図面 (/)

この項目の情報は公開日時点(2009年10月22日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (16)

課題

被露光領域走査露光を複数回の往復走査で行う場合に全体の処理時間を短縮することができるパターン描画装置の提供。

解決手段

対象物に光を照射する投光器と、投光器から照射された光の反射光光量分布を検出するラインセンサと、露光ヘッド、投光器、ラインセンサを往復走査させる主走査機構と、光量分布のピーク部分の重心位置を算出する重心位置算出部と、重心位置と目標位置との差に基づいて露光ヘッドの光学系を移動させる距離を算出する移動距離算出部と、その距離に基づいて光学系を移動させる移動部とを備え、露光ヘッドが対象物上を主走査方向に沿って走査露光しているとき、ラインセンサは、露光ヘッドが走査露光中の走査列の近傍に位置する走査列であって後で露光ヘッドが走査露光する走査列からの反射光の光量分布を検出する。

概要

背景

従来、デジタルマイクロミラーデバイスDMD)等の空間変調素子を用い、画像情報に応じて変調されたビーム光基板上の感光材料パターン露光を行うパターン描画装置が提案されている。その一例として、特許文献1に開示された技術がある。

特許文献1に開示されている技術は、露光手段と、移動手段と、基準部検出手段と、距離測定手段と、制御手段とを備えている。

露光手段は、画像情報に応じて変調されたビーム光により、基板上の感光材料を走査露光する。移動手段は、露光手段と基板とを走査方向に沿った方向へ相対移動させる。移動手段は、感光材料を走査方向に沿った方向に往復移動させる。基準部検出手段は、感光材料に設けられた露光位置の基準部(アライメントマーク)を検出する。距離測定手段は、基準部測定手段の近傍に設けられ、感光材料の被露光面との距離を測定する。制御手段は、基準部検出手段による検出情報に基づいて露光位置の補正を行い、且つ、距離測定手段による測定情報に基づいてビーム光の焦点位置を被露光面に一致させるフォーカス制御を行う。感光材料の往路移動時に、基準部検出手段による基準部の検出、および距離測定手段による距離測定手段と感光材料の被露光面間の距離測定が行われる。感光材料の復路移動時に、制御手段によるフォーカス制御および露光手段による走査露光が行われる。

距離測定手段を基準部検出手段の近傍に設けることにより、距離測定手段と感光材料の被露光面間の距離測定を基準部の検出と同時に行うことができる。これにより、基板を基準部検出完了位置から露光開始位置まで移動させる距離を短くすることができる。よって、距離測定手段と感光材料の被露光面間の距離測定から露光開始までにかかる時間を短縮することができる。

しかしながら、特許文献1に記載の技術には、以下の課題があった。
すなわち、距離測定手段を基準部検出手段の近傍に設けるために、距離測定手段をコンパクトに構成する必要がある。距離測定手段の距離測定精度を高く維持しつつ距離測定手段をコンパクトに構成するには難がある。また、感光材料の往路移動時に基準部検出および距離測定を行い、感光材料の復路移動時に走査露光を行う構成においては、走査露光が感光材料の1回の往復移動で完了する場合にはさほど問題にはならない。しかしながら、描画の高精緻化を図るために感光材料の往復移動を複数回行う場合、つまり被露光領域の走査露光を複数回の往復走査で行う場合には、往路移動時に露光を行っていない分、全体の処理時間が多くなってしまう。
特開2005−266779号公報

概要

被露光領域の走査露光を複数回の往復走査で行う場合に全体の処理時間を短縮することができるパターン描画装置の提供。対象物に光を照射する投光器と、投光器から照射された光の反射光光量分布を検出するラインセンサと、露光ヘッド、投光器、ラインセンサを往復走査させる主走査機構と、光量分布のピーク部分の重心位置を算出する重心位置算出部と、重心位置と目標位置との差に基づいて露光ヘッドの光学系を移動させる距離を算出する移動距離算出部と、その距離に基づいて光学系を移動させる移動部とを備え、露光ヘッドが対象物上を主走査方向に沿って走査露光しているとき、ラインセンサは、露光ヘッドが走査露光中の走査列の近傍に位置する走査列であって後で露光ヘッドが走査露光する走査列からの反射光の光量分布を検出する。

目的

本発明は、このような実情に鑑みてなされたもので、その第1の目的は、被露光領域の走査露光を複数回の往復走査で行う場合に、往路走査および復路走査の双方で走査露光を行うことにより、全体の処理時間を短縮することである。その第2の目的は、焦点制御のための距離測定手段を基準部検出手段の近傍に設ける必要性をなくして距離測定手段の設計の自由度を高めることにより、高精度かつ安定した距離検出を可能にすることである。

効果

実績

技術文献被引用数
1件
牽制数
1件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

対象物に対してビーム光照射することにより当該対象物にパターンを描画するパターン描画装置であって、前記対象物が設置されるステージと、前記対象物に対し主走査方向へ相対移動しつつ前記対象物にビーム光を照射する露光ヘッドと、前記対象物に対し主走査方向へ相対移動しつつ前記対象物に光を照射する投光器と、直線状に配列された複数の画素を有し、前記投光器から照射された光が前記対象物で反射されたときの反射光光量分布を検出するラインセンサと、前記露光ヘッド、前記投光器、および前記ラインセンサが一定の位置関係を保った状態でこれらを前記ステージに対し相対的に主走査方向に沿って往復走査させる主走査機構と、前記露光ヘッド、前記投光器、および前記ラインセンサが一定の位置関係を保った状態でこれらを前記ステージに対し相対的に前記主走査方向と直交する副走査方向に走査させる副走査機構と、前記ラインセンサにより検出された光量分布のピーク部分の重心位置を算出する重心位置算出部と、前記ピーク部分の重心位置と前記ラインセンサの前記複数の画素上で予め設定された目標位置との差を算出し、その差に基づいて、前記対象物の表面に前記ビーム光の焦点が合うように前記露光ヘッド内の光学系を移動させる距離を算出する移動距離算出部と、前記移動距離算出部で算出された距離に基づいて、前記光学系を移動させる移動部とを備え、前記露光ヘッドが前記対象物上を前記主走査方向に沿って走査露光しているとき、前記ラインセンサは、前記露光ヘッドが走査露光中の走査列の近傍に位置する走査列であって後で前記露光ヘッドが走査露光する走査列からの反射光の光量分布を検出し、前記ラインセンサにより前記光量分布が検出された位置に前記露光ヘッドが到来した時に、前記移動部は前記光学系を移動させることを特徴とするパターン描画装置。

請求項2

前記露光ヘッドが前記対象物上を前記主走査方向に沿って走査露光しているとき、前記ラインセンサは、前記露光ヘッドが走査露光中の走査列の隣に位置する走査列であって後で前記露光ヘッドが走査露光する走査列からの反射光の光量分布を検出することを特徴とする請求項1に記載のパターン描画装置。

請求項3

前記重心位置算出部は、前記投光器および前記ラインセンサが前記主走査方向の走査を行っている時に所定の時間間隔周期的に前記重心位置を算出し、前記パターン描画装置は、前記重心位置の算出の各前記時間間隔内で、前記投光器が照射する光の光量を複数段階に変化させる光量調節部をさらに含み、前記重心位置算出部は、各前記周期において、前記ラインセンサが受光した反射光の光量の最大値所定範囲に入っている時の光量分布に基づき、前記重心位置を算出することを特徴とする請求項1または2に記載のパターン描画装置。

請求項4

前記光量調節部は、前記光量の調節を、前記投光器が光を照射する時間を調節することで行うことを特徴とする請求項3に記載のパターン描画装置。

請求項5

前記光量調節部は、前記光量の調節を、前記投光器を駆動する電圧を調節することで行うことを特徴とする請求項3に記載のパターン描画装置。

請求項6

対象物に対してビーム光を照射することにより当該対象物にパターンを描画するパターン描画方法であって、ステージに基板を設置する設置ステップと、露光ヘッドを前記対象物に対し主走査方向へ相対移動させつつ前記対象物にビーム光を照射する走査露光ステップと、投光器を前記対象物に対し主走査方向へ相対移動させつつ前記対象物に光を照射する投光ステップと、直線状に配列された複数の画素を有するラインセンサを用い、前記投光器から照射された光が前記対象物で反射されたときの反射光の光量分布を検出する光量分布検出ステップと、前記露光ヘッド、前記投光器、および前記ラインセンサが一定の位置関係を保った状態でこれらを前記ステージに対し相対的に主走査方向に沿って往復走査させる主走査ステップと、前記露光ヘッド、前記投光器、および前記ラインセンサが一定の位置関係を保った状態でこれらを前記ステージに対し相対的に前記主走査方向と直交する副走査方向に走査させる副走査ステップと、前記ラインセンサにより検出された光量分布のピーク部分の重心位置を算出する重心位置算出ステップと、前記ピーク部分の重心位置と前記ラインセンサの前記複数の画素上で予め設定された目標位置との差を算出し、その差に基づいて、前記対象物の表面に前記ビーム光の焦点が合うように前記露光ヘッド内の光学系を移動させる距離を算出する移動距離算出ステップと、前記移動距離算出部で算出された距離に基づいて、前記光学系を移動させる移動ステップとを備え、前記露光ヘッドが前記対象物上を前記主走査方向に沿って走査露光しているとき、前記ラインセンサは、前記露光ヘッドが走査露光中の走査列の近傍に位置する走査列であって後で前記露光ヘッドが走査露光する走査列からの反射光の光量分布を検出し、前記ラインセンサにより前記光量分布が検出された位置に前記露光ヘッドが到来した時に、前記移動ステップは前記光学系を移動させることを特徴とするパターン描画方法。

技術分野

0001

本発明は、パターン描画装置およびパターン描画方法に関し、より詳しくは、距離測定手段の設計の自由度を高めることにより高精度かつ安定した距離検出を可能にするとともに、被露光領域走査露光を複数回の往復走査で行う場合に全体の処理時間を短縮することができるパターン描画装置およびパターン描画方法に関する。

背景技術

0002

従来、デジタルマイクロミラーデバイスDMD)等の空間変調素子を用い、画像情報に応じて変調されたビーム光基板上の感光材料パターン露光を行うパターン描画装置が提案されている。その一例として、特許文献1に開示された技術がある。

0003

特許文献1に開示されている技術は、露光手段と、移動手段と、基準部検出手段と、距離測定手段と、制御手段とを備えている。

0004

露光手段は、画像情報に応じて変調されたビーム光により、基板上の感光材料を走査露光する。移動手段は、露光手段と基板とを走査方向に沿った方向へ相対移動させる。移動手段は、感光材料を走査方向に沿った方向に往復移動させる。基準部検出手段は、感光材料に設けられた露光位置の基準部(アライメントマーク)を検出する。距離測定手段は、基準部測定手段の近傍に設けられ、感光材料の被露光面との距離を測定する。制御手段は、基準部検出手段による検出情報に基づいて露光位置の補正を行い、且つ、距離測定手段による測定情報に基づいてビーム光の焦点位置を被露光面に一致させるフォーカス制御を行う。感光材料の往路移動時に、基準部検出手段による基準部の検出、および距離測定手段による距離測定手段と感光材料の被露光面間の距離測定が行われる。感光材料の復路移動時に、制御手段によるフォーカス制御および露光手段による走査露光が行われる。

0005

距離測定手段を基準部検出手段の近傍に設けることにより、距離測定手段と感光材料の被露光面間の距離測定を基準部の検出と同時に行うことができる。これにより、基板を基準部検出完了位置から露光開始位置まで移動させる距離を短くすることができる。よって、距離測定手段と感光材料の被露光面間の距離測定から露光開始までにかかる時間を短縮することができる。

0006

しかしながら、特許文献1に記載の技術には、以下の課題があった。
すなわち、距離測定手段を基準部検出手段の近傍に設けるために、距離測定手段をコンパクトに構成する必要がある。距離測定手段の距離測定精度を高く維持しつつ距離測定手段をコンパクトに構成するには難がある。また、感光材料の往路移動時に基準部検出および距離測定を行い、感光材料の復路移動時に走査露光を行う構成においては、走査露光が感光材料の1回の往復移動で完了する場合にはさほど問題にはならない。しかしながら、描画の高精緻化を図るために感光材料の往復移動を複数回行う場合、つまり被露光領域の走査露光を複数回の往復走査で行う場合には、往路移動時に露光を行っていない分、全体の処理時間が多くなってしまう。
特開2005−266779号公報

発明が解決しようとする課題

0007

本発明は、このような実情に鑑みてなされたもので、その第1の目的は、被露光領域の走査露光を複数回の往復走査で行う場合に、往路走査および復路走査の双方で走査露光を行うことにより、全体の処理時間を短縮することである。その第2の目的は、焦点制御のための距離測定手段を基準部検出手段の近傍に設ける必要性をなくして距離測定手段の設計の自由度を高めることにより、高精度かつ安定した距離検出を可能にすることである。

課題を解決するための手段

0008

本発明に係るパターン描画装置は、
対象物に対してビーム光を照射することにより当該対象物にパターンを描画するパターン描画装置であって、
上記対象物が設置されるステージと、
上記対象物に対し主走査方向へ相対移動しつつ上記対象物にビーム光を照射する露光ヘッドと、
上記対象物に対し主走査方向へ相対移動しつつ上記対象物に光を照射する投光器と、
直線状に配列された複数の画素を有し、上記投光器から照射された光が上記対象物で反射されたときの反射光光量分布を検出するラインセンサと、
上記露光ヘッド、上記投光器、および上記ラインセンサが一定の位置関係を保った状態でこれらを上記ステージに対し相対的に主走査方向に沿って往復走査させる主走査機構と、
上記露光ヘッド、上記投光器、および上記ラインセンサが一定の位置関係を保った状態でこれらを上記ステージに対し相対的に上記主走査方向と直交する副走査方向に走査させる副走査機構と、
上記ラインセンサにより検出された光量分布のピーク部分の重心位置を算出する重心位置算出部と、
上記ピーク部分の重心位置と上記ラインセンサの上記複数の画素上で予め設定された目標位置との差を算出し、その差に基づいて、上記対象物の表面に上記ビーム光の焦点が合うように上記露光ヘッド内の光学系を移動させる距離を算出する移動距離算出部と、
上記移動距離算出部で算出された距離に基づいて、上記光学系を移動させる移動部とを備え、
上記露光ヘッドが上記対象物上を上記主走査方向に沿って走査露光しているとき、上記ラインセンサは、上記露光ヘッドが走査露光中の走査列の近傍に位置する走査列であって後で上記露光ヘッドが走査露光する走査列からの反射光の光量分布を検出し、
上記ラインセンサにより上記光量分布が検出された位置に上記露光ヘッドが到来した時に、上記移動部は上記光学系を移動させることを特徴とする。

0009

本発明における対象物は、例えば、上面に感光性材料膜が設けられた基板である。
本発明によれば、露光ヘッドが対象物上を主走査方向に沿って走査露光しているとき、ラインセンサは、露光ヘッドが走査露光中の走査列の近傍に位置する走査列であって後で露光ヘッドが走査露光する走査列からの反射光の光量分布を検出する。また、ラインセンサにより光量分布が検出された位置に露光ヘッドが到来した時に、移動部は光学系を移動させる。
そのため、焦点制御のための距離測定を、走査露光とは別の時点で行う必要がない。これにより、露光ヘッドは往路走査時および復路走査時の双方において走査露光をすることができる。故に、復路のみで走査露光を行う場合に比べ、全体としての処理時間を大幅に低減することができる。また、走査露光を行う前に補完処理移動平均等のデータ処理を行うことが可能となり、誤検出を排除しつつ高精度な焦点位置調節が可能となる。また、焦点位置調節を対物レンズ上下移動で行う際に、対物レンズ駆動部の応答遅れを考慮して焦点位置調節を行うことができ、主走査方向に高速に走査露光しても高精度に焦点位置調節を行うことができる。

0010

本発明においては、
上記露光ヘッドが上記対象物上を上記主走査方向に沿って走査露光しているとき、上記ラインセンサは、上記露光ヘッドが走査露光中の走査列の隣に位置する走査列であって後で上記露光ヘッドが走査露光する走査列からの反射光の光量分布を検出することが好ましい。

0011

この構成によれば、ラインセンサは露光ヘッドが露光走査している走査列の隣の走査列を走査するので、露光ヘッドが対象物に対し主走査方向へ相対移動する回数を最小限とすることができる。よって、全体としての処理時間を一層低減することができる。

0012

本発明においては、
上記重心位置算出部は、上記投光器および上記ラインセンサが上記主走査方向の走査を行っている時に所定の時間間隔周期的に上記重心位置を算出し、
上記パターン描画装置は、
上記重心位置の算出の各上記時間間隔内で、上記投光器が照射する光の光量を複数段階に変化させる光量調節部をさらに含み、
上記重心位置算出部は、各上記周期において、上記ラインセンサが受光した反射光の光量の最大値所定範囲に入っている時の光量分布に基づき、上記重心位置を算出することが好ましい。

0013

この構成によれば、投光器が照射する光の光量を複数段階に変化させることにより、対象物からの反射光の光量が複数段階に調節される。これにより、重心位置算出に適した光量の反射光をラインセンサに受光させ、その反射光の光量に基づいて重心位置を算出することができる。よって、表面の反射率が位置によって変動する対象物、例えば、配線等のパターンが形成された基板等であっても、反射光光量分布のピーク部分の重心位置を正確に算出することができ、走査露光中に常に安定した焦点位置調節を行うことができる。

0014

本発明においては、
上記光量調節部は、
上記光量の調節を、上記投光器が光を照射する時間を調節することで行うことが好ましい。

0015

この構成によれば、光の照射時間によって、投光器が照射する光の光量を確実に調節することができる。

0016

本発明においては、
上記光量調節部は、
上記光量の調節を、上記投光器を駆動する電圧を調節することで行うことが好ましい。

0017

この構成によれば、光源を駆動する電圧によって、投光器が照射する光の光量を確実に調節することができる。

0018

本発明に係るパターン描画方法は、
対象物に対してビーム光を照射することにより当該対象物にパターンを描画するパターン描画方法であって、
ステージに基板を設置する設置ステップと、
露光ヘッドを上記対象物に対し主走査方向へ相対移動させつつ上記対象物にビーム光を照射する走査露光ステップと、
投光器を上記対象物に対し主走査方向へ相対移動させつつ上記対象物に光を照射する投光ステップと、
直線状に配列された複数の画素を有するラインセンサを用い、上記投光器から照射された光が上記対象物で反射されたときの反射光の光量分布を検出する光量分布検出ステップと、
上記露光ヘッド、上記投光器、および上記ラインセンサが一定の位置関係を保った状態でこれらを上記ステージに対し相対的に主走査方向に沿って往復走査させる主走査ステップと、
上記露光ヘッド、上記投光器、および上記ラインセンサが一定の位置関係を保った状態でこれらを上記ステージに対し相対的に上記主走査方向と直交する副走査方向に走査させる副走査ステップと、
上記ラインセンサにより検出された光量分布のピーク部分の重心位置を算出する重心位置算出ステップと、
上記ピーク部分の重心位置と上記ラインセンサの上記複数の画素上で予め設定された目標位置との差を算出し、その差に基づいて、上記対象物の表面に上記ビーム光の焦点が合うように上記露光ヘッド内の光学系を移動させる距離を算出する移動距離算出ステップと、
上記移動距離算出部で算出された距離に基づいて、上記光学系を移動させる移動ステップとを備え、
上記露光ヘッドが上記対象物上を上記主走査方向に沿って走査露光しているとき、上記ラインセンサは、上記露光ヘッドが走査露光中の走査列の近傍に位置する走査列であって後で上記露光ヘッドが走査露光する走査列からの反射光の光量分布を検出し、
上記ラインセンサにより上記光量分布が検出された位置に上記露光ヘッドが到来した時に、上記移動ステップは上記光学系を移動させることを特徴とする。

発明の効果

0019

本発明によれば、被露光領域の走査露光を複数回の往復走査で行う場合に、往路走査および復路走査の双方で走査露光を行うことにより、全体の処理時間を短縮することができる。本発明によれば、全体の処理時間を短縮することができるので、焦点位置制御のための距離測定手段(投光器、ラインセンサ、重心位置算出部等)を基準部検出手段の近傍に設ける必要性がなくなる。よって、距離測定手段の設計の自由度を高めることにより、高精度かつ安定した距離検出が可能となる。

発明を実施するための最良の形態

0020

(第1実施形態)
本発明の第1実施形態に係るパターン描画装置について、図面を参照しつつ説明する。図1は、第1実施形態に係るパターン描画装置を示す斜視図である。図2は、第1実施形態に係るパターン描画装置の主要部分を示すブロック図である。図3は、第1実施形態におけるオートフォーカス部を模式的に示す図である。図4は、ラインセンサの受光量を示す図である。図5は、複数の距離検出部、複数の露光ヘッド、および各露光ヘッド描画範囲の位置関係を示す図である。図6〜8は、距離検出部による検出位置、露光ヘッドによる走査露光位置を時系列的に示す図である。図6の左端から右端、図7の左端から右端、図8の左端から右端にかけて順に時間が経過しているものとする。図5〜8における符号53は距離検出部から照射されるビーム光の像の形状および位置を表し、符号54は露光ヘッドから照射されるビーム光の像の形状および位置を表している。

0021

第1実施形態に係るパターン描画装置1は、基板2上の感光性材料(図示せず)に対してビーム光3を照射することにより当該感光性材料に配線等のパターンを描画するパターン描画装置である。

0022

パターン描画装置1は、ステージ4と、露光ヘッド5と、投光器12と、ラインセンサ13と、主走査機構7と、副走査機構8と、重心位置算出部14と、移動距離算出部9と、移動部6とを備える。投光器12と、ラインセンサ13は、距離検出部33を構成している。

0023

ステージ4には、基板2が設置される。ステージ4には吸着保持機構(図示せず)が設けられている。この吸着保持機構により、基板2はステージ4上に吸着保持される。

0024

露光ヘッド5は、基板2に対し主走査方向Yへ相対移動しているときに、感光性材料にビーム光3を照射する。図1に示される例では、ステージ4が主走査機構7によって移動する。これにより、露光ヘッド5は、基板2に対し主走査方向Yへ相対移動する。
露光ヘッド5は、レーザ駆動部(図示せず)と、レーザダイオード37(図3参照)と、光変調素子52と、レンズ光学系51と、対物レンズ駆動部23(図2参照)と、移動部6とを含む。光変調素子52は、例えば回折格子型の光変調素子である。回折格子型の光変調素子としては、例えばGLV(Grating Light Valve:グレーチングライトバルブ)(シリコン・ライト・マシーンズ(サニベールカリフォルニア)の登録商標)等が知られている。レーザダイオード37は、レーザ駆動部18によって駆動されることでビーム光3(レーザ光)を出力する。そのビーム光3は、光変調素子52により光変調され、描画すべきパターンに応じたビーム光3が生成される。光変調素子52により光変調されたビーム光3は、レンズ光学系51を構成する対物レンズの上下方向の移動によって鉛直方向の焦点位置が調節される。焦点位置が調節されたビーム光3は、基板2上の感光性材料に照射される(図3参照)。

0025

投光器12は、基板2に対し主走査方向Yへ相対移動しつつ基板2上の感光性材料に光11を照射する。投光器12は、例えばレーザダイオードで構成することができ、この場合、ビーム光11(レーザ光)を照射する。投光器12は、レーザ駆動部18によって駆動されることで、ビーム光11を照射する。投光器12は、投光制御部21により、投光タイミング、投光時間、投光器12の駆動電圧等が制御される。投光時間、駆動電圧の制御により、投光器12が出力する光11の光量が制御される。

0026

投光制御部21には、オートフォーカス制御信号発生部24(以下、AF制御信号発生部24と称する)からの信号が入力される。AF制御信号発生部24は、露光ヘッド5が基板2のどの位置を露光しているのか、また投光器12が基板2のどの位置に光11を照射しているのかをレーザ測長器50からの情報等に基づいて求め、それらの位置を示す信号を投光制御部21および検出信号処理部38に出力する。投光制御部21は、それらの信号に基づいて、投光器12の投光時間、駆動電圧を決定する。検出信号処理部38に含まれる重心位置算出部14は、それらの信号に基づいて、自身が基板2上のどの位置における反射光16の光量のピーク重心位置W(図4参照)を求めているのかを認識する。

0027

ラインセンサ13は、直線状に配列された複数の画素15を有し、投光器12から照射された光11が感光性材料で反射されたときの反射光16の光量分布を検出する。ラインセンサ13は、CCDイメージセンサまたはCMOSイメージセンサである。ラインセンサ13は、投光器12から照射された光11が感光性材料で反射されたときの反射光16を画素15によって受光する。ラインセンサ13は、ラインセンサ制御部27に接続されている。ラインセンサ制御部27は、ラインセンサ13の出力タイミングを制御するとともに、A/D変換によってラインセンサ13のアナログ出力信号デジタル信号に変換する。そのデジタル信号は、重心位置算出部14に出力される。そのデジタル信号は、反射光16の受光量分布30の情報(図4参照)、すなわち、反射光16を受光した画素15の位置情報および各画素15が受光した光の光量情報を含む。

0028

露光ヘッド5が感光性材料上を主走査方向Yに沿って走査露光しているとき、ラインセンサ13は、露光ヘッド5が走査露光中の走査列10(図5〜8参照)の近傍に位置する走査列であって後で露光ヘッド5が走査露光する走査列10からの反射光の受光量分布30を検出する。

0029

重心位置算出部14は、ラインセンサ13により検出された受光量分布30のピーク部分28の重心位置W(図4参照)を算出する。重心位置算出部14は、各画素15の受光量に基づき受光量分布30を求める。受光量分布30には、受光量が急激に増加し減少するピーク部分28が存在する。このピーク部分28は、例えば、ガウス曲線のような形状となる。ピーク部分28の重心位置Wは、各画素15のいずれかの位置に対応する。重心位置算出部14は、算出した重心位置Wを、光11の反射位置対応付けて記憶する。

0030

重心位置算出部14は、投光器12およびラインセンサ13が主走査方向Yの走査を行っている時に所定の時間間隔で周期的に重心位置Wを算出する。投光器12は、例えば一定の電圧で駆動され、一定の光量の光11を照射する。

0031

主走査機構7は、露光ヘッド5、投光器12、およびラインセンサ13が一定の位置関係を保った状態でこれらをステージ4に対し相対的に主走査方向Yに沿って往復走査させる。図1に示される例では、主走査機構7はステージ4を移動させる。基台31上にレールおよびアクチュエータからなる主走査機構7が設けられている。基台31には、門形ゲート32が固定されている。このゲート32の梁部の主走査方向中央部に複数の露光ヘッド5が副走査方向Xに沿って設けられている。ゲート32の梁部の主走査方向一端部に複数の距離検出部33が副走査方向Xに沿って設けられている。1つの投光器12と1つのラインセンサ13が、1つの距離検出部33を構成している。

0032

露光ヘッド5、投光器12、およびラインセンサ13が一定の位置関係を保った状態でゲート32に固定されている。距離検出部33が主走査方向Yに沿って走査する基板2上の走査列10(図5〜8参照)は、露光ヘッド5が主走査方向Yに沿って走査する基板2の走査列10に対して1つ以上(図5〜8に示される例では1つ)副走査方向Xに離れている。すなわち、距離検出部33は、露光ヘッド5が走査する走査列10を露光ヘッド5よりも先に走査する位置にある。図5〜8に示される例では、露光ヘッド5と当該露光ヘッド5に対応する距離検出部33の中心部は、主走査方向YにΔY離れ、主走査方向XにΔX(例えば4mm)離れている。このΔXは、1つの露光ヘッド5が主走査方向Yに走査露光するときの露光幅に等しい。1つの露光ヘッド5は、例えば、副走査方向Xに92mmの範囲を走査する。この場合、露光ヘッド5は、(92/4)すなわち23回の主走査方向Yの走査を行うことで、全範囲を走査露光することができる。往路方向の走査と復路方向の走査を交互に行うことにより23回の走査が行われる。

0033

副走査機構8は、露光ヘッド5、投光器12、およびラインセンサ13が上記の如く一定の位置関係を保った状態でこれらを、ステージ4に対し相対的に主走査方向Yと直交する副走査方向Xに走査させる。図1に示される例では、副走査機構8はステージ4を移動させる。

0034

移動距離算出部9は、受光量分布30のピーク部分28の重心位置Wとラインセンサ13の複数の画素15上で予め設定された目標位置Mとの差Δd(図4参照)を算出し、その差Δdに基づいて、感光性材料の表面にビーム光3の焦点が合うように露光ヘッド5内のレンズ光学系51の対物レンズを移動させる距離hを算出する。目標位置Mは、感光性材料の表面にビーム光3の焦点が合う時に、受光量分布30のピーク部分28の重心Wが位置する点である。

0035

移動部6は、移動距離算出部9で算出された距離hに基づいて、レンズ光学系51の対物レンズを上下方向に移動させる。移動部6は、アクチュエータ等により構成される。
図6〜8に示されるように、ラインセンサ13により受光量分布30が検出された位置に露光ヘッド5が到来した時に、移動部6はレンズ光学系51の対物レンズを移動させる。これにより、感光性材料の表面に焦点が位置するようにビーム光3の焦点位置が調節される。
なお、図5〜8に示される例では、露光ヘッド5が対象物上を主走査方向Yに沿って走査露光しているとき、ラインセンサ13は、露光ヘッド5が走査露光中の走査列10(例えば10a)の隣に位置する走査列であって後で露光ヘッド5が走査露光する走査列10(例えば10b)からの反射光の光量分布を検出する。

0036

次に、パターン描画装置1の動作について、図面を参照しつつ説明する。図9〜11は、パターン描画装置1の動作を示すフローチャートである。

0037

まず、ステージ4が主走査方向Y(−Y方向(図5参照))に移動する。これにより、距離検出部33は、主走査方向Y(+Y方向(図5参照))に感光性材料の走査を行いつつ、第1の走査列10a(図5図6の<1>参照)に光11を照射する(ステップS1)。光11の照射により、感光性材料の表面に光11の像53が形成される。光11は、感光性材料を感光させない波長および強度の光が選択されるため、感光性材料が光11で感光されることはない。最初に光11が照射されるのは、第1の走査列10aの前端部である。次いで、光11の反射光16の受光量分布30を算出する(ステップS2)。次いで、受光量分布30のピーク部分28の重心位置Wを算出する(ステップS3)。次いで、その重心位置Wと予め設定された目標位置Mとの差Δdを算出する(ステップS4)。その差Δdに基づいて、感光性材料の表面にビーム光3の焦点が一致するようにレンズ光学系51の対物レンズを上下方向に移動させる距離hを算出し、その距離hを記憶する(ステップS5)。距離検出部33は、第1の走査列10aの前端部から後端部まで、所定の周期でステップS1からステップS5を繰り返す(図6の<1>〜<3>参照)。後端部までステップS1からステップS5を繰り返したら(ステップS6のYES)、後端部が露光ヘッド5の横を通過するまでさらに主走査方向Yに走査し(図6の<4>参照)、ある所まで走査したら主走査方向Y(+Y方向)への走査を停止する(図6の<5>参照)(ステップS7)。

0038

次いで、1つの走査列10の幅に相当する距離分、ステージ4は副走査方向X(+X方向(図5参照))へ移動する(図6の<6>参照)(ステップS8)。これにより、第1の走査列10aの延長線上に露光ヘッド5が位置する。また、第2の走査列10bの延長線上に距離検出部33が位置する。次いで、第1の走査列10aを走査した時とは逆方向(+Y方向)にステージ4を移動させる(図6の<7>参照)(ステップS9)。これにより、第1の走査列10aを走査した時とは逆方向(−Y方向)に走査が行われる。すると、露光ヘッド5が第1の走査列10aの後端部に到達する(図6の<7>参照)(ステップS10)。移動部6は、移動距離算出部9で算出された距離h分、レンズ光学系51を上下方向に移動させる(ステップS11)。これにより、感光性材料の表面にビーム光3の焦点が一致する。ビーム光3の照射により、感光性材料の表面にビーム光3の像54が形成される。主走査方向Yの走査中、移動部6は、移動距離算出部9で算出された距離hに基づき、距離h分、レンズ光学系51の対物レンズを上下方向に移動させる。

0039

走査を続けると、距離検出部33が第2の走査列10の後端部に到達する(図6の<8>参照)(ステップS12)。距離検出部33は、主走査方向Y(−Y方向)に感光性材料の走査を行いつつ、第2の走査列10bの後端部に光11を照射する(ステップS13)。次いで、光11の反射光16の受光量分布30を算出する(ステップS14)。次いで、受光量分布30のピーク部分28の重心位置Wを算出する(ステップS15)。次いで、その重心位置Wと予め設定された目標位置Mとの差Δdを算出する(ステップS16)。その差Δdに基づいて、感光性材料の表面にビーム光3の焦点が一致するようにレンズ光学系51の対物レンズを上下方向に移動させる距離hを算出し、その距離hを記憶する(ステップS17)。距離検出部33は、第2の走査列10bの後端部から前端部まで、所定の周期でステップS13からステップS16を繰り返す(図7の<8>〜<10>参照)。前端部までステップS13からステップS16を繰り返したら(ステップS18のYES)、主走査方向Y(−Y方向)への走査を停止する(図7の<11>参照)(ステップS19)。
ステップS1〜S19の説明でわかるように、1回目の主走査方向Yの走査(+Y方向の走査)時に第1走査列10aにおける距離hの算出が行われる。2回目の主走査方向Yの走査(−Y方向の走査)時に第1走査列10aの露光と第2走査列10bにおける距離hの算出が並列的に行われる。

0040

その後、最後の走査列10の走査露光が終了したか否かの判断がなされ(ステップS20)、終了していなければ、次の走査列10に対する同様の処理がなされる(ステップS21)。例えば、3回目の主走査方向Yの走査(+Y方向の走査)時には、第2走査列10aの露光と第3走査列10cにおける距離hの算出が並列的に行われる(図7の<13>〜<16>参照)。4回目以降の主走査方向Yの走査時においても、露光と距離hの算出が並列的に行われる。最後の走査列10の走査露光が終了したら(ステップS20のYES)、全体の処理を終了する。

0041

なお、ステージ4上に基板2を設置した時の所期位置からの位置ずれを補正するためのアライメント動作は、1回目の主走査方向Yの走査直後であるステップS7の時点で行うことができる。例えば、基板2に設けられた複数のアライメント・マーク(図示せず)のカメラによる撮像を、ステップS1からステップS6と並行して行う。その撮像画像に基づいて、基板2の所期位置からの位置ずれ量を算出し、そのずれがなくなるようにステージ4を移動させることにより、アライメント動作を行うことができる。

0042

次に、パターン描画装置1の動作について、タイミングチャートを参照しつつ説明する。図11は、主走査方向Yの往路方向に動作するときのタイミングチャートである。図12は、主走査方向Yの復路方向に動作するときのタイミングチャートである。

0043

まず、往路方向の走査時の動作について図11を参照しつつ説明する。以下の丸括弧付きの番号は、図面中の丸括弧付きの番号に対応している。
(1)まず、オートフォーカス動作の開始を示すオートフォーカス信号AF)が出力される。
(2)オートフォーカス動作の開始と略同時に往路方向(+Y方向)の走査が開始される。
(3)すると、受光量分布30のピーク部分28の重心位置Wを求めるタイミングを示すトリガ信号(TRG)が所定の時間間隔T1で周期的に出力される。
(4)ラインセンサ13は、T1より十分に小さい時間間隔で周期的に反射光16の受光量分布30を出力する。
(5)受光量分布30のデータは、順次、SRAMに書き込まれる。
(6)SRAMに書き込まれた受光量分布30のデータは、順次、読み出される。
(7)読み出された受光量分布30のデータに基づいて、受光量分布30のピーク部分28の重心位置Wが順次算出される。さらに、重心位置Wとに基づいて、感光性材料の表面にビーム光3の焦点が一致するようにレンズ光学系51の対物レンズを上下方向に移動させる距離hが算出される。距離hのデータは順次、SRAMに書き込まれる。距離hのデータは、直後の復路方向の走査時における対物レンズの移動に用いられる。
(8)焦点位置調節のタイミングを示す信号が出力される。最初のタイミングは、トリガ信号(TRG)が出力された時点からT2経過した時である。以後、時間T1毎に焦点位置調節のタイミングを示す信号が出力される。
(9)焦点位置調節のタイミングに同期して、直前の復路方向の走査時に取得された距離hのデータが読み出され、レンズ光学系51の対物レンズが距離h分、上下方向に移動する。

0044

次に、復路方向の走査時の動作について図12を参照しつつ説明する。
(1)まず、オートフォーカス動作の開始を示すオートフォーカス信号(AF)が出力される。
(2)オートフォーカス動作の開始と略同時に復路方向(−Y方向)の走査が開始される。
(3)すると、受光量分布30のピーク部分28の重心位置Wを求めるタイミングを示すトリガ信号(TRG)が所定の時間間隔T1で周期的に出力される。
(4)ラインセンサ13は、T1より十分に小さい時間間隔で周期的に反射光16の受光量分布30を出力する。
(5)焦点位置調節のタイミングを示す信号が出力される。時間T1毎に焦点位置調節のタイミングを示す信号が出力される。
(6)焦点位置調節のタイミングに同期して、直前の往路方向の走査時に取得された距離hのデータが読み出され、レンズ光学系51の対物レンズが距離h分、上下方向に移動する。
(7)受光量分布30のデータは、順次、SRAMに書き込まれる。最初に書き込まれるのは、トリガ信号(TRG)が出力された時点からT2経過した時である。以後、時間T1毎に書き込まれる。
(8)SRAMに書き込まれた受光量分布30のデータは、順次、読み出される。
(9)読み出された受光量分布30のデータに基づいて、受光量分布30のピーク部分28の重心位置Wが順次算出される。さらに、重心位置Wとに基づいて、感光性材料の表面にビーム光3の焦点が一致するようにレンズ光学系51の対物レンズを上下方向に移動させる距離hを算出する。距離hのデータは順次、SRAMに書き込まれる。距離hのデータは、直後の往路方向の走査時における対物レンズの移動に用いられる。

0045

次に、図11の(7)および図12の(9)の段階における、データの書き込み順序を説明する。
図11の(7)に示されるように、往路方向の走査露光時には、直前の復路方向の走査時に取得された当該往路方向の走査露光用の距離hのデータをSRAMから読み出し、距離h分、対物レンズを移動させる。また、往路方向の走査露光時には、直後の復路方向の走査露光用の距離hのデータを取得し、SRAMに書き込む。
一方、図12の(9)に示されるように、復路方向の走査露光時には、直前の往路方向の走査時に取得された当該往路方向の走査露光用の距離hのデータをSRAMから読み出し、距離h分、対物レンズを移動させる。また、復路方向の走査露光時には、直後の往路方向の走査露光用の距離hのデータを取得し、SRAMに書き込む。
データの書き込み時と当該データの読み出し時では走査方向が逆なので、書き込み時にはアドレス昇順でデータを書き込み、読み出し時にはアドレス降順でデータを読み出す。

0046

パターン描画装置1によれば、被露光領域の走査露光を複数回の往復走査で行う際に、往路走査および復路走査の双方で走査露光を行うので、全体の処理時間を短縮することができる。また、全体の処理時間を短縮することにより、焦点位置制御のための距離測定手段(投光器12、ラインセンサ13、移動距離算出部9、重心位置算出部14等)を、アライメント・マーク検出手段の近傍に設ける必要性がなくなる。よって、距離測定手段の設計の自由度を高めることにより、高精度かつ安定した距離検出が可能となる。

0047

(第2実施形態)
本発明の第2実施形態に係るパターン描画装置について、図面を参照しつつ説明する。
図13は、第2実施形態に係るパターン描画装置の主要部分の構成を示すブロック図である。図14,15は、第2実施形態に係るパターン描画装置の動作を示すタイミングチャートである。なお、第1実施形態と同様の構成については、第1実施形態と同じ参照符号を付して、その説明を省略する。

0048

第2実施形態に係るパターン描画装置は、配線等のパターンがある程度形成された基板等、表面の反射率が位置によって変動する描画対象物についても、反射光光量分布のピーク部分の重心位置を正確に算出することができ、走査露光中に常に安定した焦点位置調節を行うことができるものである。以下、その構成について説明する。

0049

第2実施形態が第1実施形態と異なる点は、光量調節部41を備えている点と、重心位置算出部14に代えて重心位置算出部42を備えている点であり、その他の構成は、第1実施形態と同様である。光量調節部41は、投光制御部43内に設けられている。

0050

重心位置算出部42は、第1実施形態と同様、投光器12およびラインセンサ13が主走査方向Yの走査を行っている時に所定の時間間隔T1で周期的に重心位置を算出する。

0051

光量調節部41は、重心位置算出部42による重心位置算出の各時間間隔T1内で、投光器12が照射する光の光量を複数段階に変化させる。図14,15に示される例では、光量調節部41は、光量の調節を、投光器12が光を照射する時間を調節することで行う。なお、光量の調節は、光の照射時間の調節による方法に限定されない。例えば、光量の調節を、投光器12を駆動する電圧を調節することで行ってもよい。

0052

重心位置算出部42は、重心位置算出の各時間間隔T1内で、ラインセンサ13が受光した反射光の光量の最大値が所定範囲に入っている時の光量分布に基づき、重心位置を算出する。ここで言う「所定範囲」は、重心位置算出に適した範囲のことであり、上限値MAXと下限値MINを有する。すなわち、「所定範囲」は、ラインセンサ13の各画素15がオーバー露光となることがなく、且つ、ノイズと十分に見分けが付くような受光量の範囲である。

0053

次に、第2実施形態に係るパターン描画装置の動作について、図14のタイミングチャートを参照しつつ説明する。なお、往路方向の走査時の動作について説明し、復路方向の走査時の動作については説明を省略する。

0054

往路方向の走査時の動作の一例について説明する。なお、ここでは、第2実施形態における特徴な動作を主に説明し、それ以外の動作については説明を省略する。
(1)まず、オートフォーカス動作の開始を示すオートフォーカス信号(AF)が出力される。図示はしないが、オートフォーカス動作の開始と略同時に往路方向の走査が開始される。
(2)すると、受光量分布30のピーク部分28の重心位置Wを求めるタイミングを示すトリガ信号(TRG)が所定の時間間隔T1で周期的に出力される。
(3)ラインセンサ13は、T1より十分に小さい時間間隔で周期的に反射光16の受光量分布30を出力する。
(4)トリガ信号(TRG)が出力されると、ONTIMカウンタは、初期値図14に示される例では101)からカウントダウンを開始する。
(5)ON TIMEカウンタのカウントダウンに同期して、投光器12は投光時間を初期値から順次減少させていく。例えば、光量調節部41が、投光器12を駆動させる駆動パルスパルス幅を順次減少させていく。これにより、投光器12から照射される光11の光量が順次、減少していく。すると、ラインセンサ13が受光する最大の受光量も、ON TIMEカウンタのカウントダウンに同期して、順次減少していく。光量を或る程度まで減少させたら、初期値の大きな値の光量に復帰させる。図14に示される例では、最大の受光量は「所定範囲」の上限値MAXを超える値から下限値MIN未満の値まで、順次、減少していく。最大の受光量が或る程度まで減少したら、最大の受光量は初期の大きな値に復帰している。受光量を順次減少させることにより、「所定の範囲」に入った受光量のデータを取得することができる。
(6)最大受光量が「所定の範囲(上限値と下限値の間)」に入っているかどうかが判定される。
(7)最大受光量が「所定の範囲」に入っているときは、受光量のピーク部分の重心位置を算出するのに適していることを示す信号(PEAK OK)が出力される。一方、最大受光量が「所定の範囲」に入っていないときは、受光量のピーク部分の重心位置を算出するのに適していることを示す信号(PEAK OK)が出力されない。
(8)最大受光量が「所定の範囲」に入っているときの受光量データのうち、いずれか1つの受光量データが選択され、その選択された受光量データがSRAMに書き込まれる。図14に示される例では、最大受光量が「所定の範囲」に入っている受光量データは複数存在し、そのうち、最初に現れた受光量データが選択され、SRAMに書き込まれる。
(9)記憶された受光量データは、読み出される。
(10)読み出された受光量データに基づいて、受光量分布のピーク部分の重心位置Wが算出される。さらに、重心位置Wに基づいて、感光性材料の表面にビーム光3の焦点が合うようにレンズ光学系51の対物レンズを上下方向に移動させる距離hが算出される。距離hのデータは順次、SRAMに書き込まれる。距離hのデータは、直後の復路方向の走査時における対物レンズの移動に用いられる。

0055

次に、往路方向の走査時の動作の他の例について説明する。図15は、他の例に係るタイミングチャートである。ここでも、第2実施形態における特徴的な動作を主に説明し、それ以外の動作については説明を省略する。この例においては、(1)から(4)までの動作は上記した例と同様であるが、(5)以降の動作が異なっている。

0056

すなわち、(5)において、ONTIMEカウンタのカウントダウンに同期して、投光器12は投光時間を初期値から順次減少させていった時、いずれのタイミングにおいても最大受光量は「所定範囲」の下限値MIN未満である。
この場合、投光器12から照射される光11の光量を最大の光量に復帰させ、復帰後の光量における受光量分布を取得する(6)〜(8)。(9)以降は上記の例と同様である。

0057

パターン描画装置によれば、投光器12が照射する光11の光量を複数段階に変化させることにより、感光性材料からの反射光16の光量が複数段階に調節される。これにより、重心位置算出に適した光量の反射光16をラインセンサ13に受光させ、その反射光16の受光量分布に基づいて重心位置Wを算出することができる。よって、配線等のパターンが形成された基板等、すなわち表面の反射率が位置によって変動する対象物であっても、反射光光量分布のピーク部分の重心位置を正確に算出することができ、走査露光中に常に安定した焦点位置調節を行うことができる。

0058

なお、図14に示される例では、投光器12(レーザダイオード)の投光時間を最大時間の100%から徐々に減少させているが、第2実施形態においては、これに限定されない。例えば、投光器12の投光時間を最大時間の0%から100%まで徐々に増加させてもよい。

0059

また、上記各実施形態では、例えば1個のレーザダイオードからの出力光をGLV等の光変調素子を用いて変調することにより、露光パターンに応じたビーム光3を生成しているが、本発明におけるビーム光3の生成方法はこれに限定されない。例えば、複数のレーザダイオードを線状に配列してなる発光アレイ素子を用い、各レーザダイオードの明滅を個別に制御することにより、露光パターンに応じたビーム光を生成してもよい。

0060

本発明は、基板上の感光性材料に配線等のパターンを走査露光によって描画するパターン描画装置およびパターン描画方法等に利用可能である。

図面の簡単な説明

0061

第1実施形態に係るパターン描画装置を示す斜視図
第1実施形態に係るパターン描画装置の主要部分を示すブロック図
第1実施形態におけるオートフォーカス部を模式的に示す図
第1実施形態におけるラインセンサの受光量を示す図
第1実施形態における、複数の距離検出部、複数の露光ヘッド、および各露光ヘッドの描画範囲の位置関係を示す図
第1実施形態における、距離検出部による検出位置、露光ヘッドによる走査露光位置を時系列的に示す図
第1実施形態における、距離検出部による検出位置、露光ヘッドによる走査露光位置を時系列的に示す図
第1実施形態における、距離検出部による検出位置、露光ヘッドによる走査露光位置を時系列的に示す図
第1実施形態に係るパターン描画装置の動作を示すフローチャート
第1実施形態に係るパターン描画装置の動作を示すフローチャート
第1実施形態における、主走査方向の往路方向に動作するときのタイミングチャート
第1実施形態における、主走査方向の復路方向に動作するときのタイミングチャート
第2実施形態に係るパターン描画装置の主要部分の構成を示すブロック図
第2実施形態に係るパターン描画装置の動作を示すタイミングチャート
第2実施形態に係るパターン描画装置の動作を示すタイミングチャート

符号の説明

0062

1パターン描画装置
2基板
3ビーム光
4ステージ
5露光ヘッド
6 移動部
7主走査機構
8副走査機構
9移動距離算出部
10走査列
11投光器からの光
12 投光器
13ラインセンサ
14,42重心位置算出部
15画素
16反射光
28ピーク部分
30受光量分布
41光量調節部
M目標位置
W 重心位置

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 東芝メモリ株式会社の「 パターン形状計測方法」が 公開されました。( 2020/09/24)

    【課題】パターンのサイズおよび形状による影響を抑えてパターンの仕上がりを評価することができるパターン形状計測方法を提供する。【解決手段】実施形態によれば、画像データが取得される。前記画像データからパタ... 詳細

  • 株式会社キーエンスの「 画像測定装置」が 公開されました。( 2020/09/24)

    【課題】低倍率撮像素子と高倍率撮像素子とを用いて測定されるワークの位置の精度を向上させること。【解決手段】補正部材は低倍率撮像素子により生成された低倍率画像の位置と、高倍率撮像素子により生成された高倍... 詳細

  • 株式会社キーエンスの「 画像測定装置」が 公開されました。( 2020/09/24)

    【課題】測定モードにおける処理時間を短縮しつつ、連結画像とともに測定結果を表示すること。【解決手段】プロセッサは、設定モードにおいて連結画像を生成してメモリに記憶させる。プロセッサは、測定モードにおい... 詳細

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ