

出願人 住友建機株式会社
発明者 塚本浩之久保隆吉田基治
出願日 2008年6月24日 (12年7ヶ月経過) 出願番号 2008-165127
公開日 2010年1月14日 (11年1ヶ月経過) 公開番号 2010-007264
状態 特許登録済
技術分野 掘削機械の作業制御 車両の電気的な推進・制動 車両の電気的な推進・制動 建設機械の構成部品
主要キーワード 切替特性 学習スイッチ 増加過程 保持操作 各速度指令 電磁式スイッチ 関連箇所 最大最小値
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2010年1月14日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (14)

課題

学習機能を備えることで、作業者感覚適合した操作特性建設機械アクチュエータ駆動制御を行うことができる駆動制御装置の提供。

解決手段

本発明は、建設機械のアクチュエータの駆動制御を行う駆動制御装置であって、建設機械の操作手段に対して行われた操作履歴に基づいて、操作速度基準速度を学習する学習手段を含み、建設機械の操作手段に入力される操作量変化速度と、前記学習手段により学習された基準速度との関係に応じて、前記操作手段に入力される操作量に応じた前記アクチュエータの出力特性を変化させることを特徴とする。

概要

背景

従来より、建設機械上部旋回体旋回させるための旋回機構動力源として電動機を備え、この電動機の力行運転で旋回機構を加速するとともに、旋回機構を減速する際に回生運転を行い、発電される電力バッテリ充電する建設機械が提案されている。

このような建設機械は、上部旋回体にブームアーム、及びバケット等の作業要素を搭載し、旋回操作に応じて生成される駆動指令で電動機を駆動することにより、上部旋回体の旋回駆動を制御している。この旋回用の電動機は、回転速度を制御することによって駆動制御が行われている(例えば、特許文献1)。
特開2001−16704号公報

概要

学習機能を備えることで、作業者感覚適合した操作特性で建設機械のアクチュエータの駆動制御を行うことができる駆動制御装置の提供。本発明は、建設機械のアクチュエータの駆動制御を行う駆動制御装置であって、建設機械の操作手段に対して行われた操作履歴に基づいて、操作速度基準速度を学習する学習手段を含み、建設機械の操作手段に入力される操作量変化速度と、前記学習手段により学習された基準速度との関係に応じて、前記操作手段に入力される操作量に応じた前記アクチュエータの出力特性を変化させることを特徴とする。

目的

そこで、本発明は、学習機能を備えることで、作業者の感覚に適合した操作特性で建設機械のアクチュエータの駆動制御を行うことができる駆動制御装置及びこれを含む建設機械の提供を目的とする。

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

建設機械アクチュエータ駆動制御を行う駆動制御装置であって、建設機械の操作手段に対して行われた操作履歴に基づいて、操作速度基準速度を学習する学習手段を含み、建設機械の操作手段に入力される操作量変化速度と、前記学習手段により学習された基準速度との関係に応じて、前記操作手段に入力される操作量に応じた前記アクチュエータの出力特性を変化させることを特徴とする、駆動制御装置。

請求項2

建設機械の操作手段に入力される操作量の変化速度が、前記学習手段により学習された基準速度よりも速い場合に、前記操作手段に入力される操作量に応じた前記アクチュエータの出力特性を、応答性が良くなる方向に変化させる、請求項1に記載の駆動制御装置。

請求項3

建設機械の操作手段に入力される操作量の変化速度が、前記学習手段により学習された基準速度よりも遅い場合に、前記操作手段に入力される操作量に応じた前記アクチュエータの出力特性を、応答性が悪くなる方向に変化させる、請求項1に記載の駆動制御装置。

請求項4

操作手段の操作量をパラメータとして、前記アクチュエータの出力の目標値を定めるマップであって、前記アクチュエータの第1出力特性を実現するための第1マップと、前記第1出力特性よりも応答性が良い前記アクチュエータの第2出力特性を実現するための第2マップと、前記第1出力特性よりも応答性が悪い前記アクチュエータの第3出力特性を実現するための第3マップとを記憶する記憶手段を含み、建設機械の操作手段に入力される操作量の変化速度が、前記学習手段により学習された基準速度と対応する場合に、前記第1マップを用いて前記アクチュエータの出力の目標値を決定し、建設機械の操作手段に入力される操作量の変化速度が、前記学習手段により学習された基準速度よりも速い場合に、前記第2マップを用いて前記アクチュエータの出力の目標値を決定し、建設機械の操作手段に入力される操作量の変化速度が、前記学習手段により学習された基準速度よりも遅い場合に、前記第3マップを用いて前記アクチュエータの出力の目標値を決定する、請求項1に記載の駆動制御装置。

請求項5

学習モードオンオフさせるスイッチが接続され、前記学習手段は、学習モードがオンにされている間に前記操作手段に対して行われた操作履歴に基づいて、前記基準速度を学習する、請求項1に記載の駆動制御装置。

請求項6

作業者を特定する個人認証手段が接続され、前記個人認証手段により特定された作業者に対応付けて、前記学習手段により学習された前記基準速度を記憶する学習結果記憶部を備える、請求項5に記載の駆動制御装置。

請求項7

前記学習結果記憶部から作業者に対応した前記基準速度を読み出し、該読み出した基準速度を用いて、前記アクチュエータの出力特性を変化させる、請求項6に記載の駆動制御装置。

請求項8

前記アクチュエータは、建設機械の上部旋回体旋回機構、及び、建設機械の下部走行体走行機構の少なくともいずれか一方を駆動する電動機であり、前記アクチュエータの出力は、前記電動機に印加される電流を制御することにより制御される、請求項1に記載の駆動制御装置。

請求項9

前記アクチュエータは、ブームシリンダアームシリンダ、及びバケットシリンダのうちの少なくともいずれかであり、前記アクチュエータの出力は、前記シリンダポンプの間に配置される電磁比例弁を制御することにより制御される、請求項1に記載の駆動制御装置。

請求項10

請求項1乃至9のいずれか一項に記載の駆動制御装置を含む建設機械。

技術分野

0001

本発明は、学習機能を備え建設機械アクチュエータ駆動制御を行う駆動制御装置及びこれを含む建設機械に関する。

背景技術

0002

従来より、建設機械の上部旋回体旋回させるための旋回機構動力源として電動機を備え、この電動機の力行運転で旋回機構を加速するとともに、旋回機構を減速する際に回生運転を行い、発電される電力バッテリ充電する建設機械が提案されている。

0003

このような建設機械は、上部旋回体にブームアーム、及びバケット等の作業要素を搭載し、旋回操作に応じて生成される駆動指令で電動機を駆動することにより、上部旋回体の旋回駆動を制御している。この旋回用の電動機は、回転速度を制御することによって駆動制御が行われている(例えば、特許文献1)。
特開2001−16704号公報

発明が解決しようとする課題

0004

ところで、建設機械の上部旋回体の旋回動作や、下部走行体走行動作、ブーム、アーム、及びバケット等の作業要素の動作は、所定の操作特性に基づいて、作業者によるレバーやペダルなどの操作手段の操作量に応じて決定される。

0005

しかしながら、建設機械は、多くの作業者によって使用されるものであるので、操作特性が一定である場合には、ある作業者にとっては、応答性が悪いと感じたり、逆に、ある作業者にとっては、応答性が良過ぎると感じたりする虞がある。

0006

そこで、本発明は、学習機能を備えることで、作業者の感覚適合した操作特性で建設機械のアクチュエータの駆動制御を行うことができる駆動制御装置及びこれを含む建設機械の提供を目的とする。

課題を解決するための手段

0007

上記目的を達成するため、第1の発明は、建設機械のアクチュエータの駆動制御を行う駆動制御装置であって、
建設機械の操作手段に対して行われた操作履歴に基づいて、操作速度基準速度を学習する学習手段を含み、
建設機械の操作手段に入力される操作量の変化速度と、前記学習手段により学習された基準速度との関係に応じて、前記操作手段に入力される操作量に応じた前記アクチュエータの出力特性を変化させることを特徴とする。

0008

第2の発明は、第1の発明に係る駆動制御装置において、
建設機械の操作手段に入力される操作量の変化速度が、前記学習手段により学習された基準速度よりも速い場合に、前記操作手段に入力される操作量に応じた前記アクチュエータの出力特性を、応答性が良くなる方向に変化させることを特徴とする。

0009

第3の発明は、第1の発明に係る駆動制御装置において、
建設機械の操作手段に入力される操作量の変化速度が、前記学習手段により学習された基準速度よりも遅い場合に、前記操作手段に入力される操作量に応じた前記アクチュエータの出力特性を、応答性が悪くなる方向に変化させることを特徴とする。

0010

第4発明は、第1の発明に係る駆動制御装置において、
操作手段の操作量をパラメータとして、前記アクチュエータの出力の目標値を定めるマップであって、前記アクチュエータの第1出力特性を実現するための第1マップと、前記第1出力特性よりも応答性が良い前記アクチュエータの第2出力特性を実現するための第2マップと、前記第1出力特性よりも応答性が悪い前記アクチュエータの第3出力特性を実現するための第3マップとを記憶する記憶手段を含み、
建設機械の操作手段に入力される操作量の変化速度が、前記学習手段により学習された基準速度と対応する場合に、前記第1マップを用いて前記アクチュエータの出力の目標値を決定し、建設機械の操作手段に入力される操作量の変化速度が、前記学習手段により学習された基準速度よりも速い場合に、前記第2マップを用いて前記アクチュエータの出力の目標値を決定し、建設機械の操作手段に入力される操作量の変化速度が、前記学習手段により学習された基準速度よりも遅い場合に、前記第3マップを用いて前記アクチュエータの出力の目標値を決定することを特徴とする。

0011

第5の発明は、第1の発明に係る駆動制御装置において、
学習モードオンオフさせるスイッチが接続され、
前記学習手段は、学習モードがオンにされている間に前記操作手段に対して行われた操作履歴に基づいて、前記基準速度を学習することを特徴とする。

0012

第6の発明は、第5の発明に係る駆動制御装置において、
作業者を特定する個人認証手段が接続され、
前記個人認証手段により特定された作業者に対応付けて、前記学習手段により学習された前記基準速度を記憶する学習結果記憶部を備えることを特徴とする。

0013

第7の発明は、第6の発明に係る駆動制御装置において、
前記学習結果記憶部から作業者に対応した前記基準速度を読み出し、該読み出した基準速度を用いて、前記アクチュエータの出力特性を変化させることを特徴とする。

0014

第8の発明は、第1の発明に係る駆動制御装置において、
前記アクチュエータは、建設機械の上部旋回体の旋回機構、及び、建設機械の下部走行体の走行機構の少なくともいずれか一方を駆動する電動機であり、
前記アクチュエータの出力は、前記電動機に印加される電流を制御することにより制御されることを特徴とする。

0015

第9の発明は、第1の発明に係る駆動制御装置において、
前記アクチュエータは、ブームシリンダアームシリンダ、及びバケットシリンダのうちの少なくともいずれかであり、
前記アクチュエータの出力は、前記シリンダポンプの間に配置される電磁比例弁を制御することにより制御されることを特徴とする。

0016

第10の発明は、第1乃至9のいずれかの発明に係る駆動制御装置を含む建設機械に関する。

発明の効果

0017

本発明によれば、学習機能を備えることで、作業者の感覚に適合した操作特性で建設機械のアクチュエータの駆動制御を行うことができる駆動制御装置及びこれを含む建設機械が得られる。

発明を実施するための最良の形態

0018

以下、図面を参照して、本発明を実施するための最良の形態の説明を行う。

0019

図1は、本実施の形態の駆動制御装置を含む建設機械100を示す側面図である。

0020

この建設機械100の下部走行体1には、旋回機構2を介して上部旋回体3が搭載されている。また、上部旋回体3には、ブーム4、アーム5、及びバケット6と、これらを油圧駆動するためのブームシリンダ7、アームシリンダ8、及びバケットシリンダ9に加えて、キャビン10及び動力源が搭載される。

0021

「全体構成」
図2は、本実施の形態の駆動制御装置を含む建設機械の構成を表すブロック図である。この図2では、機械的動力系を二重線高圧油圧ライン実線パイロットライン破線電気駆動制御系を一点鎖線でそれぞれ示す。

0022

機械式駆動部としてのエンジン11と、アシスト駆動部としての電動発電機12は、ともに増力機としての減速機13の入力軸に接続されている。また、この減速機13の出力軸には、メインポンプ14及びパイロットポンプ15が接続されている。メインポンプ14には、高圧油圧ライン16を介してコントロールバルブ17が接続されている。

0023

コントロールバルブ17は、本実施の形態の建設機械における油圧系の制御を行う制御装置であり、このコントロールバルブ17には、下部走行体1用の油圧モータ1A(右用)及び1B(左用)、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9が高圧油圧ラインを介して接続される。

0024

また、電動発電機12には、インバータ18を介してバッテリ19が接続されており、また、バッテリ19には、インバータ20を介して旋回用電動機21が接続されている。

0025

旋回用電動機21の回転軸21Aには、レゾルバ22、メカニカルブレーキ23、及び旋回減速機24が接続される。また、パイロットポンプ15には、パイロットライン25を介して操作装置26が接続される。

0026

操作装置26には、油圧ライン27及び28を介して、コントロールバルブ17及び圧力センサ29がそれぞれ接続される。この圧力センサ29には、本実施の形態の建設機械の電気系の駆動制御を行うコントローラ30が接続されている。

0027

このような本実施の形態の建設機械は、エンジン11、電動発電機12、及び旋回用電動機21を動力源とするハイブリッド型の建設機械である。これらの動力源は、図1に示す上部旋回体3に搭載される。以下、各部について説明する。

0028

「各部の構成」
エンジン11は、例えば、ディーゼルエンジンで構成される内燃機関であり、その出力軸は減速機13の一方の入力軸に接続される。このエンジン11は、建設機械の運転中は常時運転される。

0029

電動発電機12は、力行運転及び回生運転の双方が可能な電動機であればよい。ここでは、電動発電機12として、インバータ18によって交流駆動される電動発電機を示す。この電動発電機12は、例えば、磁石ロータ内部に埋め込まれたIPM(Interior Permanent Magnetic)モータで構成することができる。電動発電機12の回転軸は減速機13の他方の入力軸に接続される。

0030

減速機13は、2つの入力軸と1つの出力軸を有する。2つの入力軸の各々には、エンジン11の駆動軸と電動発電機12の駆動軸が接続される。また、出力軸にはメインポンプ14の駆動軸が接続される。エンジン11の負荷が大きい場合には、電動発電機12が力行運転を行い、電動発電機12の駆動力が減速機13の出力軸を経てメインポンプ14に伝達される。これによりエンジン11の駆動がアシストされる。一方、エンジン11の負荷が小さい場合は、エンジン11の駆動力が減速機13を経て電動発電機12に伝達されることにより、電動発電機12が回生運転による発電を行う。電動発電機12の力行運転と回生運転の切り替えは、コントローラ30により、エンジン11の負荷等に応じて行われる。

0031

メインポンプ14は、コントロールバルブ17に供給するための油圧を発生するポンプである。この油圧は、コントロールバルブ17を介して油圧モータ1A、1B、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9の各々を駆動するために供給される。

0032

パイロットポンプ15は、油圧操作系に必要なパイロット圧を発生するポンプである。この油圧操作系の構成については後述する。

0033

コントロールバルブ17は、高圧油圧ラインを介して接続される下部走行体1用の油圧モータ1A、1B、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9の各々に供給する油圧を運転者操作入力に応じて制御することにより、これらを油圧駆動制御する油圧制御装置である。

0034

インバータ18は、電動発電機12の力行運転に必要な電力をバッテリ19から電動発電機12に供給するとともに、電動発電機12の回生運転によって発電された電力をバッテリ19に充電するために電動発電機12とバッテリ19との間に設けられたインバータである。

0035

バッテリ19は、インバータ18とインバータ20との間に配設されている。これにより、電動発電機12と旋回用電動機21の少なくともどちらか一方が力行運転を行っている際には、力行運転に必要な電力を供給するとともに、また、少なくともどちらか一方が回生運転を行っている際には、回生運転によって発生した回生電力電気エネルギーとして蓄積するための電源である。

0036

インバータ20は、上述の如く旋回用電動機21とバッテリ19との間に設けられ、コントローラ30からの指令に基づき、旋回用電動機21に対して運転制御を行う。これにより、インバータが旋回用電動機21の力業を運転制御している際には、必要な電力をバッテリ19から旋回用電動機21に供給する。また、旋回用電動機21が回生運転をしている際には、旋回用電動機21により発電された電力をバッテリ19へ充電する。

0037

旋回用電動機21は、力行運転及び回生運転の双方が可能な電動機であればよく、上部旋回体3の旋回機構2を駆動するために設けられている。力行運転の際には、旋回用電動機21の回転駆動力回転力が減速機24にて増幅され、上部旋回体3が加減速制御され回転運動を行う。また、上部旋回体3の慣性回転により、減速機24にて回転数が増加されて旋回用電動機21に伝達され、回生電力を発生させることができる。ここでは、旋回用電動機21として、PWM(Pulse Width Modulation)制御信号によりインバータ20によって交流駆動される電動機を示す。この旋回用電動機21は、例えば、磁石埋込型IPMモータで構成することができる。これにより、より大きな誘導起電力を発生させることができるので、回生時に旋回用電動機21にて発電される電力を増大させることができる。

0038

なお、バッテリ19の充放電制御は、バッテリ19の充電状態、電動発電機12の運転状態(力行運転又は回生運転)、旋回用電動機21の運転状態(力行運転又は回生運転)に基づき、コントローラ30によって行われる。

0039

レゾルバ22は、旋回用電動機21の回転軸21Aの回転位置及び回転角度を検出するセンサであり、旋回用電動機21と機械的に連結することで旋回用電動機21の回転前の回転軸21Aの回転位置と、左回転又は右回転した後の回転位置との差を検出することにより、回転軸21Aの回転角度及び回転方向を検出するように構成されている。旋回用電動機21の回転軸21Aの回転角度を検出することにより、旋回機構2の回転角度及び回転方向が導出される。

0040

メカニカルブレーキ23は、機械的な制動力を発生させる制動装置であり、旋回用電動機21の回転軸21Aを機械的に停止させる。このメカニカルブレーキ23は、電磁式スイッチにより制動解除が切り替えられる。この切り替えは、コントローラ30によって行われる。

0041

旋回減速機24は、旋回用電動機21の回転軸21Aの回転速度を減速して旋回機構2に機械的に伝達する減速機である。

0042

旋回機構2は、旋回用電動機21のメカニカルブレーキ23が解除された状態で旋回可能となり、これにより、上部旋回体3が左方向又は右方向に旋回される。

0043

操作装置26は、旋回用電動機21、下部走行体1、ブーム4、アーム5、及びバケット6を操作するための操作装置であり、レバー26A及び26Bとペダル26Cを含む。レバー26Aは、旋回用電動機21及びアーム5を操作するためのレバーであり、上部旋回体3の運転席近傍に設けられる。レバー26Bは、ブーム4及びバケット6を操作するためのレバーであり、運転席近傍に設けられる。また、ペダル26Cは、下部走行体1を操作するための一対のペダルであり、運転席足下に設けられる。

0044

この操作装置26は、パイロットライン25を通じて供給される油圧(1次側の油圧)を運転者の操作量に応じた油圧(2次側の油圧)に変換して出力する。操作装置26から出力される2次側の油圧は、油圧ライン27を通じてコントロールバルブ17に供給されるとともに、圧力センサ29によって検出される。

0045

レバー26A及び26Bとペダル26Cの各々が操作されると、油圧ライン27を通じてコントロールバルブ17が駆動され、これにより、油圧モータ1A、1B、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9内の油圧が制御されることによって、下部走行体1、ブーム4、アーム5、及びバケット6が駆動される。

0046

なお、油圧ライン27は、油圧モータ1A及び1B、ブームシリンダ7、アームシリンダ8、及びバケットシリンダの駆動に必要な油圧をコントロールバルブに供給する。

0047

圧力センサ29では、レバー26Aの操作による、油圧ライン28内の油圧の変化が圧力センサ29で検出される。圧力センサ29は、油圧ライン28内の油圧を表す電気信号を出力する。この電気信号は、レバー26Aの操作方向(右旋回又は左旋回)と操作量を表す信号であり、コントローラ30に入力される。

0048

「コントローラ30」
コントローラ30は、本実施の形態の建設機械の駆動制御を行う制御装置であり、アシスト駆動制御装置31及び駆動制御装置40を含む。このコントローラ30は、CPU(Central Processing Unit)及び内部メモリを含む演算処理装置で構成され、アシスト駆動制御装置31及び駆動制御装置40は、コントローラ30のCPUが内部メモリに格納される駆動制御用プログラムを実行することにより、実現される装置である。

0049

アシスト駆動制御装置31は、電動発電機12の運転制御(力行運転又は回生運転の切り替え)、及び、バッテリ19の充放電制御を行うための制御装置である。このアシスト駆動制御装置31は、エンジン11の負荷の状態とバッテリ19の充電状態に応じて、電動発電機12の力行運転と回生運転を切り替える。アシスト駆動制御装置31は、電動発電機12の力行運転と回生運転を切り替えることにより、インバータ18を介してバッテリ19の充放電制御を行う。

0050

駆動制御装置40には、学習スイッチ90が接続される。学習スイッチ90は、後述の如く学習モードをオンさせるためのために作業者(ユーザ)により操作されるスイッチであり、キャビン10内の適切な位置に配置される。学習スイッチ90は、機械式のスイッチであってもよいし、タッチスイッチのようなソフトウェア的なスイッチであってもよいし、形式は任意である。駆動制御装置40には、学習スイッチ90の他、後述の対話式の学習機能を実現するための各種スイッチが接続されてよい。

0051

駆動制御装置40には、表示装置92が接続される。表示装置92は、後述の如く学習状態等の情報を作業者(ユーザ)に視覚的に伝達する装置であり、キャビン10内の適切な位置に配置される。表示装置92は、点灯状態に応じて情報を伝達する簡易ランプであってもよいし、液晶ディスプレイ等のような、表示内容により情報を伝達するディスプレイであってもよいし、構成は任意である。

0052

駆動制御装置40には、建設機械100の作業者を特定するための個人認証装置98が接続される。個人認証装置98による個人認証は、ユーザが所持する建設機械100のキー(又は、自宅のキーのような、その他の個人携帯用のキー)、携帯電話運転免許証などの所有物認証、カメラによる顔認証や、静脈指紋認証のような生体認証、又は、コントローラ30等への入力による知識認証のいずれか1つ若しくは任意の組み合わせにより実現されてもよい。

0053

「駆動制御装置40」
図3は、本実施の形態の駆動制御装置40の構成を示す制御ブロック図である。

0054

駆動制御装置40は、インバータ20を介して旋回用電動機21の駆動制御を行うための制御装置であり、旋回用電動機21を駆動するための駆動指令を生成する駆動指令生成部50、トルク指令生成部60、学習部60b、補正用トルク指令生成部61、主制御部70、及び速度指令生成部80を含む。

0055

駆動指令生成部50は、トルク指令生成部60及び補正用トルク指令生成部61から入力されるトルク電流指令及び補正用トルク電流指令に基づく駆動指令の生成、又は、速度指令生成部80から入力される速度指令に基づく駆動指令の生成を行い、これらの駆動指令により旋回用電動機21を駆動制御する。駆動指令生成部50から出力される駆動指令はインバータ20に入力され、このインバータ20によって旋回用電動機21がPWM制御信号により交流駆動される。

0056

ここで、トルク指令生成部60及び補正用トルク指令生成部61から入力されるトルク電流指令及び補正用トルク電流指令に基づく駆動指令による旋回用電動機21の駆動制御は、補正用トルク電流指令によって補正されたトルク電流指令に基づいて旋回用電動機21を駆動制御することを意味する。本実施の形態では、これをトルク指令による旋回用電動機21の駆動制御と称する。この駆動制御の詳細については後述する。

0057

トルク指令生成部60は、レバー26Aの操作量に応じて、旋回用電動機21を旋回駆動するためのトルクを制御するトルク電流指令を生成する。レバー26Aの操作量に応じてトルク電流指令値を生成するための特性は、コントローラ30の内部メモリであるマップ記憶部60aに格納されており、後述の如く、レバー26Aの操作速度に応じた特性がトルク指令生成部60によって読み出される。

0058

学習部60bは、学習スイッチ90により学習モードがオンされた場合に作動する。学習部60bは、作動中、レバー26Aに対して行われた操作履歴に基づいて、レバー26Aの操作速度に関する基準速度を学習し、学習結果を、学習結果記憶部60cに記憶する。このとき、学習部60bは、個人認証装置98による個人認証情報に基づいて、作業者毎に学習結果を類別して学習結果記憶部60cに記憶する。

0059

補正用トルク指令生成部61は、レバー26Aの操作量に応じて、トルク電流指令を補正するための補正用トルク電流指令を生成する。レバー26Aの操作量に応じて補正用トルク電流指令値を生成するための特性は、コントローラ30の内部メモリに格納されており、補正用トルク指令生成部61によって読み出される。

0060

主制御部70は、駆動制御装置40の制御処理に必要な周辺処理と、操作レバー26Aの操作量に応じて駆動制御を切り替える処理とを行う制御部である。主制御部70には、圧力センサ29から出力されるレバー26Aの操作量を表すデータと、旋回動作検出部57から出力される回転速度を表すデータとが入力される。駆動制御の切替処理は、レバー26Aの操作量と回転速度とに基づいて行われる。具体的な処理内容については、関連箇所において説明する。

0061

速度指令生成部80は、正転側の最高回転速度逆転側の最高回転速度、又は速度に制御するための速度指令を生成する。各速度指令を表すデータは、コントローラ30の内部メモリに格納されており、速度指令生成部80によって読み出される。

0062

なお、駆動制御装置40は、操作レバー26Aの操作量に応じて、旋回用電動機21を駆動制御する際に、力行運転と回生運転の切り替え制御を行うと共に、インバータ20を介してバッテリ19の充放電制御を行う。

0063

ここで、図4を用いて操作レバー26Aの操作量と駆動領域の関係について説明する。

0064

「操作量による駆動領域の切替特性
図4は、本実施の形態の建設機械の駆動制御装置40における操作レバー26Aの操作量と駆動領域との関係を示す特性図である。横軸はレバー26Aの操作量を表し、右旋回側の最大操作量を100%、左旋回側の最大操作量を"−100%"とした百分率で示す。本実施の形態の駆動制御装置40は、レバー26Aの操作量をトルク電流指令値又は速度指令値に変換して旋回用電動機21の駆動制御を行うように構成されているため、図4では操作レバー26Aの操作量と駆動領域の関係のみを示し、トルク電流指令値及び速度指令値の特性については別の特性を用いて説明する。なお、この特性は、コントローラ30の内部メモリに格納されており、主制御部70によって読み出される。

0065

駆動領域は、操作レバー26Aの操作量に応じて、不感帯領域零速度指令領域(右旋回用及び左旋回用)、右方向旋回駆動領域、及び左方向旋回駆動領域の5つの領域に区分される。

0066

ここで、本実施の形態の建設機械の制御系では、旋回用電動機21の回転軸21Aが反時計回りに回転する回転方向を「正転」と称し、正転方向の駆動を表す制御量に正の符号を付す。一方、旋回用電動機21の回転軸21Aが時計回りに回転する回転方向を「逆転」と称し、逆転方向の駆動を表す制御量に負の符号を付す。正転は、上部旋回体3の右方向への旋回に対応し、逆転は、上部旋回体の左方向への旋回に対応する。

0067

また、旋回用電動機21の回転速度は、(rad/s)なる単位を有するが、以下では、最高回転速度を100%速度とした場合の百分率を用いて「50%速度」のように表す。

0068

「不感帯領域」
不感帯領域は、レバー26Aの中立点付近に設けられる操作量が±10%未満の領域である。旋回停止状態から旋回を開始するときに、レバー26Aの操作量が不感帯領域にある場合は、駆動制御装置40による旋回用電動機21の駆動制御は行われない。また、不感帯領域内で旋回用電動機21の駆動制御が行われていないときは、メカニカルブレーキ23によって旋回用電動機21が機械的に停止された状態となる。

0069

一方、旋回中にレバー26Aの操作量が不感帯領域となると、旋回用電動機21の回転軸21Aを停止させるための駆動制御が行われ、回転軸21Aが停止すると、駆動制御装置40による旋回用電動機21の駆動制御が行われ、メカニカルブレーキ23によって旋回用電動機21が機械的に停止されるように構成されている。

0070

なお、メカニカルブレーキ23の制動(オン)/解除(オフ)の切り替えは、コントローラ30内の駆動制御装置40によって行われる。

0071

「零速度指令領域」
零速度指令領域は、レバー26Aの操作方向における不感帯領域の両外側に設けられる操作量が10%以上20%未満と"−10%"以下"−20%"未満の領域である。レバー26Aの操作量が零速度指令領域にあり、かつ、旋回用電動機21の回転軸21Aの回転速度が絶対値で10%速度未満であるときは、旋回用電動機21は零速度指令によって回転速度が零になるように駆動制御される。

0072

ここで、零速度指令とは、上部旋回体3の旋回速度を零にするために、旋回用電動機21の回転軸21Aの回転速度を零にするための速度指令であり、後述するPI(Proportional Integral)制御では、回転軸21Aの回転速度を零に近づけるための目標値として用いられる。

0073

また、操作レバー26Aの操作量が零速度指令領域の範囲内にあり、かつ、旋回用電動機21の回転軸21Aの回転速度が絶対値で10%速度以上であるときは、トルク指令生成部60及び補正用トルク指令生成部61から出力されるトルク電流指令及び補正用トルク電流指令に基づいて旋回用電動機21が減速するように駆動制御が行われる。

0074

なお、零速度指令領域では、メカニカルブレーキ23は解除された状態となる。

0075

「右方向旋回駆動領域」
右方向旋回駆動領域は、上部旋回体3を右方向に旋回させるための駆動制御を行う領域である。操作レバー26Aの操作量がこの右方向旋回駆動領域の範囲内にあるときは、トルク指令生成部60及び補正用トルク指令生成部61から出力されるトルク電流指令及び補正用トルク電流指令に基づく旋回用電動機21の駆動制御、又は、旋回用電動機21の回転速度を最高回転速度に制限するための速度指令に基づく旋回用電動機21の駆動制御のいずれかが行われる。この最高回転速度に制限するための速度指令に基づく駆動制御は、トルク電流指令に基づく駆動制御を行っているときに、旋回用電動機21の回転速度が最高回転速度に達すると、回転速度を制限するために行われる。その詳細については、後述する。

0076

「左方向旋回駆動領域」
左方向旋回駆動領域は、上部旋回体3を左方向に旋回させるための駆動制御を行う領域である。操作レバー26Aの操作量がこの左方向旋回駆動領域の範囲内にあるときは、トルク指令生成部60及び補正用トルク指令生成部61から出力されるトルク電流指令及び補正用トルク電流指令に基づく旋回用電動機21の駆動制御、又は、旋回用電動機21の回転速度を最高回転速度に制限するための速度指令に基づく旋回用電動機21の駆動制御のいずれかが行われる。この最高回転速度に制限するための速度指令に基づく駆動制御は、トルク電流指令に基づく駆動制御を行っているときに、旋回用電動機21の回転速度が絶対値で逆転方向の最高回転速度に達すると、回転速度を制限するために行われる。その詳細については、後述する。

0077

「駆動指令生成部50」
駆動指令生成部50は、減算器51、切替スイッチ部52、トルク制限部53、減算器54、PI制御部55、電流変換部56、及び旋回動作検出部57を含む。この駆動指令生成部50の減算器51には、レバー26Aの操作量に応じた旋回駆動用のトルク電流指令及び補正用トルク電流指令が入力される。

0078

減算器51は、レバー26Aの操作量に応じてトルク指令生成部60から出力されるトルク電流指令の値(以下、トルク電流指令値)から、レバー26Aの操作量に応じて補正用トルク指令生成部61から出力される補正用トルク電流指令の値(以下、補正用トルク電流指令値)を減算して偏差を出力する。

0079

切替スイッチ部52は、入力端子a及びbを有し、主制御部70によって切替が行われる。旋回用電動機21をトルク電流指令で駆動する場合は、主制御部70によって入力端子aが選択され、旋回用電動機21を速度指令に基づいて駆動する場合は、主制御部70によって入力端子bが選択される。

0080

トルク制限部53は、レバー26Aの操作量に応じてトルク電流指令の値(以下、トルク電流指令値)を制限する処理を行う。ここで、トルク制限とは、トルク制限部53に入力されるトルク電流指令値を、トルク制限特性によって許容される値(許容値)以下に制限して出力することをいう。

0081

トルク制限部53は、図5に示すように、制限によって許容されるトルク電流指令値(許容値)の絶対値がレバー26Aの操作量の増大に応じて緩やかに増大するトルク制限特性を用いて、PI制御部83から入力されるトルク電流指令値を制限する。このようなトルク電流指令値の制限は、PI制御部83によって演算されるトルク電流指令値が急激に増大すると制御性が悪化するため、これを抑制するために行われる。

0082

なお、この制限特性は、横軸及び縦軸共に絶対値で表してあるため、左旋回を表す場合の制御量は、レバー26Aの操作量(横軸)及び許容値(縦軸)の両方とも、絶対値に換算されてトルク制限が行われる。また、図5の特性におけるレバー26Aの操作量が0%から20%の間は、図4に示す不感帯領域と零速度指令領域に相当する。

0083

この制限特性は、レバー26Aの操作量の増大に伴ってトルク電流指令値を絶対値で緩やかに増大させる特性を有し、上部旋回体3を左方向及び右方向の双方向に旋回させるためのトルク電流指令値を制限するための特性を有するものである。制限特性を表すデータは、主制御部70の内部メモリに格納されており、主制御部70によって読み出され、トルク制限部53に入力される。

0084

減算器54は、トルク制限部53から入力されるトルク電流指令値から、電流変換部56の出力値を減算して得る偏差を出力する。この偏差は、後述するPI制御部55及び電流変換部56を含むフィードバックループにおいて、電流変換部56から出力される旋回用電動機21の駆動トルクを、トルク制限部53を介して入力されるトルク電流指令値(目標値)によって表されるトルクに近づけるためのPI制御に用いられる。

0085

PI制御部55は、減算器54から入力される偏差に基づき、この偏差を小さくするようにPI制御を行い、インバータ20に送る最終的な駆動指令となるトルク電流指令を生成する。インバータ20は、PI制御部55から入力されるトルク電流指令に基づき、旋回用電動機21をPWM駆動する。

0086

電流変換部56は、旋回用電動機21のモータ電流を検出し、これをトルク電流指令に相当する値に変換し、減算器54に入力する。

0087

旋回動作検出部57は、レゾルバ22によって検出される旋回用電動機21の回転位置の変化(すなわち上部旋回体3の旋回)を検出するとともに、回転位置の時間的な変化から旋回用電動機21の回転速度を微分演算によって導出する。導出された回転速度を表すデータは、減算器51及び主制御部70に入力される。

0088

「トルク指令生成部60」
トルク指令生成部60は、レバー26Aの操作量に応じて、図6に示す特性に従ってトルク電流指令を生成する。ここで、本実施の形態のトルク指令生成部60は、レバー26Aの操作速度に応じて、異なる特性のトルク電流指令を生成する。

0089

図6は、一例として、3つの異なるトルク電流指令特性を示し、符号X1で示す特性は、レバー26Aの操作速度が基準速度よりも速いときに用いられる特性であり、符号X2で示す特性は、レバー26Aの操作速度が基準速度に対応するときに用いられる特性であり、符号X3で示す特性は、レバー26Aの操作速度が基準速度よりも遅いときに用いられる特性である。これらの特性は、マップ形式で予め用意され、マップ記憶部60aに記憶保持される。

0090

図6に示すように、いずれの特性X1,X2,X3においても、トルク電流指令値T0(%)は、レバー26Aの操作量の増大に応じて緩やかに立ち上がり始め、レバー26Aの操作量の増大に応じて次第に傾きが増大して行き、操作量が約80%に達したところで飽和する。なお、この特性は、横軸及び縦軸共に絶対値で表してあるため、左旋回を表す場合の制御量は、負の値となる。また、図6の特性におけるレバー26Aの操作量が0%から20%の間は、図4に示す不感帯領域と零速度指令領域に相当する。なお、トルク電流指令値T0(%)は、最大値を100%とした百分率で示す。

0091

図示の例では、特性X1,X2,X3の相違は、レバー26Aの操作量が20%から80%の間で発生する。同一のレバー26Aの操作量に対するトルク電流指令値T0(%)の大きさは、特性X1が一番大きく、特性X2が中間であり、特性X3が最も小さい。即ち、レバー26Aの操作量の単位増加量あたりのトルク電流指令値T0の大きさの増加量(応答性)は、特性X1が一番大きく、特性X2が中間であり、特性X3が最も小さい。尚、特性X1,X2,X3は、レバー26Aの操作量が20%から80%の間で非線形な特性を有しているが、線形特性を有してもよい。

0092

図7は、トルク指令生成部60において実行されるトルク電流指令生成処理の一例を示すフローチャートである。図7処理ルーチンは、後述の学習モードがオフされている間に実行される。

0093

テップ60では、トルク指令生成部60において、個人認証装置98による個人認証情報が入力され、現在の建設機械100の作業者が把握される。

0094

ステップ62では、トルク指令生成部60において、現在の建設機械100の作業者に対応した学習結果が学習結果記憶部60c内で探索され、現在の建設機械100の作業者に対応した学習結果が存在する場合には、現在の建設機械100の作業者に対応した学習結果を学習結果記憶部60cから読み出してステップ64に進み、現在の建設機械100の作業者に対応した学習結果が存在し無い場合には、ステップ66に進む。

0095

ステップ64では、トルク指令生成部60において、現在の建設機械100の作業者に対応した学習結果に基づいて、レバー26Aの操作速度に関する基準速度が設定される。尚、学習結果は、現在の建設機械100の作業者の操作履歴に基づいて学習されたレバー26Aの操作速度の平均値であり、後に詳説する。また、基準速度は、ある一点の速度(例えば、学習されたレバー26Aの操作速度の平均値そのもの)である必要はなく、ある範囲内の速度であってよく、例えば、レバー26Aの操作速度の平均値(学習結果)を中心とした±10(%/s)の範囲内の速度であってよい。

0096

ステップ66では、トルク指令生成部60において、レバー26Aの操作速度に関する基準速度がデフォルト値に基づいて設定される。デフォルト値は、多数の作業者の平均的な操作速度の取りうる範囲の中心値(平均値)に対応するように決定されてよい。尚、この場合も、レバー26Aの操作速度に関する基準速度は、ある一点の速度(例えば、デフォルト値そのもの)である必要はなく、ある範囲内の速度であってよく、例えば、デフォルト値を中心とした±10(%/s)の範囲内の速度であってよい。

0097

ステップ70では、トルク指令生成部60において、レバー26Aの操作量が入力される。

0098

ステップ72では、トルク指令生成部60において、入力されたレバー26Aの操作量に基づいて、レバー26Aの操作速度が算出される。レバー26Aの操作速度V(%/s)は、例えばレバー26Aの操作量の前回値x(i−1)と、レバー26Aの操作量の今回値x(i)を用いて、次式により算出されてもよい。
V=(x(i)−x(i−1))/ΔT
ここで、ΔTは、レバー26Aの操作量の入力周期サンプリング周期)に対応する。但し、フィルタ重み付け演算を用いてノイズの影響を低減する態様で、レバー26Aの操作速度Vを演算してもよい。また、レバー26Aの操作速度としては、レバー26Aの操作開始直後の操作量が増加していく際の増加速度が算出されてよく、この場合、操作開始時点から所定の短い時間経過するまでの(操作量が増加する過程での)各周期で演算されるレバー26Aの操作速度Vの平均値として求められてもよい。これは、本実施の形態では、上部旋回体3をある角度まで旋回させる際のレバー26Aの操作の応答性を問題とし、上部旋回体3の旋回を停止させるときのレバー26Aの操作(中立に戻す操作)の応答性を問題としていないためである。

0099

ステップ74では、トルク指令生成部60において、算出したレバー26Aの操作速度Vが、上述の如く設定した基準速度に対応するか否かが判定される。算出したレバー26Aの操作速度Vが基準速度に対応する場合には、ステップ76に進み、算出したレバー26Aの操作速度Vが基準速度に対応しない場合には、ステップ78に進む。

0100

ステップ76では、トルク指令生成部60において、標準的な特性X2(図6参照)がマップ記憶部60aから読み出され、標準的な特性X2に基づいて、今回入力されたレバー26Aの操作量に応じたトルク電流指令値T0が算出される。

0101

ステップ78では、トルク指令生成部60において、算出したレバー26Aの操作速度Vが基準速度よりも大きいか否かが判定される(尚、基準速度が範囲で規定されている場合にはその上限値を上回るか否かが判定される)。算出したレバー26Aの操作速度Vが基準速度よりも大きい場合には、ステップ80に進み、算出したレバー26Aの操作速度Vが基準速度よりも小さい(基準速度が範囲で規定されている場合にはその下限値を下回った)場合には、ステップ82に進む。

0102

ステップ80では、トルク指令生成部60において、高速操作用の特性X1(図6参照)がマップ記憶部60aから読み出され、高速操作用の特性X1に基づいて、今回入力されたレバー26Aの操作量に応じたトルク電流指令値T0が算出される。

0103

ステップ82では、トルク指令生成部60において、低速操作用の特性X3(図6参照)がマップ記憶部60aから読み出され、低速操作用の特性X3に基づいて、今回入力されたレバー26Aの操作量に応じたトルク電流指令値T0が算出される。

0104

ステップ84では、建設機械100の作業が終了したか又は作業者が変更したかが判定され、いずれも否定された場合には、ステップ70からの処理が繰り返される。尚、作業者が変更した場合には、旧作業者に対する図7の処理ルーチンが終了し、新たな作業者に対して図7の処理ルーチンがステップ60から開始される。

0105

尚、図7の処理ルーチンは、本実施の形態の建設機械の運転中に、トルク指令生成部60によって繰り返し実行される処理であってよい。但し、図7の処理ルーチンは、レバー26Aの操作量がゼロから増加して20%を超えた時に、当該増加過程でのみ実行され、レバー26Aの操作量が最大値付近一定値で維持されるときや操作量が減少する過程では実行されないようにされてもよい。即ち、レバー26Aを入れる操作時に実行され、レバー26Aの保持操作時やレバー26Aの戻し操作時には実行されなくてよい。この場合、レバー26Aの保持操作時やレバー26Aの戻し操作時には、常に標準的な特性X2が用いられることとしてよい。これは、本実施の形態では、上部旋回体3をある角度まで旋回させる際のレバー26Aの操作の応答性を問題とし、上部旋回体3の旋回を停止させるときのレバー26Aの操作(中立に戻す操作)の応答性を問題としていないためである。

0106

「学習部60b」
図8は、学習部60bにおいて実行される基準速度学習処理の一例を示すフローチャートである。図8の処理ルーチンは、学習スイッチ90により起動された学習モードがオン状態である間に実行される。

0107

ここで、学習モードは、前提として、作業者が学習スイッチ90をオンにすることで起動される。作業者は、典型的には、自身の好みや癖に適合した操作特性を建設機械100に学習させたい場合や、学習結果をリセットして再学習させたい場合に、学習スイッチ90をオンにする。学習モードがオンされると、その旨が表示装置92を介して作業者に通知される。例えば表示装置92がランプである場合、学習モードがオンされると、ランプが例えば緑色に点灯し、学習モード中、緑色の点灯状態が維持される。

0108

作業者は、学習モードをオンにしてから、レバー26Aを、自身にとって標準的と思われる速度(即ち、自身の基準速度としたい速度)で操作する。学習モードオン中に自身にとって標準的と思われる速度でレバー26Aを操作すべきことは、ユーザに周知される。尚、この学習モードがオン状態にあるとき、学習部60b以外の構成要素は、作業者のレバー26Aの操作に応じて通常通り動作する。但し、トルク指令生成部60においては、学習結果記憶部60cの学習結果を利用せずに(上述の図7のステップ66を経由して)、トルク電流指令が生成される。或いは、この学習モードがオン状態にあるとき、学習部60b以外の構成要素は、作業者のレバー26Aの操作に応じて動作しないこととしてもよい(即ち、学習のためだけにレバー26Aが操作されることとしてもよい)。

0109

ステップ90では、学習部60bにおいて、個人認証装置98による個人認証情報が入力され、現在の建設機械100の作業者が把握される。

0110

ステップ92では、学習部60bにおいて、レバー26Aの一回の操作に対して、当該操作時の操作速度が算出され、操作速度の算出結果が蓄積される。例えば、レバー26Aの操作量の大きさが所定量以上増加する操作を1回の操作として、操作回数に応じた数の操作速度が算出・蓄積されてよい。操作速度の算出方法は、上述のトルク指令生成部60における操作速度の算出方法と同様であってよい。尚、操作速度は、必ずしも学習部60bで演算される必要はなく、トルク指令生成部60において算出される操作速度(上述の図7のステップ72参照)が利用されてもよい。

0111

ステップ94では、学習部60bにおいて、算出された操作速度のサンプル数が所定の閾値以上となったか否かが判定される。即ち、操作速度が算出された操作の回数が、所定の規定回数以上となったか否かが判定される。所定の閾値(規定回数)は、操作速度の平均値を精度良く算出するために統計的に必要とされる標本数に対応し、大きいほど精度が高くなるが学習期間が長くなるという背反事項を考慮して、適切に決定される。所定の閾値は、例えば10から20の間であってよい。操作速度のサンプル数が所定の閾値以上となった場合には、ステップ96に進み、操作速度のサンプル数が所定の閾値に達していない場合には、ステップ92に戻る。

0112

ステップ96では、上記ステップ92で蓄積された所定の閾値以上の個数の操作速度に基づいて、当該操作速度の平均値Vave(図9参照)が算出される。尚、平均値の算出方法は、多種多様であり、単純に平均値を出してもよいし、外れ値最大最小値を除いた平均値を出してもよいし、中央値を平均値として算出してもよい。

0113

ステップ98では、学習部60bにより、上記ステップ96で算出された操作速度の平均値Vave(学習結果)が、上記ステップ90で把握された作業者に対応付けて学習結果記憶部60cに記憶される。尚、このようにして学習結果が学習結果記憶部60cに記憶されると、学習モードは自動的にオフとなり、例えば表示装置92の緑色の点灯が消灯する。

0114

このようにして学習部60bにより操作速度の平均値Vave(学習結果)が学習されると、以後、図7を参照して上述したように、学習された操作速度の平均値Vaveに基づいて、基準速度が設定される。従って、操作速度の平均値Vaveが作業者毎に異なる場合には、基準速度が作業者毎に変化し、レバー26Aの操作量に応じた旋回用電動機21の出力特性が作業者毎に変化することになる。

0115

尚、図8に示す例では、操作速度のサンプル数が所定の閾値以上となった場合に学習モードが自動的にオフされているが、所定時間経過後に自動的にオフされることとしてもよいし、ユーザからの指示に応じてオフされることとしてもよい。

0116

作業者は、表示装置92の緑色の点灯が消灯すると、学習が終了したことを把握し、その後、レバー26Aを操作して、学習後の操作特性が自己の好みや癖に適合するかを判断してよく、適合する場合は、そのまま作業を継続し、適合しない場合には、再度学習スイッチ90をオンにして(学習結果をリセットして)、再学習させてもよい。

0117

「補正用トルク指令生成部61」
補正用トルク指令生成部61は、レバー26Aの操作量に応じて、図10(a)に示す補正用トルク電流指令を生成する。図10(a)において、横軸のレバー26Aの操作量x(%)、旋回用電動機21の回転速度y(%)に対して、補正用トルク電流指令値をTf(x、y)(%)で示す。

0118

図10(a)には代表的な特性として、回転速度yが0%速度、10%速度、20%速度、40%速度、60%速度、80%速度、及び100%速度の場合における操作量xの変化に対する補正用トルク電流指令値Tf(x、y)の特性を示す。

0119

10%速度、20%速度、40%速度、60%速度、80%速度、及び100%速度の場合の補正用トルク電流指令値Tf(x、y)は、レバー26Aの操作量xの増大に応じて徐々に減少し、操作量xが約90%に達したところで略一定の値となる特性を有する。また、この補正用トルク電流指令値Tf(x、y)は、回転速度yの増大に応じて増大する特性を有する。

0120

また、回転速度yが0%速度の場合の補正用トルク電流指令値Tf(x、y)は、操作量xが0%から20%の間では存在せず、操作量が20%以上から100%の間で0%に設定される。このような特性をとるのは、回転速度yが0%速度の場合は補正が必要ないため、補正用トルク電流指令値Tf(x、y)は0%でよく、また、回転速度yが0%速度の場合は操作量xが0%から20%未満では、零速度指令に基づく駆動制御が行われるか、又は、メカニカルブレーキ23によって旋回用電動機21の回転軸21Aが停止されるため、補正用トルク電流指令値Tf(x、y)が必要ないからである。

0121

なお、実際には、補正用トルク指令生成部61により、これらの代表的な特性を補間するように操作量x及び回転速度yに応じて補正用トルク電流指令値Tf(x、y)が生成される。

0122

このような補正用トルク電流指令を用いるのは、図6に示すトルク電流指令だけで旋回用電動機21の駆動制御を行うと、レバー26Aの操作量の増大に応じて駆動トルクが増大することにより、従来のような速度指令による駆動制御を行う場合よりも操作性は良好になるが、旋回用電動機21の回転速度が上昇し続けるため、回転速度に応じてトルク電流指令を補正することにより、トルク指令に基づく駆動制御において回転速度の制御を行いやすくするためである。

0123

ここで、この特性は、横軸及び縦軸共に絶対値で表してあるが、左旋回を表す場合の補正用トルク電流指令値は負の値となる。

0124

また、補正用トルク電流指令値Tf(x、y)は、最大値を100%とした百分率で示す。なお、この最大値は、トルク電流指令値T0(%)の最大値と同一の値である。

0125

「減算器51の出力」
図10(b)は、減算器51から出力されるトルク電流指令値Tcmdを示す特性図である。減算器51の出力は、図6に示すトルク電流指令から図10(a)に示す補正用トルク電流指令を減じて得る特性であり、次式で与えられる。

0126

Tcmd=T0−Tf(x、y)(%)
図10(b)に示すように、操作量xが0%から20%未満では、回転速度yが0%速度の場合のトルク電流指令値Tcmdは存在しない。これは、操作量xが0%から20%未満では、零速度指令に基づく駆動制御が行われるか、又は、メカニカルブレーキ23によって旋回用電動機21の回転軸21Aが停止されるためである。

0127

操作量が±20%以内では、回転速度yが0%速度の場合のトルク電流指令値Tcmdは0%に設定される。これは、旋回用電動機21が停止しているときは、その状態を保持するために駆動トルクを発生させる必要がないからである。

0128

また、操作量xが0%のときに、回転速度yが100%速度の場合は、トルク電流指令値Tcmdは"−100%"に設定される。これは、操作量xが0%で旋回用電動機21が正転方向に最高回転速度で駆動されている場合は、旋回用電動機21に逆転方向の最大トルクを発生させる必要があるため、トルク電流指令値Tcmdが"−100%"に設定されている状態を表す。

0129

なお、操作量xが0%のときにトルク電流指令値Tcmdが"−100%"に設定されるのは、回転速度yが10%速度以上の場合である。

0130

また、操作量xが0%から20%まで増大する間に、回転速度yが10%速度及び20%速度の場合は、トルク電流指令値Tcmdの値が絶対値で急激に低減され、旋回用電動機21の逆転方向の駆動トルクが小さくされる。これは、回転速度yが比較的低い場合は、減速させるための駆動トルクは比較的小さくて足りるからである。

0131

一方、操作量xが0%から20%まで増大する間に、回転速度yが40%速度、60%速度、80%速度、及び100%速度の場合は、トルク電流指令値Tcmdの値は絶対値で徐々に低減され、旋回用電動機21の逆転方向の駆動トルクは大きい状態にされる。これは、回転速度yが比較的高い場合は、減速させるために大きな駆動トルクが必要だからである。

0132

また、操作量xが20%から80%まで増大する間に、回転速度yが0%速度の場合は、トルク電流指令値Tcmdは徐々に増大される。これは、操作量xが増大しているのに回転速度yが上昇しないため、さらに駆動トルクを増大させる必要があるからである。

0133

また、操作量xが20%から80%まで増大する間に、回転速度yが10%速度及び20%速度の場合は、始めはトルク電流指令値Tcmdの値は徐々に低減され、操作量xが30%〜40%の辺りでトルク電流指令値Tcmdの値は0%となり、操作量xが40%から80%まで増大する間は、回転速度yが0%速度の場合に近い増加度合いでトルク電流指令値Tcmdが徐々に増大される。これは、操作量xを増大しても回転速度yが比較的低い場合は、加速させるために大きな駆動トルクが必要になるからである。

0134

また、操作量xが20%から80%まで増大する間に、回転速度yが40%速度、60%速度、80%速度、及び100%速度の場合は、始めはトルク電流指令値Tcmdの値は徐々に低減され、操作量xが50%〜70%の辺りでトルク電流指令値Tcmdの値は0%となり、さらに操作量xが80%まで増大する間は、次第に傾きが増大されてトルク電流指令値Tcmdの値が正の値で増大される。これは、回転速度が比較的高い場合は、減速にも加速にも比較的小さい駆動トルクで足りるからである。

0135

また、操作量xが80%から100%まで増大する間に、回転速度yが0%速度、10%速度、及び20%速度の場合は、トルク電流指令値Tcmdは100%に制限される。これは、操作量xが80%以上と大きい領域にも関わらず、回転速度が零又は比較的低いときは、速度を維持又は加速するために大きな駆動トルクが必要となるからである。

0136

また、操作量xが80%から100%まで増大する間に、回転速度yが40%速度、60%速度、80%速度、及び100%速度の場合は、トルク電流指令値Tcmdは約75%から約10%の間に段階的に制限される。これは、操作量xが80%以上と大きい領域にも関わらず、回転速度が比較的高いときは、速度を維持又は加速するために比較的小さな駆動トルクで足りるからである。

0137

なお、図10(b)には代表的な特性として、回転速度yが0%速度、10%速度、20%速度、40%速度、60%速度、80%速度、及び100%速度の場合における操作量xの変化に対するトルク電流指令値Tcmdの特性を示すが、実際には、これらの代表的な特性を補間するように操作量x及び回転速度yに応じてトルク電流指令値Tcmdが生成される。特に、実際には旋回用電動機21の加速と減速に合わせて回転速度yは変化するため、トルク電流指令値Tcmdは、ここに示す代表的な特性を横断するようにして生成される。

0138

「速度指令生成部80」
速度指令生成部80は、図3に示すように、切替スイッチ部81、減算器82、及びPI制御部83を含み、正転側の最高回転速度、逆転側の最高回転速度、又は零速度に制御するための速度指令を生成する。

0139

切替スイッチ部81は、入力端子a、b、及びcを含む。入力端子aには正転側最高速度指令が入力される。この正転側最高速度指令は、旋回用電動機21の回転速度を正転側の最高速度に制御するための速度指令である。入力端子bには零速度指令が入力される。この零速度指令は、旋回用電動機21の回転速度を零に制御するための速度指令である。入力端子cには逆転側最高速度指令が入力される。この逆転側最高速度指令は、旋回用電動機21の回転速度を逆転側の最高速度に制御するための速度指令である。

0140

この切替スイッチ部81は、主制御部70によって切り替えられる。主制御部70は、旋回用電動機21の回転速度が正転側の最高値になると、切替スイッチ部81を入力端子aに切り替える。また、旋回用電動機21の回転速度が±10%速度未満になると、主制御部70は、切替スイッチ部81を入力端子bに切り替える。旋回用電動機21の回転速度が逆転側の最高値になると、主制御部70は、切替スイッチ部81を入力端子cに切り替える。

0141

また、主制御部70は、上述のように切替スイッチ部81の切替を行う場合は、切替スイッチ部52を入力端子bに切り替える。これにより、旋回用電動機21は、減算器51から出力されるトルク電流指令値Tcmdに基づく駆動制御から、速度指令生成部80から出力される正転側最高速度指令値に基づく駆動制御に切り替えられる。

0142

なお、切替スイッチ部81の入力端子a、b、及びcに入力される正転側の最高回転速度、逆転側の最高回転速度、又は零速度に制御するための速度指令を表すデータは、コントローラ30の内部メモリに格納されており、速度指令生成部80によって読み出される。

0143

減算器82は、切替スイッチ部81から入力される速度指令の値(rad/s)から、旋回動作検出部58によって検出される旋回用電動機21の回転速度(rad/s)を減算して偏差を出力する。この偏差は、後述するPI制御部83に入力される。

0144

PI制御部83は、減算器82から入力される偏差に基づき、この偏差を小さくするようにPI制御を行い、PI制御によって生成されるトルク電流指令を切替スイッチ部52の入力端子bに入力する。

0145

「旋回動作時の駆動制御」
図11は、本実施の形態の旋回用駆動制御装置による旋回動作時の駆動制御の処理手順を示す図である。この処理は、本実施の形態の建設機械の運転中に、主制御部70によって繰り返し実行される処理である。

0146

主制御部70は、レバー26Aの操作量が不感帯領域にあるか否かを判定する(ステップS1)。

0147

主制御部70は、レバー26Aの操作量が不感帯領域にはないと判定した場合は、レバー26Aの操作量が零速度指令領域にあるか否かを判定する(ステップS2)。

0148

主制御部70は、レバー26Aの操作量が零速度指令領域にはないと判定した場合は、旋回用電動機21の回転速度が正転側の最高速度より高いか否かを判定する(ステップS3)。

0149

主制御部70は、回転速度が正転側の最高速度以下であると判定した場合は、旋回用電動機21の回転速度が絶対値で逆転側の最高速度の絶対値を超えているか否かを判定する(ステップS4)。

0150

主制御部70は、回転速度が絶対値で逆転側の最高速度の絶対値以下であると判定した場合は、切替スイッチ部52を入力端子aに切り替える(ステップS5)。これにより、トルク指令生成部60及び補正用トルク指令生成部61によって生成されるトルク電流指令値及び補正用トルク電流指令値に基づいて旋回用電動機21の駆動制御が行われる。このとき、トルク指令生成部60によって生成されるトルク電流指令値は、上述の図7を参照して説明した態様で生成される。

0151

ステップS5の処理が実行される場合とは、レバー26Aの操作量が右方向旋回駆動領域又は左方向旋回駆動領域にあり、かつ、回転速度が正転側及び逆転側の最高回転速度を絶対値で超えていない状態である。このような状態には、旋回用電動機21を加速又は減速させることによって上部旋回体3を旋回させる状況のうちの殆どの場合が含まれる。このため、本実施の形態の駆動制御装置40によれば、トルク指令に基づいて旋回用電動機21の駆動制御を行うことができ、速度指令に基づいて旋回用電動機21の駆動制御を行う場合に比べて操作性が向上する。

0152

主制御部70は、ステップS1において不感帯領域内であると判定した場合は、旋回用電動機21の回転速度が零(0%速度)であるか否かを判定する(ステップS6)。

0153

主制御部70は、回転速度が零ではないと判定した場合は、旋回用電動機21の回転速度が絶対値で10%速度未満であるか否かを判定する(ステップS7)。

0154

主制御部70は、回転速度が絶対値で10%速度以上であると判定した場合は、切替スイッチ部52を入力端子aに切り替える(ステップS8)。これにより、トルク指令生成部60及び補正用トルク指令生成部61によって生成されるトルク電流指令値及び補正用トルク電流指令値に基づいて旋回用電動機21の駆動制御が行われる。

0155

ステップS8が実行される場合とは、レバー26Aの操作量が不感帯領域にあり、かつ、回転速度が絶対値で10%速度以上である状態である。この状態は、回転速度が10%速度以上であるときに、旋回用電動機21を停止させようとして減速トルクを発生させる場合に相当する。このため、本実施の形態の駆動制御装置40によれば、トルク指令によって旋回用電動機21を減速させることができ、速度指令に基づいて旋回用電動機21の駆動制御を行う場合に比べて操作性が向上する。

0156

なお、主制御部70は、ステップS6において回転速度が零(0%速度)であると判定した場合は、手順をステップS1にリターンする。これは、レバー26Aの操作量が不感帯領域にあって、旋回用電動機21が停止している状態に相当する。このような場合は、駆動制御を行う必要がないため、手順がステップS1にリターンされる。

0157

また、主制御部70は、ステップS7において回転速度が絶対値で10%速度未満であると判定した場合は、切替スイッチ部81を入力端子bに切り替え(ステップS9)、さらに、切替スイッチ部52を入力端子bに切り替える(ステップS10)。

0158

このようにステップS9及びS10が実行される場合とは、レバー26Aの操作量が不感帯領域にあり、かつ、回転速度が絶対値で10%速度未満の状態である。このような状態は、旋回用電動機21を停止させようとしてレバー26Aの操作量の操作量を減じているが、零速度指令領域内で回転速度が零(0%速度)になりきらなかった場合に相当する。このような場合は、切替スイッチ部81の入力端子bから入力される零速度指令を用いて旋回用電動機21を駆動制御する。

0159

また、主制御部70は、ステップS2においてレバー26Aの操作量が零速度指令領域にあると判定した場合は、手順をステップ7に進行させ、旋回用電動機21の回転速度が絶対値で10%速度未満であるか否かを判定する(ステップS7)。

0160

主制御部70は、回転速度が絶対値で10%速度以上であると判定した場合は、切替スイッチ部52を入力端子aに切り替える(ステップS8)。これにより、トルク指令生成部60及び補正用トルク指令生成部61によって生成されるトルク電流指令値及び補正用トルク電流指令値に基づいて旋回用電動機21の駆動制御が行われる。

0161

ステップS8が実行される場合とは、レバー26Aの操作量が零速度指令領域にあり、かつ、回転速度が絶対値で10%速度以上である状態である。この状態は、回転速度が10%速度以上であるときに、旋回用電動機21を停止させようとして減速トルクを発生させる場合に相当する。このため、本実施の形態の駆動制御装置40によれば、トルク指令によって旋回用電動機21を減速させることができ、速度指令に基づいて旋回用電動機21の駆動制御を行う場合に比べて操作性が向上する。

0162

なお、主制御部70は、ステップS7において回転速度が絶対値で10%速度未満であると判定した場合は、切替スイッチ部81を入力端子bに切り替え(ステップS9)、さらに、切替スイッチ部52を入力端子bに切り替える(ステップS10)。

0163

このようにステップS2を経由してステップS9及びS10が実行される場合とは、レバー26Aの操作量が零速度指令領域にあり、かつ、回転速度が絶対値で10%速度未満の状態である。このような状態は、旋回用電動機21を停止させようとしてレバー26Aの操作量の操作量を減じていて、レバー26Aの操作量が零速度指令領域にあり、回転速度が十分に減速されている場合(絶対値で10%速度未満の場合)に相当する。このような場合は、切替スイッチ部81の入力端子bから入力される零速度指令を用いて旋回用電動機21を駆動制御する。

0164

また、主制御部70は、ステップS3において、旋回用電動機21の回転速度が正転側の最高速度より高いと判定した場合は、切替スイッチ部81を入力端子aに切り替え(ステップS11)、さらに、切替スイッチ部52を入力端子bに切り替える(ステップS11)。

0165

このようにステップS11及びS12が実行される場合とは、レバー26Aの操作量が右方向旋回駆動領域にあり、かつ、回転速度が100%速度を超えている状態である。このような状態では、旋回用電動機21の回転数を正転側の最高速度(100%速度)に制限するために、切替スイッチ部81の入力端子aから入力される正転側最高速度指令で旋回用電動機21の駆動制御を行う。

0166

また、主制御部70は、ステップS4において、回転速度が絶対値で逆転側の最高速度の絶対値を超えていると判定した場合は、切替スイッチ部81を入力端子cに切り替え(ステップS13)、さらに、切替スイッチ部52を入力端子bに切り替える(ステップS14)。

0167

このようにステップS13及びS14が実行される場合とは、レバー26Aの操作量が左方向旋回駆動領域にあり、かつ、回転速度が絶対値で逆転側の最高速度の絶対値を超えている状態である。このような状態では、旋回用電動機21の回転数を逆転側の最高速度(−100%速度)に制限するために、切替スイッチ部81の入力端子cから入力される逆転側最高速度指令で旋回用電動機21の駆動制御を行う。

0168

主制御部70は、本実施の形態の建設機械が運転されている間は、以上の処理を繰り返し実行する。

0169

以上のように、本実施の形態の駆動制御装置及びこれを含む建設機械によれば、操作手段の操作量に応じたトルク指令に基づいて旋回駆動用の電動発電機の駆動制御を行う際に、操作手段の操作速度に応じて、操作手段の操作量に応じたトルク指令値可変することで、作業者の意図に適合した操作特性を実現することが可能となる。例えば、高い応答性を所望する作業者は、レバー26Aの操作速度を高速にすることで、応答性を高めることができ、低い応答性を所望する作業者は、レバー26Aの操作速度を低速にすることで、応答性を低下させることができる。これにより、作業者は、レバー26Aの操作速度を変化させることで、所望の応答性を実現することができる。

0170

ところで、レバー26Aの操作速度の標準的な速度は、作業者にとってまちまちでありうり、ある作業者にとって標準的な速度が、他の作業者にとって高速に感じる場合がありうる。この点、本実施の形態の駆動制御装置及びこれを含む建設機械によれば、上述の如く各作業者にとって標準的な速度が学習され、該学習結果に基づいて基準速度に設定されるので、作業者の癖や好みに適合した基準速度を基準として応答性を可変することができる。即ち、例えば、高い応答性を所望する作業者は、レバー26Aの操作速度を、自身にとって標準的な速度よりも高速にすることで、応答性を高めることができ、低い応答性を所望する作業者は、レバー26Aの操作速度を、自身にとって標準的な速度よりも低速にすることで、応答性を低下させることができる。これにより、作業者は、自身の感覚に適合した操作特性で作業を行うことができる。このような学習機能は、建設機械100が一般的に不特定の作業者により操作されるので有用であるが、特に不特定多数の作業者により操作されるレンタル機である場合に特に好適である。

0171

また、本実施の形態の駆動制御装置及びこれを含む建設機械によれば、操作手段の操作量に応じたトルク指令に基づいて旋回駆動用の電動発電機の駆動制御を行う際に、このトルク指令を回転速度に応じて補正することにより、操作量と回転速度に応じて電動発電機の駆動トルクを制御することができるため、従来のように速度指令に基づいて駆動制御を行う場合に比べて、乗り心地と操作性の改善を図ることができる。

0172

以上、本発明の好ましい実施例について詳説したが、本発明は、上述した実施例に制限されることはなく、本発明の範囲を逸脱することなく、上述した実施例に種々の変形及び置換を加えることができる。

0173

例えば、上述した実施例では、原則的にトルク指令に基づいて旋回用電動機21の駆動制御を行い(図11のステップ5)、ある特定条件下でのみ速度指令に基づいて駆動制御を行っている(図11のステップ10,12,14)が、常にトルク指令に基づいて旋回用電動機21の駆動制御を行うこととしてもよい。或いは、トルク指令に代えて、速度指令に基づいて駆動制御を行うことも可能である。この場合、トルク指令の場合と同様の観点から、例えば、図12に示すように、操作手段の操作速度に応じて、異なる特性X1,X2,X3が用いられてよい。図12に示す例では、レバー26Aの操作量の単位増加量あたりの目標回転速度y0(又は速度指令値)の大きさの増加量(応答性)は、特性X1が一番大きく、特性X2が中間であり、特性X3が最も小さい。特性X1は、操作手段の操作速度が基準速度を上回って速いときに用いられ、特性X2は、操作手段の操作速度が基準速度内のときに用いられ、特性X3は、操作手段の操作速度が基準速度を下回って遅いときに用いられてよい。この場合も、基準速度が上述の実施例と同様の態様で学習されればよい。

0174

また、上述した実施例では、電動機により駆動される機構が、旋回機構であったが、本発明は、電動機により駆動される機構が、他の機構である場合も適用可能である。例えば図13には、図2に示した下部走行体1用の油圧モータ1A、1Bを、バッテリ19を電源として動作する走行用発電機201A,201Bに置き換えた建設機械200が示される。この建設機械200においては、コントローラ300は、ペダル26Cの操作量に応じて、走行用発電機201A,201Bを制御する際、上述の実施例と同様の態様で、基準速度を基準としたペダル26Cの操作速度の高低に応じて、走行用発電機201A,201Bの出力特性を可変すればよい。この場合も、基準速度が上述の実施例と同様の態様で学習されればよい。

0175

また、上述した実施例では、レバー26A及び26Bとペダル26Cの操作量は、油圧式に検出されているが、レバー26A及び26Bとペダル26Cの操作量は、ポテンショメータ等を用いて電気的に検出されてもよいし、光学素子を用いて光学的に検出されてもよいし、ホール素子等を用いて磁気的に検出されてもよいし、検出方法は任意である。

0176

また、上述した実施例では、本発明が旋回用電動機21の駆動制御に適用された場合であったが、本発明は、電動機以外のアクチュエータ(例えば、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9、油圧モータ1A及び1B)の駆動制御にも適用可能である。例えば、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9の油圧を、レバー26A及びレバー26Bの操作量に応じて、コントロールバルブ17(電磁比例弁)により制御する際、上述の実施例と同様の態様で、基準速度を基準としたレバー26A及びレバー26Bの操作速度の高低に応じて、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9の出力特性を可変すればよい。この場合も、基準速度が上述の実施例と同様の態様で学習されればよい。

0177

また、上述した実施例では、操作手段の操作速度に応じて異なる3つの特性X1,X2,X3を示しているが、2つの特性だけでもよいし、4つ以上の特性が用意されてもよい。また、複数の代表的な操作速度に対応した代表的な特性を用意しておき、これらの代表的な特性を補間して、基準速度に対する操作速度の差に応じた特性を実現してもよい。

0178

また、上述した実施例では、補正用トルク電流指令値は、操作手段の操作速度に依存せずに生成されているが、補正用トルク電流指令値は、操作手段の操作速度に依存して生成されてもよい。例えば、補正用トルク電流指令値は、基準速度を基準とした操作手段の操作速度の高低に応じて補正されてもよく、このとき、補正用トルク電流指令値は、基準速度に比べて操作手段の操作速度が高くなると補正用トルク電流指令値が小さくなり且つ基準速度に比べて操作手段の操作速度が低くなると補正用トルク電流指令値が大きくなる態様で、補正されてもよい。

0179

また、上述した実施例では、旋回用電動機21がインバータ20によってPWM駆動される交流モータであり、その回転速度を検出するために、レゾルバ22及び旋回動作検出部57を用いる形態について説明したが、旋回用電動機21は直流モータであってもよい。この場合は、インバータ20、レゾルバ22及び旋回動作検出部57が不要となり、回転速度としては直流モータのタコジェネレータで検出される値を用いればよい。

0180

また上述した実施例では、トルク電流指令の演算にPI制御を用いる形態について説明したが、これに代えて、ロバスト制御適応制御比例制御積分制御等を用いてもよい。

図面の簡単な説明

0181

本実施の形態の駆動制御装置を含む建設機械を示す側面図である。
本実施の形態の駆動制御装置を含む建設機械の構成を表すブロック図である。
本実施の形態の駆動制御装置40の構成を示す制御ブロック図である
本実施の形態の建設機械の駆動制御装置40における操作レバー26Aの操作量と駆動領域との関係を示す特性図である。
本実施の形態の駆動制御装置のトルク制限部53のトルク制限特性を示す図である。
本実施の形態のトルク指令生成部60において生成されるトルク指令の特性を示す図である。
トルク指令生成部60において実行されるトルク電流指令生成処理の一例を示すフローチャートである。
学習部60bにおいて実行される基準速度学習処理の一例を示すフローチャートである。
学習により決定される操作速度の平均値Vaveの一例を示す図である。
本実施の形態の駆動制御装置で用いるトルク指令の特性であって、(a)は補正用トルク電流指令値Tf(x、y)の特性、(b)はトルク電流指令値Tcmdの特性を示す。
本実施の形態の旋回用駆動制御装置による旋回動作時の駆動制御の処理手順を示す図である。
操作速度に応じた速度指令の特性を示す図である。
電動機により駆動される機構が下部走行体の走行機構であるその他の建設機械の構成を表すブロック図である。

符号の説明

0182

1下部走行体
1A、1B油圧モータ
2旋回機構
3上部旋回体
4ブーム
5アーム
6バケット
7ブームシリンダ
8アームシリンダ
9バケットシリンダ
10キャビン
11エンジン
12電動発電機
13減速機
14メインポンプ
15パイロットポンプ
16高圧油圧ライン
17コントロールバルブ
18インバータ
19バッテリ
20 インバータ
21旋回用電動機
23メカニカルブレーキ
24旋回減速機
25パイロットライン
26操作装置
26A、26Bレバー
26Cペダル
27油圧ライン
28 油圧ライン
29圧力センサ
30コントローラ
31アシスト駆動制御装置
40駆動制御装置
50駆動指令生成部
51減算器
52切替スイッチ部
53トルク制限部
54 減算器
55PI制御部
56電流変換部
57旋回動作検出部
60トルク指令生成部
60aマップ記憶部
60b 学習部
60c学習結果記憶部
61補正用トルク指令生成部
70 主制御部
80速度指令生成部
81 切替スイッチ部
82 減算器
83 PI制御部
90学習スイッチ
92表示装置
98個人認証装置
100,200建設機械
201A左走行用発電機
201B 右走行用発電機

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 日立建機株式会社の「 運搬車両」が 公開されました。( 2020/12/17)

    【課題・解決手段】運搬車両は、荷台と、荷台の積載荷重値を計測する荷重計測装置と、走行用電動モータと、走行用電動モータに対して電動モータ指令値を出力する走行制御装置と、シフトレバー及びアクセルペダルを備... 詳細

  • 日立建機株式会社の「 油圧駆動ファン制御装置」が 公開されました。( 2020/12/17)

    【課題・解決手段】油圧駆動ファン制御装置(21)は、可変容量型の油圧ポンプ(2)と、油圧ポンプ(2)からの圧油により駆動される油圧モータ(6)と、油圧モータ(6)により駆動される油圧駆動ファン(7)と... 詳細

  • 株式会社日立製作所の「 駆動制御装置および該駆動制御装置を搭載する編成列車」が 公開されました。( 2020/12/17)

    【課題・解決手段】編成内の自己供給源の数が故障等により減少して、一定数の駆動システムが動作不可になった場合に、列車が自走できるトルクを確保することができず、列車の運行に大きな影響を与える課題を解決する... 詳細

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ