図面 (/)

技術 機械的誤差の補正を伴う測量器

出願人 トリンブルアクティエボラーグ
発明者 ヘルツマン,ミカエル
出願日 2004年6月23日 (16年6ヶ月経過) 出願番号 2006-517055
公開日 2007年8月2日 (13年5ヶ月経過) 公開番号 2007-521480
状態 拒絶査定
技術分野 測量一般
主要キーワード 位置決め値 誤差補正システム 基準入力値 対頂角 目標基準値 水平位置決め 位置発信器 垂直偏差
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2007年8月2日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (18)

課題・解決手段

本発明は、移動可能なユニット(20)を有している、直交XYZ系の(0,0,0)に置かれる測量器(10)を操作する方法に関し、前記測量器は、基本的には水平な第一軸(50)の周囲と、基本的には垂直な第二軸(90)の周囲とを制御可能に回転できる照準線(128)を画定していて、前記第二軸(90)は真の垂直軸から偏移するように概略的に位置決めされていて、また前記第一軸(50)は第二軸(90)に直交している状態から偏移する測量器の操作方法において; 測量器操作方法が、機器及び/又はその配置に関係している以下の誤差群の少なくとも一つを測量する段階を具備していて;前記誤差群は、a)第一軸(50)と第二軸との間の90°からの偏差関数としてのトラニオン軸誤差T と;b)照準線(128)と、第一軸(50)に関し垂直な角度との間の偏差になっている、 水平視準誤差CHと;c)同一な線を通る垂直線に関連し機器の傾斜を画定している二つの離れた角度値になっ ている、成分PIとPIIとにより画定される全体垂直誤差と;から成り、また、前記操作方法は、e)機器を照準化するとき、配向を連続的に制御している状態でこれらの測量値を使用し ている。 本発明は、測量器用の操作方法と誤差補正システムとともに使用するための測量器にも関する。

概要

背景

トータルステーションは精密な測量機器であり、ユーザがトータルステーションと測量されるいずれかの点との間の、対頂角水平角のみならず距離を電子的に測量できるようにする。
この種の測量は、角度に関しては角度秒また距離に関してはミリメートルにおいて測量される許容公差を備える高い精度を必要とする。先行技術トータルステーションの製品はしたがって、その機能が実施される測量に影響する特定の機械部品の高精度の調整と補正を伴う。精度の要求に加えて、これらの機器は、使用するのに容易でまた便利であることも重要であり、それはトータルステーションが設置される場所にあるかもしれない険しい地形と他の厳しい条件とのためである。先行技術トータルステーションを使用するとき、ユーザは測量を行う前に特定範囲製造業者内で機器の水準高精度化することが必要である。

米国特許第6,138,367号明細書は、回転照準儀部と、回転照準儀部の回転配向を測量するための角度エンコーダとを含むトータルステーションを開示する。米国特許第6,138,367号明細書により開示されたトータルステーションは、さらに傾斜予測器に接続された傾斜センサを含む。傾斜予測器は、回転照準儀部の回転配向に対応しているトータルステーションの回転照準儀部の傾斜度予測する。傾斜予測器は、測量結果をユーザに表示する画面に連結される。

概要

本発明は、移動可能なユニット(20)を有している、直交XYZ系の(0,0,0)に置かれる測量器(10)を操作する方法に関し、前記測量器は、基本的には水平な第一軸(50)の周囲と、基本的には垂直な第二軸(90)の周囲とを制御可能に回転できる照準線(128)を画定していて、前記第二軸(90)は真の垂直軸から偏移するように概略的に位置決めされていて、また前記第一軸(50)は第二軸(90)に直交している状態から偏移する測量器の操作方法において; 測量器操作方法が、機器及び/又はその配置に関係している以下の誤差群の少なくとも一つを測量する段階を具備していて;前記誤差群は、a)第一軸(50)と第二軸との間の90°からの偏差関数としてのトラニオン軸誤差T と;b)照準線(128)と、第一軸(50)に関し垂直な角度との間の偏差になっている、 水平視準誤差CHと;c)同一な線を通る垂直線に関連し機器の傾斜を画定している二つの離れた角度値になっ ている、成分PIとPIIとにより画定される全体垂直誤差と;から成り、また、前記操作方法は、e)機器を照準化するとき、配向を連続的に制御している状態でこれらの測量値を使用し ている。 本発明は、測量器用の操作方法と誤差補正システムとともに使用するための測量器にも関する。

目的

したがって、二つの軸50と90との周囲に移動可能なユニット20を回転することにより、移動可能なユニット20は、目的とする

効果

実績

技術文献被引用数
3件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

移動可能なユニット(20)を有している、直交XYZ系の(0,0,0)に置かれる測量器を操作する方法であって、前記測量器は、基本的には水平な第一軸(50)の周囲と、基本的には垂直な第二軸(90)の周囲とを制御可能に回転できる照準線(128)を画定して、前記第二軸(90)は真の垂直軸から偏移するように概略的に位置決めされていて、また前記第一軸(50)は第二軸(90)に直交している状態から偏移する測量器を操作する方法において;測量器操作方法が、機器及び/又はその位置に関係している以下の誤差群の少なくとも一つを測量する段階を具備していて;前記誤差群は、a)第一軸(50)と第二軸との間の90°からの偏差関数としてのトラニオン軸誤差 Tと;b)照準線(128)と、第一軸(50)に関し垂直な角度との間の偏差になっている、 水平視準誤差CHと;c)同一な線を通る垂直線に関連し機器の傾斜を画定している二つの離れた角度値になっ ている、成分PIとPIIとにより画定される全体垂直誤差と;から成り、また、前記操作方法はd)機器を照準化するとき、配向を連続的に制御している状態でこれらの測量値を使用し ている、測量器を操作する方法。

請求項2

機器の配向を制御するためのマイクロプロセッサを具備している制御器を使用して調整が実施される、請求項1に記載の測量器を操作する方法。

請求項3

前記制御器は、面上に二点AとBとを画定する段階と;角度Θと、高さZ0と、角度H0とを計算する段階であって、Θは機器710(0,0,0)を通るYZ面内の前記任意の線の投影とZ軸との間の対頂角になっていて、高さZ0は前記投影がZ軸と交差する場所の高さになっていて、また角度H0は、Y軸と、AとBとの間の線の投影に垂直な線との間のXY面内の角度になっている;また、機器の移動を制御するためこれらの値を使用している段階と;を使用して二点間の任意の直線を追跡している時に、測量された誤差を自動的に補正するようになっている、請求項2に記載の測量器を操作する方法。

請求項4

任意の水平角Hにおいて照準化するとき、線A−B上の一点に対応する対頂角Vは、Z0と、H0と、Θとから計算され、この値Vは次に垂直サーボモータへの基準入力値として使用される、その結果、水平照準化用のノブを操作しているとき、機器が前記二点間の直線を追跡するように垂直照準を制御するようになっている、請求項3に記載の測量器を操作する方法。

請求項5

任意の対頂角Vにおいて照準化するとき、線A−B上の一点に対応する水平角Hはその場合、Z0と、H0と、Θとから計算され、この値Hは水平サーボモータへの基準入力値と同一の入力値として使用される、その結果、垂直照準化用のノブを操作しているとき機器が前記二点間の直線を追跡するようになっている、請求項3に記載の測量器を操作する方法。

請求項6

前記制御器は、面上の少なくとも二点の位置を測量することにより面配向を画定する段階と;所望の高さの値hを入力する段階と;XY面内の所望の水平線の投影に対して垂直な角度H0を計算する段階と;いずれかの水平角Hに対し対応する対頂角Vを計算し、またこの値を垂直サーボを制御するために使用する段階と;を使用して面上の水平直線を追跡している時、測量された誤差を自動的に補正するようになっている、請求項2に記載の測量器を操作する方法。

請求項7

移動可能なユニット(20)の照準は、垂直及び水平なサーボモータを使用していることとその場合に水平サーボモータは前記誤差を補正するために制御されることとにより実施されていて、その結果、垂直照準化用のノブが操作されるとき、照準は垂直線を追跡するようになっている、請求項2に記載の測量器を操作する方法。

請求項8

測量器(10)を操作する方法であって、前記測量器は、第一軸(50)の周囲と第二軸(90)の周囲とを制御可能に回転できる移動可能なユニット(20)を有していて、前記第二軸(90)は、真の垂直軸から偏移するように概略的に位置決めされ、また前記第一軸(50)は第二軸(90)に対して直交している状態から偏移する測量器を操作する方法において;a)前記移動可能なユニット(20)の所望の水平配向を表示する、水平基準値(RH )を設定している段階と;b)前記第二軸(90)の周囲の現在の回転配向を表示する、水平配向値(HS)を検 知している段階と;c)前記移動可能なユニット(20)の水平配向偏差を表示する、水平配向補正値(H EC)を受信している段階であって; 前記水平配向補正値(HEC)は、横方向の垂直誤差値(PIと;P´I)に従属 して発信され;前記横方向の垂直誤差値(PIと;P´I)は前記移動可能なユニット(20)の前記水平配向に従属していて;そして、 前記受信した水平配向補正値(HEC)は、前記第一軸(50)の周囲を旋回して いる結果として生ずる水平配向偏差を補正するように移動可能なユニット(20) の垂直配向(V)に従属している受信段階と;d)前記検知された水平配向値(HS)と、前記水平配向補正値(HEC)とに対応し て、前記移動可能なユニット(20)の現在の水平配向を表示する水平位置決め値 (H)を発信している段階と;e)前記水平位置の値(H)と前記水平基準値(RH)とに従属する水平誤差値(eH) を発信している段階と;f)前記水平誤差値(eH)に従属して移動可能なユニット(20)の水平配向を自動的 に制御している段階と;から成る前記操作方法。

請求項9

前記水平誤差値(eH)が所定の閾値DF)よりも小さくなるまで、請求項8に記載の前記b)−f)の段階を反復する段階g)をさらに具備している、請求項8に記載の操作方法。

請求項10

前記水平配向補正値(HEC)は、予測された横方向の垂直誤差値(P´I)に依存していて;また、予測された横方向の垂直誤差値(P´I)は、前記検知された水平配向値(HS)に従属して発信される、請求項8あるいは9に記載の操作方法。

請求項11

前記水平配向補正値(HEC)は、測量された横方向の垂直誤差値(PI)に対応して発信され;前記測量された横方向の垂直誤差値(PI)は、横方向の垂直誤差値(PI)がゼロから偏移するとき、移動可能なユニット(20)の水平位置に固有に従属するようになっている、請求項8あるいは9に記載の操作方法。

請求項12

請求項8に記載の前記段階b)と、d)と、e)とf)とが第一次反復回数で実行され;また、前記水平配向補正値(HEC)は第二次の反復回数で更新され;前記第二次の反復回数は前記第一次の反復回数よりも少なくなっている、請求項8、9、10あるいは11のいずれか一項に記載の操作方法。

請求項13

前記横方向の垂直誤差値は、前記第二次の反復回数で更新される、請求項9、10あるいは11に従属する、請求項12に記載の操作方法。

請求項14

前記所定の閾値(DF)は、10角度秒よりも小さい、請求項8−13のいずれか一項に記載の操作方法。

請求項15

前記所定の閾値(DF)は、1角度秒よりも小さい、請求項8−13のいずれか一項に記載の操作方法。

請求項16

前記移動可能なユニット(20)の垂直配向(V)を変更するように、前記移動可能なユニット(20)が前記第一軸(50)の周囲を旋回している段階をさらに具備している、請求項8−15のいずれか一項に記載の操作方法。

請求項17

移動可能なユニット(20)の前記垂直配向(V)は、縦方向の垂直誤差値(PIIと;P´II)に基づいて生成され;前記縦方向の垂直誤差値(PIIと;P´II)は、前記移動可能なユニット(20)の前記水平配向に従属するようになっている、請求項8−16のいずれか一項に記載の操作方法。

請求項18

第一軸(50)の周囲と、第二軸(90)の周囲とを制御可能に回転できる移動可能なユニット(20)を有している測量器(10)を操作する方法であって、前記第二軸(90)は真の垂直軸から偏移するように概略的に位置決めされていて、また前記第一軸(50)は第二軸(90)に直交している状態から偏移する操作方法において;前記測量器(10)の照準線(128)の照準の水平方向成分が第一磁針方角に向けられるように前記移動可能なユニット20の所望する第一水平配向を設定する段階と;前記測量器(10)の前記照準線(128)の照準の前記水平方向成分が第二磁針方角に向けられるまで、前記移動可能なユニット(20)の垂直配向(V)を変更するように前記移動可能なユニット(20)を前記第一軸(50)の周囲に旋回する段階であって;前記第二磁針方角は前記第一磁針方角から偏移している、旋回段階と;水平配向補正値(HEC)に対応して前記移動可能なユニット(20)の現在の水平配向を表示する水平位置決め値(H)を生成する段階であって;前記水平配向補正値(HEC)は前記第一軸(50)の周囲を旋回している結果として生ずる水平配向偏差を補正するように、移動可能なユニット(20)の垂直配向(V)に従属するようになっている、生成段階と;前記第二磁針方角が前記第一磁針方角に向き合うように前記水平位置決め値(H)に従属して移動可能なユニット(20)の水平配向を自動的に制御する段階と;から成る前記操作方法。

請求項19

第一軸(50)の周囲と、第二軸(90)の周囲とを制御可能に回転できる移動可能なユニット(20)を有している測量器(10)を操作する方法であって、前記第二軸(90)は真の垂直軸から偏移するように概略的に位置決めされていて、また前記第一軸(50)は第二軸(90)に直交している状態から偏移する、操作方法において;a)前記移動可能なユニット(20)の所望の垂直配向を表示する、垂直基準値RV)を設定する段階と;b)前記第一軸(50)の周囲の現在の回転配向を表示する垂直配向値(VS)を検知 する段階と;c)前記移動可能なユニット(20)の垂直配向偏差を表示する垂直配向補正値(VECと;DV)を受信する受信段階であって; 前記垂直配向補正値(VECと;DV)は、縦方向の垂直誤差値(PIIと;P´II )に従属して発信され;前記縦方向の垂直誤差値(PIIと;P´II)は前記移動可 能なユニット(20)の水平配向に従属するようになっている受信段階と;d)前記検知された垂直配向値(VS)と、前記垂直配向補正値(VECと;DV)と に対応して、前記移動可能なユニット(20)の現在の垂直配向を表示する垂直位 置決め値(V)を発信する段階と;e)前記垂直位置の値(V)と前記垂直基準値(RV)とに従属する垂直誤差値(eV )を発信する段階と;f)前記垂直誤差値(eV)に従属して移動可能なユニット(20)の垂直配向を自動 的に制御している段階と、から成る前記操作方法。

請求項20

前記垂直誤差値(eV)は所定の閾値(DVF)よりも小さくなるまで、前記b)−f)を反復する段階g)をさらに具備している、請求項19に記載の操作方法。

請求項21

前記垂直配向補正値(VECと;DV)は、予測された縦方向の垂直誤差値(P´II)に従属していて;また、予測された縦方向の垂直誤差値(P´II)は、検知された水平配向値(HS)に従属して発信される、請求項19あるいは20に記載の操作方法。

請求項22

前記垂直配向補正値(VECと;DV)は、測量された縦方向の垂直誤差値(PII)に対応して発信され;前記測量された縦方向の垂直誤差値(PII)は移動可能なユニット(20)の現在の水平位置に固有に従属するようになっている、請求項19あるいは20に記載の操作方法。

請求項23

請求項19の前記段階b)、d)、e)及びf)が、第一次の反復回数で実行され;また前記垂直配向補正値(VECと;DV)は、第二次の反復回数で更新され;前記第二次の反復回数は前記第一次の反復回数よりも少なくなっている、請求項19−22のいずれか一項に記載の操作方法。

請求項24

前記垂直誤差値は、前記第二次の反復回数で更新される、請求項20と、21あるいは22に従属する、請求項23に記載の操作方法。

請求項25

前記所定の閾値(DVF)は、10角度秒よりも小さい、請求項20−24のいずれか一項に記載の操作方法。

請求項26

前記所定の閾値(DVF)は、1角度秒よりも小さい、請求項20−24のいずれか一項に記載の操作方法。

請求項27

前記移動可能なユニット(20)の水平配向を変更するように、前記移動可能なユニット(20)が前記第二軸(90)の周囲を旋回している段階をさらに具備している、請求項20−26のいずれか一項に記載の操作方法。

請求項28

第一軸(50)の周囲と、第二軸(90)の周囲とを制御可能に回転できる移動可能なユニット(20)を有している測量器(10)であって、前記第二軸(90)は真の垂直軸から偏移するように概略的に位置決めされ、また前記第一軸(50)は第二軸(90)に直交している状態から偏移する測量器において;横方向の垂直誤差値(PIと;P´I)を発信している手段であって;前記横方向の垂直誤差値(PIと;P´I)は、前記移動可能なユニット(20)の前記水平配向に従属するようになっている手段と;垂直位置決め値(V)と前記横方向の垂直誤差値(PIと;P´I)とに従属して、水平配向補正値(HEC)を発信させている水平誤差補正器(412)であって;前記垂直位置決め値(V)は前記移動可能なユニット(20)の垂直配向を表示する、水平誤差補正器(412)と;制御器(700)であって、a)前記移動可能なユニット(20)の所望の水平配向を表示する水平基準値(RH)を受信しているための入力部(390)と;b)前記第二軸(90)の周囲の現在の回転配向を表示する水平配向値(Hs)を検知しているためのセンサと;c)前記移動可能なユニット(20)の水平配向偏差を表示する前記水平配向補正値(HEC)を受信しているための入力部と;d)前記検知された水平配向値(HS)と前記水平配向補正値(HEC)とに対応して前記移動可能なユニット(20)の現在の水平配向を表示する水平位置決め値(H)を発信させる水平位置発信器(372)と;e)前記水平位置決め値(H)と前記水平基準値(RH)とに従属して水平誤差値(eH)を発信しているための手段と;を有している制御器(700)において、前記制御器は、前記水平誤差値(eH)に従属して、移動可能なユニット(20)の水平配向を自動的に制御するようになっている、制御器(700)と;を具備している測量器。

請求項29

前記制御器は、前記水平誤差値(eH)が所定の閾値(DF)よりも小さいように移動可能なユニット(20)の水平配向を制御するようにさせる、請求項28に記載の測量器(10)。

請求項30

前記制御器は、検知されたトラニオン誤差を補正するように移動可能なユニット(20)の配向を制御するようにさせる、請求項28あるいは29に記載の測量器(10)。

請求項31

前記移動可能なユニット(20)はさらに、前記移動可能なユニット(20)を目標位置に照準化することを可能にするための照準線(128)を画定している光学装置を具備していて;前記照準線(128)は、第一軸(50)に直交している状態から偏移し;前記偏差は水平視準誤差を構成しており;前記測量器(10)はさらに、確立された水平視準誤差値(CH)を保存しているための記憶装置(355)を具備していて;前記水平誤差補正器(412)は、前記確立された水平視準誤差値(CH)を受信するよう連結される入力部を有し;前記水平誤差補正器(412)は、前記水平視準誤差の補正を達成するように前記確立された水平視準誤差値(CH)に従属して前記水平配向補正値(HEC)を発信するようなっている、請求項28−30のいずれか一項に記載の測量器(10)。

請求項32

横方向の垂直誤差値(PIと;P´I)を発信するための前記手段は、前記検知された水平配向値(HS)に従属して、予測された横方向の垂直誤差値(P´I)を発信する予測器を具備する、請求項28と、29あるいは30とに記載の測量器(10)。

請求項33

前記水平誤差補正器(412)は、前記予測された横方向の垂直誤差値(P´I)に従属して前記水平配向補正値(HEC)を発信するようなっている、請求項32に記載の測量器(10)。

請求項34

前記制御器(700)は、第一次の反復回数で更新された水平誤差値(eH)を発信するようになっていて;また、前記水平誤差補正器(412)は、第二次の反復回数で更新された水平配向補正値(HEC)を発信するようになっていて、前記第二次の反復回数は前記第一次の反復回数よりも少なくなっている、請求項28−33のいずれか一項に記載の測量器(10)。

請求項35

前記横方向の垂直誤差値は、前記第二次の反復回数で更新される、請求項28、29、30、31、32あるいは33に従属している、請求項26に記載の測量器(10)。

請求項36

縦方向の垂直誤差値(PIIと;P´II)を発信しているための手段であって;前記縦方向の垂直誤差値(PIIと;P´II)は、前記移動可能なユニット(20)の前記水平配向に従属するようになっている手段と;前記縦方向の垂直誤差値(PIIと;P´II)に従属して垂直誤差補正値(VEC)を発信するようになっている垂直誤差補正器(292)と;前記第一軸(50)の周囲の現在の回転方向を表示する垂直配向値(Vs)を検知するためのセンサと;前記垂直誤差補正値(VEC)と前記検知された垂直配向値(VS)とに従属して移動可能なユニット(20)の前記垂直位置決め値(V)を発信するようになっている垂直位置発信器(272)とをさらに具備していて;前記水平誤差補正器(412)は、前記発信された垂直位置決め値(V)と前記横方向の垂直誤差値(PIと;P´I)とに従属して前記水平配向補正値(HEC)を発信するようになっている、請求項28−35のいずれか一項に記載の測量器(10)。

請求項37

第一軸(50)の周囲と第二軸(90)の周囲とを制御可能に回転できる移動可能なユニット(20)を有している測量器であって、前記第二軸(90)は真の垂直軸から偏移するように概略的に位置決めされていて、また前記第一軸(50)は第二軸(90)に対して直交している状態から偏移する測量器において;縦方向の垂直誤差値(PIIと;P´II)を発信しているための手段であって、前記縦方向の垂直誤差値(PIIと;P´II)は、前記移動可能なユニット(20)の前記水平配向に従属するようになっている手段と;前記縦方向の垂直誤差値(PIIと;P´II)に従属して垂直誤差補正値(VEC)を発信するようになっている垂直誤差補正器(292)と;制御器(700)であって、a)前記移動可能なユニット(20)の所望の垂直配向を表示する、垂直基準値(RV)用の入力部(290)と;b)前記第一軸(50)の周囲の現在の回転配向を表示する、垂直配向値(Vs)を検 知しているためのセンサと;c)前記移動可能なユニット(20)の垂直配向偏差を表示する、垂直配向補正値(V ECと;DV)を受信するための入力部(273)であって;前記垂直配向補正値 (VECと;DV)は、縦方向の垂直誤差値(PIIと;P´II)に従属して発信さ れ;前記縦方向の垂直誤差値(PIIと;P´II)は前記移動可能なユニット(20 )の前記水平配向に従属するようになっている入力部(273)と;d)前記垂直誤差補正値(VEC)と前記検知された垂直配向値(VS)とに従属して 移動可能なユニット(20)の垂直位置の値(V)を発信するようにさせる垂直位 置発信器(272)と;e)前記垂直位置決め値(V)と前記垂直基準値(RV)とに従属して垂直誤差値(eV )を発信しているための手段と;を有している制御器(700)において、前記制御器は、前記垂直誤差値(eV)に従属して移動可能なユニット(20)の垂直配向を自動的に制御するようになっている、制御器(700)と;を具備している測量器。

請求項38

前記制御器は、前記垂直誤差値(eV)が所定の閾値(DVF)よりも小さいように、移動可能なユニットの垂直配向を制御するようになっている、請求項37に記載の測量器(10)。

請求項39

縦方向の垂直誤差値(PIIと;P´II)を発信するための前記手段は、前記検知された水平配向値(HS)に従属して予測された縦方向の垂直誤差値(P´II)を発信するようになっている予測器(226)を具備する、請求項37あるいは38に記載の測量器(10)。

請求項40

測量器用の誤差補正システムであって、前記測量器の、傾斜誤差機械的欠陥による誤差とを検知しているための自動誤差測量システムと;前記測量器を操作しているとき検知された誤差を補正するように機器のサーボシステムを制御することにより前記検知された誤差を自動的に補正するようになっている制御器と;を具備している測量器用の誤差補正システム。

請求項41

前記検知された誤差は、トラニオン誤差(T)を含む、請求項40に記載の誤差補正システム。

請求項42

前記検知された誤差は、水平視準誤差(CH)を含む、請求項40と,41とに記載の誤差補正システム。

請求項43

前記制御器は前記自動誤差測量システムと協働し、その結果、真の垂直状態からの誤差が所定量よりも少ない垂直方向基準値(RV)の手動制御に対応して、前記測量器の照準線を垂直方向に移動するようになっている、請求項40と,41あるいは42とに記載の誤差補正システム。

請求項44

前記制御器は前記自動誤差測量システムと協働し、その結果、真の水平状態からの誤差が所定量よりも少ない水平方向基準値(RH)の手動制御に対応して、前記測量器から任意の所定距離にある照準線上の一点を水平方向に移動するようになっている、請求項40と,41あるいは42とに記載の誤差補正システム。

請求項45

前記自動誤差測量システムは、前記検知された誤差に従属する、垂直誤差補正値(VEC)を発信しているための第一誤差補正発生器と水平誤差補正値(HEC)を発信しているための第二誤差補正発信器とを具備し;また、前記制御器は、前記垂直及び水平誤差補正値(VECと、HEC)に従属して前記誤差補正を達成するようになっている、請求項40‐44のいずれか一項に記載の誤差補正システム。

請求項46

前記第一誤差補正発信器は、縦方向の垂直誤差値(PIIと;P´II)に従属して垂直誤差補正値(VEC)を発信するようになっていて;また、前記第二誤差補正発信器は、次式に従って水平誤差補正値(HEC)を発信するようになっていて、HECは、HEC=HP+CH/sinV+(T+P´I)*cotVで表示され、ここに、HPは定数であり;Tは検知されたトラニオン軸誤差であり;P´Iは水平方向の垂直誤差値であり;Vは前記垂直誤差補正値(VEC)に従属する垂直位置決め値であり、またCHは水平視準誤差である、請求項45に記載の誤差補正システム。

請求項47

前記制御器は、第一次の反復回数で更新された制御信号を発信するようになっていて;また、前記自動誤差補正システムは、第二次の反復回数で前記誤差補正値を発信するようになっていて;前記第二次の反復回数は前記第一次の反復回数よりも少なくなっている、請求項38に従属する、請求項45あるいは46に記載の誤差補正システム。

請求項48

前記所定量は10角度秒よりも小さい、請求項43あるいは44のいずれか一項に記載の誤差補正システム。

請求項49

前記所定量は1角度秒よりも小さい、請求項43あるいは44のいずれか一項に記載の誤差補正システム。

請求項50

前記所定量は1/3角度秒よりも小さい、請求項43あるいは44のいずれか一項に記載の誤差補正システム。

請求項51

前記制御器は、前記測量器の手動制御中は前記検知された誤差を自動的に補正するようになっている、請求項48−50のいずれか一項に記載の誤差補正システム。

請求項52

前記測量器の前記手動制御は、一方向の基準値の手動制御を含む、請求項51に記載の誤差補正システム。

請求項53

前記制御器は、前記測量器の遠隔制御中は前記検知された誤差を自動的に補正するようになっている、請求項40−50のいずれか一項に記載の誤差補正システム。

請求項54

前記制御器は、前記測量器の自動制御中は前記検知された誤差を自動的に補正するようになっている、請求項40−50のいずれか一項に記載の誤差補正システム。

請求項55

前記制御器は、面上に二点AとBとを画定する段階と;角度Θと、高さZ0と、角度H0とを計算する段階であって、Θは、機器710(0,0,0)を通るYZ面内の前記任意の線の投影とZ軸との間の対頂角であって、高さZ0は前記投影がZ軸に交差する高さであって、また角度H0は、Y軸と、AとBとの間の線の投影に垂直な線との間のXY面内の角度になっている段階と;機器の移動を制御するためにこれらの値を使用している段階と;を使用して二点間の任意の直線を追跡している時、測量された誤差を自動的に補正するようになっている、請求項40−54のいずれか一項に記載の誤差補正システム。

請求項56

任意の水平方向Hに照準化しているとき、線A−B上の一点に対応している対頂角Vは、Z0と、H0とΘとから計算され、次にこの値Vは垂直サーボモータへ基準入力値と同じ入力値として使用され、それは機器が前記二点間の直線を追跡できるように垂直照準化を制御する水平照準化用のノブの操作を可能にしている、請求項55に記載の誤差補正システム。

請求項57

任意の垂直方向Vに照準化しているとき、線A−B上の一点に対応している水平角Hは、その場合Z0と、H0とΘとから計算され、この値Hは次に水平サーボモータへ基準入力値として使用され、それは機器が前記二点間の直線を追跡できるように水平照準化を制御する垂直照準化用のノブの操作を可能にしている、請求項55に記載の誤差補正システム。

請求項58

請求項40−54のいずれか一項に記載の誤差補正システムを含んでいる測量器。

技術分野

0001

本発明は、測量器と、測量器を操作する方法とに関する。
(本説明と請求項のために)
本説明と請求項とのために以下の表現が、記載された説明を定義するために了解される:
右手X,Y,Z座標系の(0,0,0)は、測量器の照準線上で,また計算のために同一線上の中央の一点であること。
この座標系は当然、他の場所に置かれた原点(0,0,0)を有するいずれかの他の座標系に変換できる。
水平角Hは、Y軸と、座標系の原点と任意点Pとを通る線のXY面内の射影との間により定義される。
対頂角Vは、Z軸と、照準化された任意点への照準線との間の角度として定義される。
この文において照準化することとは、特殊な点を照準化することのみならず任意の線を追跡することとしても解釈される。
真の垂直状態は、鉛直線に沿っての照準線の移動として解釈される。

背景技術

0002

トータルステーションは精密な測量機器であり、ユーザがトータルステーションと測量されるいずれかの点との間の、対頂角と水平角のみならず距離を電子的に測量できるようにする。
この種の測量は、角度に関しては角度秒また距離に関してはミリメートルにおいて測量される許容公差を備える高い精度を必要とする。先行技術トータルステーションの製品はしたがって、その機能が実施される測量に影響する特定の機械部品の高精度の調整と補正を伴う。精度の要求に加えて、これらの機器は、使用するのに容易でまた便利であることも重要であり、それはトータルステーションが設置される場所にあるかもしれない険しい地形と他の厳しい条件とのためである。先行技術トータルステーションを使用するとき、ユーザは測量を行う前に特定範囲製造業者内で機器の水準高精度化することが必要である。

0003

米国特許第6,138,367号明細書は、回転照準儀部と、回転照準儀部の回転配向を測量するための角度エンコーダとを含むトータルステーションを開示する。米国特許第6,138,367号明細書により開示されたトータルステーションは、さらに傾斜予測器に接続された傾斜センサを含む。傾斜予測器は、回転照準儀部の回転配向に対応しているトータルステーションの回転照準儀部の傾斜度予測する。傾斜予測器は、測量結果をユーザに表示する画面に連結される。

0004

(要約)
本発明の態様は、測量器のオペレータ用の仕事をさらに簡素化する一方、このような測量器の製造価格を低減できるようにする問題に関連する。
本発明の実施態様によると、この問題は測量器を操作するための方法を使用することにより解決される。この場合、移動可能なユニットを有している前記測量器(10)は、直交XYZ系の原点(0,0,0)に置かれていて、前記機器は基本的には水平である第一軸の周囲と、基本的には垂直である第二軸の周囲とを制御可能に回転できる照準線を画定していて、前記第二軸は、真の垂直軸から偏移するように概略的に位置決めされていて、また前記第一軸は第二軸に直交している状態から偏移するようになっていて;
操作方法は、機器及び/又はその配置に関連している以下の誤差群の少なくとも一つを測量する手段を具備していて:
前記誤差群は、
a)第一軸(50)と第二軸との間で90°からの偏差関数としてのトラニオン軸誤 差Tと;
b)照準線(128)と第一軸に関し垂直な角度との間の偏差になっている、水平視準誤差CHと;
c)同一な線を通る鉛直線に関連する機器の傾斜を画定している二つの離れた角度値に なっている、成分PIとPIIとにより画定される全垂直誤差と;から成り、
また、操作方法は、
d)機器を照準化するとき、配向を連続的に制御する状態においてこれら測量値を使用 している。

0005

操作方法において使用される座標系の原点(0,0,0)は、機器の中心に置かれるのが好ましいが、変換を用いて原点を他に設定することができることは当業者には周知である。

0006

前述の三つの誤差のうち、一つが操作方法において使用されればよい。しかしながら、補正においてさらに別の誤差を使用することはより良い結果を与えるであろうしまた三つ誤差の全てを使用することは当然に結果を改良するであろう。

0007

本発明のさらなる実施態様によると、この問題は、前記測量器においての傾斜誤差機械的欠陥による誤差とを検知している自動誤差測量システムと;前記測量器の操作精度を改良するように前記検知された誤差を自動的に補正するようにされた制御器とを、具備している測量器用の誤差補正システムにより対応される。

0008

この解決方法により、変更された垂直方向基準値に対応して、真の垂直方向から低減されあるいは除去された偏差を伴って測量器の照準線は垂直方向に有利に移動する。実施態様によると、前記制御器は、真の垂直からの誤差が所定量より少ない垂直方向基準値(RV)の手動制御に対応して、前記測量器の照準線を垂直方向に移動させるように前記自動誤差補正システム協働する。

0009

同様に、この解決方法により、手動変更された水平基準値に対応して真の水平状態から低減されあるいは除去された偏差を伴って照準線は水平方向に有利に移動する。実施態様によると、前記制御器は、真の水平状態からの誤差が所定量より少ない水平方向基準値(RH)の手動制御に対応して、前記測量器からの照準線上で任意の所定距離にある照準線上の一点を水平方向に移動させるように前記自動誤差測量システムと協働する。

0010

所定量の閾値DFの大きさは、達成される照準の垂直方向及び/又は水平方向の精度を決定する。実施態様によると、閾値DFは10角度秒以下の角度に相当する。別の実施態様によると、閾値DFは1角度秒以下の角度に相当する。好適な実施態様によると、閾値DFは、1/3角度秒の角度に相当する。最も好適な実施態様によれば、閾値DFは1/3角度秒より少ない角度に相当する。これは、例えば施行完了時のビルディングなど構造物検査するときの測量器のユーザに有利である。本発明に記載の誤差補正システムを装備する測量器は、例えば壁が真に垂直であるかどうかを確定することを容易にしていることにより検査機構の仕事を簡素化する。さらに、本発明に記載の誤差補正システムは、測量器の製造業者が顧客あるいはユーザにいずれかの良くない結果をもたらすことなしに前記測量器においてより大きな機械的欠陥を許容できるようにする。例えば、製造業者は、測量器においてより大きなトラニオン軸誤差を許容できる。これは製造の簡素化を可能にし、順々に製造価格を低減する。本発明の実施態様によると、検知された誤差はトラニオン軸誤差と傾斜誤差とを含む。

0011

前述の問題は、第一軸の周囲と第二軸の周囲とを制御可能に回転できる移動可能なユニットを有している測量器を操作する方法によっても対応され、またその場合、前記第二軸は、真の垂直軸から偏移するように概略的に位置決めされていて、また前記第一軸は第二軸に直交している状態から偏移していて;
前記操作方法は、
a)前記移動可能なユニット20の所望の水平配向を示す水平基準値RHを設定している段階と;
b)前記第二軸90の周囲で現在の回転配向を示す水平配向値HSを検知している段階と;
c)前記移動可能なユニット20の水平配向偏差を示す水平配向補正値HECと;DHとを受信している段階であって;
前記水平配向補正値HCEと;DHとは、横方向の垂直誤差値PIと;P´Iとに従属して発信され;前記横方向の垂直誤差値PIと;P´Iとは、前記移動可能なユニット20の前記水平配向に従属していて;また、
前記受信した水平配向補正値HECと;DHとは、前記第一軸50の周囲を旋回してい る結果として生ずる水平配向偏差を補正するように、移動可能なユニット20の垂直配 向Vに従属している段階と;
d)前記水平配向値HSと前記水平配向補正値HEC;DHに対応して前記移動可能なユニット20の現在の水平配向を表示する水平位置の値Hを発信している段階と;
e)前記水平位置の値(H)と前記水平基準値RHとに従属して水平誤差値eHを発信している段階と;
f)前記水平誤差値eHに従属して移動可能なユニット(20)の水平配向を自動的に制御している段階と、
を具備している。

0012

この解決方法により、機器の照準化において改良された精度を達成する時、測量器においてのより大きな機械不正確性が許容される。さらに、この解決方法により、オペレータがユーザ交流を殆ど必要とせず所望の方向に照準化することが可能になる。例えば、オペレータが照準線の照準を、第一水平方向と第一垂直方向とにある第一目標から水平方向は同一であるが垂直方向が異なる第二垂直方向とにある第二目標へ移動したいとき、そのときこの方法は、垂直基準値を変更するために垂直方向制御ノブのみを操作する単純作業によりオペレータがその目標を達成できるようにする。垂直制御ノブのみで操作されているとき、先行技術機器は機器の固有の機械的不正確性と標準誤差のため水平照準において僅かな変化を生じるのに対して、本発明の実施態様に記載の機器はこの不正確性を補正する。

0013

さらに、この解決方法により、その製造との関連で機器の機械的な調整の必要性が除去されるかあるいは少なくとも低減されるため、測量器の製造価格も有利により低くできる。

0014

さらには、この解決方法により、いくつかの機械的調整手段が除去できるため、より頑でまた安定な測量器の製造が可能になる。この機械的調整手段は機械的衝撃に弱いことが多く、それは例えば車での揺れの激しい移動で機器を持運ぶことによる機械的衝撃に機器をさらした後にこの機械的調整手段を備える測量器を使用するときの精度を低減する。

0015

製造との関連で、例えば第一軸と第二軸の相互位置を調整するよう測量器を機械的調整することよりもむしろ、本発明の態様に記載の測量器の照準は、いずれかの機械的誤差を補正するように自動的に調整される。機械的調整手段の除去は機器の機械的複雑性を低減しまた測量器の製造中の機械的調整の必要性を除去するかあるいは低減する。したがって、この解決方法により製造価格をより低くできる。これは、誤差の測量メカニズムが機器の基本設計に固有の機械的に導入される誤差の影響を受けやすいためではなく、全体的に無関係であるためである。独立の基準系に対応する、二つの異なる回転軸の関数として正確な誤差を測量することと、機械的誤差を正確に補正するために必要とされる補正を自動的に付与することとにより、本発明は実際の測量において改良された水準の精度と、軸移動の真の直交性とを実現する;言い換えると本発明はユーザによる真の垂直と水平との再配置へのより卓越した適合を実現する。

0016

この解決方法により、装置が非理想的な位置に取付けられているときでさえ、例えば装置が必ずしも水平になっていなくても、本発明の態様に記載の装置を使用している壁の上の垂直線を正確に表示することが可能になる。

0017

この解決方法により、装置が非理想的な位置に取付けられているときでさえ、例えば装置が必ずしも水平になっていなくても、本発明の態様に記載の装置を使用している壁の上の二点間の水平線あるいは線を正確に表示できるようになる。表現“壁の上”はもちろん、必ずしも線が壁の上にあるということではなくむしろ線が真直ぐでありまた基本的に測量/表示ビームに垂直であることを表している。

0018

所定の水平方向と正反対にある水平方向を設定するとき、この態様の特殊な応用が生ずる。これは従来的には対頂角を変更するための垂直移動ノブを約180°回転するだけで達成できる。機器の軸が完全に位置決めされるならば、新規な水平方向は基準方向に正反対になる。もしならないなら、水平照準は目標を達成するよう調整される必要がある。

発明を実施するための最良の形態

0019

本発明の簡単な理解のために、添付の図面を参照し事例によって説明する。
以下の説明において、異なる実施態様においての同一の部品は、同一符号により示される。

0020

図1はトータルステーションあるいは経緯儀として共通に参照される型の測量器10の正面図を示す。本発明に記載の測量器の実施態様10は、レンズ30により象徴される光学装置を具備している移動可能なユニット20を含む。移動可能なユニット20は、第一軸50の周囲をハウジング40に対応して双方向矢印60により示されるように旋回できる形でハウジング40内に支持される。第一軸50は、トラニオン軸としても参照される。ハウジング40は下部70を具備し、下部70が第二軸90の周囲を基盤80に対応して双方向矢印100により示されるように回転できる形で、下部70によって基盤80上に支持される。ハウジング40は照準儀部40としても参照されてよい。
したがって、二つの軸50と90との周囲に移動可能なユニット20を回転することにより、移動可能なユニット20は、目的とする測量操作を実施するために所望の位置のいずれかに配向できる。
移動可能なユニット20が軸50の周囲を移動するために、ハウジング40に駆動装置110が配備され、またハウジング40と移動可能なユニット20とが軸90の周囲を移動するために、ハウジング40の下部70に同一の駆動装置120が配備される。
操作中、測量器10は第二軸90がほぼ垂直な方向に延びるように設置される(図1)。例えば、操作中は、測量器10はスタンド122上の基盤80により支持される。スタンド122と基盤80との間に、スタンド122に対応して基盤80の水平化を可能にしている調節器124が配備される。スタンド122と基盤80との間に配備される、個々の調節器124は、第二軸90がほぼ垂直方向に延びるよう設置することができるよう伸張できまた収縮できる(図1)。

0021

図2Aは、図1において矢印130の方向の外観を見ている図である。図2Aは、測量器のさまざまな軸を示す。移動可能なユニット20(図1)は、照準線128を画定しているレンズ30と毛十字32(図2A)とにより象徴される光学装置を具備している。照準線128は測量を実行するために目標に照準化される。図2Aを参照して、照準線128は、理想的な場合において、トラニオン軸50にいつも垂直である。さらに、トラニオン軸50は、理想的な場合において、第二軸90にいつも垂直である。

0022

図2Bは照準線の角度方向(H,V)を図示していて、そのとき測量器10は測量を行うために目標141に照準化される。図2Bは、(非現実的な)理想的な場合を図示していて、即ちそのとき第二軸90は完全に垂直であり、トラニオン軸50は軸90に対して完全に垂直であり、また照準線128はトラニオン軸50に対して完全に垂直である。

0023

残念ながら、現実の場合には、いつもいくつかの機械的欠陥が存在する。これらの欠陥は、トラニオン軸50との関連において微小ではあるが照準線128の方向を垂直な角度から偏移させる。この角度偏差はここでは、水平視準誤差CHとして参照される。図2Cは測量器10においての水平視準誤差CHの説明図である。図2C図1においての矢印140の方向の外観を見ている図である。言い換えれば、図2C図1において垂直な回転軸90の下方の外観を見ている図である。図2Cにおいて図示されるように、軸150は水平面においてトラニオン軸50に対して垂直であり、また水平視準誤差CHは、軸150と照準線128との間の角度である。水平視準誤差CHの値は、レンズ30との関連において毛十字32(図2A)の位置を調節することにより調整される。残存する水平視準誤差CHはいずれも後述の方法で補正できる。

0024

トラニオン軸50と第二軸90との間の直角からの偏差はここではトラニオン軸誤差Tとして参照される。図2D観測者図1を見ているのと同一の透視図で見ているトラニオン軸誤差Tを図示する。図2Dにおいて図示されるように、軸154は第二軸90に垂直であり、またトラニオン軸誤差Tは軸154とトラニオン軸50との間の角度である。トラニオン軸誤差Tの値は、第二軸90との関連においてトラニオン軸の一つの支持軸の位置を調節することにより調整される。(図1図2D)残存するトラニオン軸誤差Tはいずれも後述の方法で補正できる。

0025

図1を参照して、調節器124は軸90が垂直であるように理想的に設置されるが、残念ながら、現実の場合は偏差があるのが多い。図2Eは、観測者が図1を見ている透視図において見られるように第二軸90と、真の垂直線155と、トランニング軸50とを図示する。図2Eにおいて図示されるように、垂直線155と第二軸90との間の角度偏差はPIで表示される。図2Fは、図1の矢印130の方向に見られるような第二軸90と真の垂直線155とを図示する。したがって図2F図2Eの透視図に垂直な透視図において第二軸90を図示する。図2Fにおいて図示されるように、垂直線155と第二軸90との間の角度偏差はPIIで表示される。ここで一緒に考えられる角度偏差PIとPIIとは全体垂直誤差として参照される。したがって、全体垂直誤差は二つの角度値PIとPIIとの合算により説明される。垂直誤差値PIとPIIは、調節器124によって調整され低減される(図1)。

0026

制御システムの第一の実施態様
図3は、図1に示される型の測量器10において使用するための制御システム200の第一の実施態様の略ブロック図を示す。
前述のように、ドライバ110は、トラニオン軸としても参照される第一軸50の周囲を移動可能なユニットが移動を起すようにしている。真の垂直線からの照準線の偏差の角度はここではVで表示される。したがって、ドライバ110の起動は角度Vの変更のための主要因である。同様に、ドライバ120は第二軸90の周囲をハウジング40が移動することを引起す。角度Hは水平基準方向からの角度偏差である。基準方向は例えば向きの方向であってもよい。したがって、ドライバ120の起動は角度Hの変更のための主要因である。

0027

垂直出力値Vの制御
図3を参照して、センサ210が照準儀部40に関連する移動可能なユニット20の垂直な角度位置を検知するために配備される。センサ210により発信される信号はVSで表示される。センサ210はドライバ110の制御において負のフィードバックとして検知される信号VSを配信するために制御器500に接続される。制御器500は垂直基準信号RV用の入力部510を有する。ある実施態様によると、垂直基準信号RVは例えばユーザが制御ノブ520を回転させるときのユーザ交流により発信される。別の実施態様によると、垂直基準信号値RVは、移動可能なユニット20の所望の配向を表示している座標から得られる。

0028

センサ210は、検知された信号VSを配信するために計算ユニット220にも接続される。計算ユニット220は対頂角度値Vと水平角度値Hを、後述の方法で発信するようにする。

0029

計算ユニット220は、検知された垂直信号VSを受信するための入力部240を有している第一計算機230を具備する。第一計算機230は、垂直方向指数VPを表示する信号を受信するための入力部260と、縦方向の垂直誤差P´IIを表示する信号を受信するための入力部270とをも有する。

0030

垂直誤差値PIとPIIとは、それぞれ電子傾斜センサ222と224とによって測量される。傾斜センサ222と、224とは、通常はトータルステーションに統合され、また傾斜センサからのデータはユーザに対してトータルステーションにある画面上に視覚表示される。垂直誤差値PIとPIIとは、傾斜誤差値としても参照される。

0031

ある実施態様によると、電子傾斜センサ222と、224とは、流体で満たされたガラスビンから成る。ガラスビンの中の流体は自由に移動し、その結果もし傾斜センサが水平でないならば、ガラスビンの中の液面は傾斜センサが水平な場合の液面とは異なる。別の実施態様において、電子傾斜センサ222と,224とは機器の垂直軸と真の垂直線との間の関係を測量するために使用されるワイアにより吊下げられた要素を含む、傾斜の総量は角度秒で測量される。通常の電子傾斜センサは1角度秒の角度の範囲内で測量できる。

0032

本発明の実施態様によると、測量器10は、照準儀部40としても参照されるハウジング40と;前記照準儀部に結合された傾斜センサ222と,224と、前記回転照準儀部の回転方向に一致している前記回転照準儀部の傾斜度を予測させる傾斜予測器226とを含む。これは米国特許第6,138,367号明細書においてより詳細に説明され、その要旨は参照することにより本書に含まれる。予測された傾斜度は、二つの角度値P´IとP´IIの合算により画定される。

0033

図3に示される実施態様において、入力部270は傾斜予測器226からの予測された縦方向の垂直誤差値P´IIを受信するために連結される。

0034

別の実施態様によると、傾斜センサは入力部270に直接に縦方向の垂直誤差値PIIを配信する。

0035

傾斜予測器の使用により達成される利点は、傾斜状態のほぼ瞬間的な情報の提供である。対照的に、このような傾斜センサは比較的応答が遅く、また出力値は読了される前に安定化する必要がある。その理由は、移動可能なユニット20は傾斜センサの出力値が信頼できるようになる前は暫くの間は動かない状態であり続ける必要があるためである。

0036

本発明の実施態様によると、第一計算機230は、以下の式にしたがって出力信号Vを発信する。 V=VS+VP+P´II (1)
この場合、VPは垂直方向指数値である。
VPの値は、例えば、照準線128が水平であるように移動可能なユニット20が照準化されるときに出力信号Vが90°であるように選択できる。出力信号Vはデバイス530へ配信される。デバイス530は、垂直方向開始値VA用の第一記憶場所540と、垂直方向最終値を保存しているための第二記憶場所550とを有している記憶装置を含む。制御システム200Aは、ユーザ入力デバイス560も含む。制御システム200Aの操作の方法は、後述の図4を参照して詳述される。

0037

式(1)に固有に存在する縦方向の垂直誤差値P´IIは、移動可能なユニット20の水平配向に従属する垂直配向を提供し、そのとき縦方向の垂直誤差値PIIは、ゼロから偏移する。この結果は、縦方向の垂直誤差PIIの値が、第二軸90の周囲を回転するのに対応して変化するためである。本発明の態様に記載の解決方法は、フィードバックの値Vが縦方向の垂直誤差値PIIに対応する負のフィードバックを備える制御システムを配備することによりこの固有の欠点を補正する。図4と共に後述されるように、値Vは移動可能なユニット20の垂直配向の制御に使用されるよう垂直配向補正値DVを発信するため差分化できる。したがって、移動可能なユニットの水平位置に従属する、移動可能なユニットの垂直配向の誤差は補正できる。この有利な結果は図3により明瞭に図示され、図3は、
-予測器226は、検知された水平位置HSに対応する縦方向の垂直誤差値P´IIを計 算できることと、
- 第一計算機230は、予測された縦方向の垂直誤差値P´IIに対応する値Vを計算す ることと、
-照準補正器665は、値DVが値Vの変化に従属している、垂直偏差を表示する値D Vを発信できることと、
- 値DVは、垂直照準を調整するための制御器500に負のフィードバック信号として 使用されることと、
を示している。

0038

水平出力値Hの制御
図3を参照して、基盤80に関連しハウジング40の水平角度位置を検知するためにセンサ320が配備される。センサ320により発信される信号はHSで表示される。センサ320は、ドライバ120の制御において負のフィードバックとして検知された信号HSを配信するために制御器600に接続される。制御器600は、水平基準信号RH用の入力部610を有する。ある実施態様によると、水平基準信号RHは、例えばユーザが制御ノブ620を回転させるときのユーザ交流により発信される。別の実施態様によると、水平基準信号値RHは、移動可能なユニット20の所望の配向を表示している座標から得られる。

0039

センサ320は、検知された信号HSを配信するために計算ユニット220へも接続される。計算ユニット220は、後述の方法で水平角度値Hを発信するようになっている。

0040

計算ユニット220は検知された水平信号HSを受信するための信号340を有している第二計算機330を具備する。第二計算機330は、水平視準誤差CHを表示する較正値を受信するための入力部350と、予め設定された水平角度HPを表示する値を受信するための入力部360と、縦方向の垂直誤差PIを表示する信号を受信するための入力部370とをも有する。図3に示される実施態様において、入力部370は、傾斜予測器226から、予測された縦方向の垂直誤差値P´Iを受信するために連結される。傾斜予測器は前述のように、傾斜状態のほぼ瞬間的な情報を有利に提供する。

0041

別の実施態様によると、縦方向の垂直誤差PIは、傾斜センサ222から直接的に受信される。

0042

第二計算機330は、トラニオン軸誤差Tを表示する値を受信するための入力部372も有する。本発明の実施態様によると、第二計算機330は、以下の式に従って出力信号Hを発信する。
H=HS+HP+CH/sinV+(T+PI)*cotV (2)
この場合、HPは基準値である。

0043

HPの値は、ユーザにより、例えば移動可能なユニット20を既知基準目標に照準化することと、移動可能なユニット20がその基準目標の方に向けて照準化されるとき表示される水平角を入力することとにより画定できる。ユーザは、例えば真北に照準化し、その水平角度位置用に表示される値Hとして“ゼロ”を入力すればよい。

0044

出力信号Hはデバイス630へ配信される。デバイス630は、水平開始値HA用の第一記憶場所640と、水平最終値HBを保存しているための第二記憶場所650とを有している記憶装置を含む。

0045

デバイス530と630とは、照準補正器665に連結される。照準補正器665は、垂直と水平との照準化の調整をそれぞれ可能にするように、制御器500と600とにそれぞれ連結される。ユーザーインターフェイス560も、照準補正器665へ連結される。測量器10と制御システム200とを操作する方法は、後述の図4を参照して説明される。

0046

本発明の実施態様によると、測量器10は、ユーザが測量値VとHとをそれぞれ読み取ることができる表示部670も具備する。

0047

式(2)に存在する出力信号値Vは、移動可能なユニット20の水平配向がその垂直配向に固有に従属することを示している。本発明の態様に記載の解決方法は、フィードバック値Hが出力信号値Vに対応する、負のフィードバックを伴う制御システムを提供することによりこの固有の欠点を補正する。図4と共に後述されるように、フィードバック値Hは移動可能なユニット20の水平配向の制御に使用される水平配向補正値DHを発信するよう差分化できる。したがって、移動可能なユニットの垂直方向位置に従属する、移動可能なユニットの水平配向の誤差は補正できる。この有利な結果は図3により明瞭に示され、図3は、
- 第二計算機330は、出力信号値Vを受信するための入力部を有することと、
-照準補正器665は、値DHが値Hの変化に従属している、水平偏差を表示する値D Hを発信できることと、
- 値DHは水平照準を調整しているために制御器500の負のフィードバック信号とし て使用されることと、
を示している。

0048

測量器を操作する方法
図4は、測量器10を操作する方法の実施態様を図示しているフローチャートであり、このとき測量器10は図3を参照して説明される制御システムを具備する。

0049

測量を実施することを望んでいるオペレータは、真の水平面に関連する測量器10の基盤80を少なくともほぼ水平化するようにスタンド122(図1参照)を設置することと調節器124を調整することとにより開始するのがよい。この水平の照準化は、第二軸90をそれがほぼ垂直であるように設定することでよい。

0050

設定手順
オペレータは、水平視準誤差CHとトラニオン軸誤差Tとの関連値確立するための設定手順(図4の段階55)を実行すればよい。好適な実施態様によると、設定手順は傾斜予測器の始動も含み、その結果、後に選択されるいずれかの回転位置のために予測される垂直誤差値P´IとP´IIとに関係する迅速で正確な配信が可能になる。図4において、囲み記事55はこの設定手順を説明する。

0051

誤差値CHを確立するために、機器10は第一目標に照準化され、また計算ユニット220は角度値VとHとを配信する。これらの値は保存される。次の段階において、機器10は、ドライバ120が移動可能なユニットを水平方向に半回転させるように、またドライバ110が移動可能なユニットを垂直方向に回転させるように操作され、照準は第一目標に極めて近接する。その後、機器は、再び第一目標に照準化するように、また計算ユニット220により配信される角度値VとHとを読み取るように精巧に調整される。誤差の値CHを表す数値はこれらの測量値に対応して計算できる。第一目標は照準線が誤差の値CHの正確な測量を達成するためにおおよそ水平であるように選択されるのが好ましい。確立された水平視準誤差CHは記憶装置355に保存される。

0052

前述の設定手順と類似の第二の設定手順は、トラニオン誤差T用の数値を確立するために使用される。この第二の手順は、しかしながら水平面に近接していない目標を使用する。トラニオン誤差T用に確立された値は記憶装置375に保存される。

0053

設定手順が実行されたとき、測量器10の計算ユニット220は、有利で高度な精度の角度値VとHを配信する。

0054

その後、オペレータは制御ノブ520と620とを操作し、照準線128を基準点上に照準化する(段階510、図4)。いったん機器が基準点に照準化されると、前述のセンサは、関連入力信号を計算ユニット220に配信し、そして、計算ユニット220の出力上に角度値VとHとの配信をそれぞれ生ずる。

0055

垂直照準ロック機能
垂直照準Vを変更しないままにしている一方、水平照準Hを所定の角度だけ変更することを望むなら、オペレータはそのとき“垂直照準ロック”機能を選択すればよい(段階520、図4)。この機能はユーザー・インターフェイス560によって選択されるのがよい(図3)。垂直照準ロック機能を選択すると、測量器10は垂直照準においてのいずれかの偏差の自動補正をする。

0056

機能“垂直照準ロック”を選択すると、デバイス530は現在の照準の角度値を受信するようになる。したがって、機能“垂直照準ロック”を選択する前に、基準目標に照準化することは有利である。さらに、デバイス530は、ここではVAで表示される値Vを読み取りまた記憶場所540にその値を保存する(図3参照)。同様に、デバイス630はここではHAで表示される値Hを読み取りまた記憶場所640に値HAを保存する。この段階で、オペレータは、測量された角度値V=VA、H=HAを表示部670において読み取ることもできる(図3)。

0057

一段階において(段階530、図4)、オペレータは、垂直照準を変更しないままにしている一方、水平照準を所定の角度だけ変更しているためにノブ620を回転させてもよい。したがって、双方向矢印100により図示されるように、オペレータは移動可能部20が第二軸90の周囲を回転するようにしているため、制御ノブ620を回転させるだけでよい。

0058

オペレータが機器の所望の水平位置決めHBを達成するとき、前述の機械的欠陥は、垂直照準において少量だが測量可能な変化を引起こす。言い換えると、“水平”制御ノブ620の操作は、垂直照準において意図的ではないあるいは偶発的な変化を引起こす。

0059

本発明の実施態様によると、計算ユニット220の出力上の値Vと,Hとは、デバイス530と、630とにより自動的に読み取られ、またこれらの値は記憶場所550と650とにそれぞれ保存される。記憶場所550と650とに保存された値は、ここではVBとHBとしてそれぞれ参照される。これは、図4の段階540に図示される。この方向(この場合は垂直)の変化は進行中のプロセスであるが、必ずしも時間に直線的でない。したがって、新しい値VBとHBは、移動が進行するとき記憶場所へ送信され、また古い値は新しい値VAと、HAになる。

0060

後続の段階(段階550、図4)において、デバイス530は、値VBとVAとの間の差分DVを計算し、またデバイス630は、値HBとHAとの間の差分DHを計算する。
DVは、 DV=VB−VA で表示され、
DHは、 DH=HB−HA で表示され、
次の段階(段階560、図4)において、値は表示される。

0061

差分信号値DVと、DHとは照準補正器665へ配信される。機能“垂直照準ロック”が選択されたとき、照準補正器665は、垂直照準を調整するように差分信号値DVを制御器500へ配信する(570段階、図4)。差分信号値DVは、測量器10が全ての機械的偏差をサーボ駆動方法で自動的に補正するように垂直位置決め制御ループ加算される。したがって、オペレータが機能“垂直照準ロック”を選択したとき、サーボシステムは水平照準のみに変化を起し、また垂直照準に対する好ましくない変化はいずれも自動的に補正される。制御システムは次に最終段階(段階580)に出て、DV及び/又はDHにおいての差分が所定値より上/より下であるか、また手順が次に図4の段階530へ進行するかあるいは手順を終了するかのどちらであるかを照合する。

0062

この操作方法は、オペレータが選択された基準目標のいずれかで照準を獲得でき、また次に別の水平方向においての垂直な補正照準を直接的に取得できるので、オペレータ用の仕事を簡素化する。したがって、本発明の態様によると、垂直な位置決めVの変化を引起している機械構造の固有の欠陥のいずれも補正される。前述のように、照準の補正は前述の手順と併せて前式(1)に従って計算できる。

0063

水平照準ロック機能
同様に、もし手順が垂直照準のみを調整する、即ち、ノブ520のみを操作する目的でなされるなら、これは前述の機械的欠陥のため水平照準Hに好ましくない変化を引起す。
前述の方法と類似の方法においては、オペレータはそのときユーザー・インターフェイスによって機能“水平照準ロック”を選択してもよい。この機能を選択すると、測量器10は水平照準においてのいずれかの偏差を自動補正する。機能“水平照準ロック”が選択されるとき、照準補正器は、水平照準を調整するため差分信号値DHを制御器600へ配信する(段階570、図4)。

0064

本発明の実施態様によると、“水平照準ロック”機能は、
前記移動可能なユニット20の選択された水平配向を表示しているための水平基準値RHを発信している段階と;
前記選択された水平配向を維持しているための測量器(10)の水平照準ロック機能を動作している段階と;
前記移動可能なユニット20の垂直配向を変更するように前記移動可能なユニット20が前記第一軸50の周囲を旋回している段階と;
前記第二軸90の周囲を回転するのに関連する水平配向値HSを検知している段階と;
水平配向偏差を表示する水平誤差値DHを受信している受信段階であって;
前記水平誤差値DHは前記検知された水平配向値HSに従属していて;
前記水平基準値RHと、前記水平誤差値DHとに従属して移動可能なユニット20の水平配向を自動的に制御している段階であって;前記水平誤差値DHは移動可能部20の垂直配向に従属している段階;
を具備する。

0065

差分信号値DVと、DHとは、オペレータがリアルタイムあるいは可読性の改良を可能にしている所定の遅延時間を伴って値DVと、DHとを読み取ることを可能にしている表示部670(図3と、図4の段階560とを参照)へ配信される。

0066

制御システムの第二の実施態様
図5は、図1に示される型の測量器10において使用するための制御システムの第二の実施態様200Bの概ブロック図を示す。制御システム200Bは、駆動装置110と120とをそれぞれ制御するため動作する。

0067

垂直照準
第二の実施態様に記載の制御システム200Bは、検知された信号VSを垂直位置決め発信器272の入力部271へ配信している垂直センサを含む。垂直位置決め発信器272は、垂直誤差補正値VECを受信しているための入力部273も有する。垂直位置決め発信器272は、入力部271と273とで受け取った値に対応する正確な垂直位置の値Vを発信する。

0068

出力信号Vは、第一制御器280の入力部274へ配信される。第一制御器280は、ユーザあるいはオペレータにより設定される基準信号値RV用の入力部290も具備する。基準信号値RVは、出力値V用の所望の値を表示する。

0069

誤差信号eVは、基準信号値RVと出力信号Vとの間の差分として第一制御器280に発信される。誤差信号eVは、調整器300へ配信される。調整器300は垂直制御信号VC用の出力部310を有する。

0070

垂直制御信号VCは、移動可能なユニット20の適正な移動をトラニオン軸50の周囲に引起しているための駆動装置110へ配信される。この方法において、制御システム200Bは、垂直位置決め発信器272により発信される正確な垂直位置の値Vを使用している垂直基準信号値RVに対応して、垂直照準を制御する。垂直誤差補正値VECは、垂直方向指数VPと縦方向の垂直誤差値PIIとに従属して誤差補正発信器292により発信される。
本発明の態様によると、値VECは、
VEC=VP+P´II
として計算される。
垂直方向指数VPと縦方向の垂直誤差PIIとの値は、初めに説明した実施態様と共に前述と同一の方法で取得されまた誤差補正発信器292へ配信される。VPの値は、例えば移動可能なユニット20を照準線128が水平であるように照準化するとき出力信号Vは90°であるように選択できる。好適な実施態様において、縦方向の垂直誤差値は、予測器226により配信される予測値P´IIであり、このことは前述されている。傾斜予測器は、傾斜状態のほぼ瞬間的な情報を有利に提供していて、このことは前述されている。

0071

水平照準
水平センサ320は、検知された信号HSを水平位置決め発信器372の入力部371へ配信する。水平位置決め発信器372は、水平誤差補正値HECを受信するための入力部373も有する。水平位置決め発信器372は、入力部371と373とで受信される値に対応して正確な水平位置の値Hを発信する。水平制御は、前述の垂直制御で説明された同一の方法で達成され、また、ユーザあるいはオペレータにより設定される基準信号値RH用の入力部390と、基準信号値RHと正確な水平位置の値Hとの間の差分に従属して発信される誤差信号eHとを具備している制御器380の入力部374と;
ハウジング40の適正な移動を第二軸の周囲に引起す駆動装置(120)を制御しているための水平制御信号HC用の出力部410を有している調節器400を伴っている。
この方法において、制御システム200Bは、水平位置決め発信器372により発信される正確な水平位置決め値Hを使用している水平基準信号値RHに対応して水平照準を制御する。

0072

水平補正発信器412は、水平誤差補正値HECを発信する。本発明の態様によると、値HECは、
HEC=HP+CH/sinV+(T+P´I)*cotV
として計算される;
ここでHPは、出力信号Hがゼロである角度位置を画定している定数である。

0073

上式は実際には小さな補正パラメータ(CH、T、P´I、P´II)が有効である第一近似であるが、完全な式は実際には、
HEC=HP+CH/sinV+(T+P´I)* cot(VP+VS);(V=VP+VS+P´II)
である:
即ち、値P´IIは、最後の項の一部ではない。しかしTとP´Iは小さな補正でありまたP´II(近似において具備される)も小さい。これはこのパラメータからの影響が“二次的で”またそれ故無視してよいことを示す。
実用においては、最初の式が使用される。

0074

水平方向指数HPと、トラニオン軸誤差Tと、縦方向の垂直誤差との値は、初めに説明された実施態様と共に前述と同一の方法で取得される。取得されたHP、CH、T及びP´Iの値は、それに対応して誤差補正値HECを発信するために順々に動作する、誤差補正発信器412へ配信される。好適な実施態様において、水平方向の垂直誤差値は、予測器226により配信される予測値P´Iであり、このことは前述されている。

0075

オペレータは、基準信号値RVとRHを制御できる。本発明の一バージョンによると、信号RVは、第一制御ノブにより発信される。同様に、信号RHは、第二制御ノブにより発信される。

0076

図5を参照して、制御システム200Bは位置決め制御ループ部700を含む。位置決め制御ループ部700は、移動可能部20の照準の迅速で正確な制御を達成するために高い更新速度で動作でき、そのことは後述の図6を参照して説明される。

0077

誤差補正値VECとHECとは、より低い更新速度で発信され、そのことは後述の図7を参照して説明される。したがって、誤差補正発信器292と412とは、制御システム200Bの誤差補正部710に含まれる。

0078

本発明の好適な実施態様によると、位置決め制御ループ部700は、第一データ処理ユニットを含み、また誤差補正部710は第二データ処理ユニットを含む。この場合、第一データ処理ユニットは第二データ処理ユニットよりも高いデータ処理容量を有する。
別の実施態様によると、部分700と710は、それらのデータ処理容量とは別の関係で動作する。

0079

測量器を操作する方法
図6と7とはフローチャートであり、図5に記載の制御システムを操作する方法の実施態様を図示している。
図6を参照して、オペレータは設定手順段階55を実行してもよく、そのことは測量を開始する前に前述されている。検知器210と320とは、検知された照準を示している信号VSとHSとを配信する(段階110)。位置決め値発信器272と372とは、誤差補正値VECとHECをそれぞれ受信し、そのことは図6の囲み記事の段階120により示される。
検知された照準と関連の誤差補正値への対応において、位置決め値発信器272と372は、正確な照準値VとHとをそれぞれ配信する。制御器280と380とは、ユーザにより設定される基準値RVとRHとをそれぞれ受信する。このことは図6の段階130により図示される。

0080

図6の段階140により図示されるように、制御器280と380とは、正確な照準値VとH及び関連基準値RVとRHとにそれぞれ対応して、移動可能なユニット20(図1)の位置決めをしている照準を制御するため動作する。
段階110と、120と、130と、140とは、垂直と水平な照準に向けて並列に実行される。段階140の終了後、手順は再び反復される。

0081

本発明のある実施態様によると、操作方法は、受信した基準値RHとRVの一つにおいて検知された変化に対応して開始する。本発明に記載の操作方法のこの実施態様は、
a)前記移動可能なユニット20の所望の水平配向を表示する、水平基準値RHを設定 している段階と;
b)前記第二軸90の周囲の現在の回転配向を表示する水平配向値HSを検知している 段階と;
c)前記移動可能なユニット20の水平配向偏差を表示する水平配向補正値HECと、 DHとを受信している段階であって;
前記水平配向補正値HECとDHは、横方向の垂直誤差値PIとP´Iに従属して発信され;前記横方向の垂直誤差値PIとP´Iは前記移動可能なユニット20の 前記水平配向に従属していて;また、
前記受信した水平配向補正値HECと;DHとは、前記第一軸50の周囲を旋回し ている結果として生ずる水平配向偏差を補正するように、移動可能なユニット20 の垂直配向Vに従属している段階と;
d)前記水平配向値HSと、前記水平配向補正値HECと;DHとに対応して、前記移 動可能なユニット20の現在の水平配向を表示する水平位置決め値Hを発信してい る段階と;
e)前記水平位置決め値(H)と前記水平基準値RHとに従属する、水平誤差値eHを発 信している段階と;
f)前記水平誤差値eHに従属して、移動可能なユニットの水平配向を自動的に制御して いる段階と、
を含む。
好適な実施態様によると、操作方法はさらに、
g)前記水平誤差値eHは所定の閾値DFよりも小さくなるまで、前記段階b)−f)を 反復する段階:
を具備している。

0082

所定の閾値DFの大きさは、達成される照準の精度を決定する。一実施態様によると、閾値DFは、10角度秒かあるいはそれいかの角度に相当する。別の実施態様によると、閾値DFは、1角度秒以下の角度に相当する。好適な実施態様によると、閾値DFは、1/3角度秒の角度に相当する。最も好適な実施態様によると、閾値DFは、1/3角度秒よりも小さい角度に相当する。

0083

対応する方法において、本発明に記載の操作方法は、垂直誤差値eVに従属する移動可能なユニットの垂直配向の自動制御を達成する。好適な実施態様によると、操作方法は、誤差eVが所定の閾値DVFよりも小さいように移動可能なユニットの垂直配向を制御している段階を具備する。

0084

図7は、誤差補正値VECとHECとの配信の操作方法をそれぞれ図示する。段階210において、誤差補正発信器292は、入力値VPとP´IIとを受信する。前述のように、P´IIの値は照準儀部40の現在位置に従属して変更できるが、値P´IIの変更の速度は比較的遅い。
誤差補正発信器292は、入力値VPとP´IIとに対応して垂直誤差補正値を発信し(段階220)、また発信値は、位置決め値発信器272へ配信される(段階230)。

0085

段階210と、220と、230とは、段階230の後に段階210と、220と、230の新たな実行が続くような反復処理であり、そのことは図7に図示される。
水平誤差補正値HECを発信しているプロセスは、同一方法で実行されるが、入力値信号Tと,PIと、CHと、HPとVとに基づいている。

0086

通常の動作下で誤差補正値の変更の速度は、変更された基準値RVあるいはRHに対応して検知された位置決め値VSあるいはHSの変更の速度より小さい。したがって、図6を参照して説明される操作方法の実行へ計算機の処理能力を配分することは有利である。
ドライバ110と120とを有利に制御しているプロセスと誤差補正値VECとHECとを発信するための手順を分離することは計算機の処理能力の解放を可能にする。これは図7を参照し説明される手順を低速度で実行することにより達成される一方、位置決めの高度で正確な制御を維持している。言い換えると、手順の分離は、ハードウェアへの要求が少ない状態で正確に更新された位置決め値と位置決めのサーボ制御とを取得することを可能にする。

0087

実施態様によると、図6を参照して説明される制御ループ700は、一秒につき100回(100Hz)を超える反復回数で動作する;一方、図7による手順は、その反復回数の半分より少ない状態で動作する。あるバージョンによると、誤差補正値は、図6を参照して説明される制御ループの反復回数の約1/10の比率で更新される。
好適な実施態様によると、図6を参照して説明される制御ループは、一秒につき1000回(1000Hz)を超える反復回数で動作する。

0088

傾斜予測器226は、第三区部720に含まれ、それは図5に図示される。傾斜予測器226は、予測された垂直誤差値P´IとP´IIとをそれぞれ、更新されるHECとVECと同一の反復回数で更新するため動作する。

0089

測量器10(図1)は照準線の方向に光を送るようになっているレーザを含む。オペレータが、所定の水平基準値を維持している一方、垂直基準値RVを変更するとき、レーザ光は真の垂直方向を通過する。この発明の実施態様に記載の操作方法はそれ故、サーボ制御が機械的誤差の影響を除去できるため、壁に極めて正確な垂直線を描画できる。
本発明は、機器が非理想的な位置に取付けられるときでさえ、例えば機器を、第二軸90が理想的な真の垂直軸から偏移するよう位置決めしてもこれを有利に可能にする。

0090

さらに、本発明に記載の測量器10は、前記第一磁針方角と正反対に第二磁針方角を表示しているために、ユーザが第一磁針方角に照準化しまた測量器10を使用することを有利に簡素化する。ユーザは例えば、移動可能なユニット20を第一軸50の周囲に旋回する簡単な動作により、最初に真北に照準化し、また次に真の磁針方角に照準化を達成する。これは測量器10を操作する方法により達成される;操作方法は、
前記測量器10の照準線128の照準の水平方向成分が第一磁針方角に向けられるように前記移動可能なユニット20の所望の第一水平配向を設定している段階と;
前記測量器10の前記照準線128の照準の前記水平方向成分が第二磁針方角に向けられるまで、前記移動可能なユニット20の垂直配向を変更するように前記第一軸50の周囲に前記移動可能なユニット20が旋回している段階であって;前記第二磁針方角は前記第一磁針方角から偏移している段階と;
水平配向補正値HECに対応し前記移動可能なユニット20の現在の水平配向を表示する水平位置決め値Hを発信している段階で;前記水平配向補正値HECは前記第一軸50の周囲を旋回している結果として生ずる水平配向偏差を補正するように、移動可能なユニット20の垂直配向Vに従属している段階と;
前記第二磁針方角が前記第一磁針方角に向き合うように前記水平位置決め値Hに従属して移動可能なユニット20の水平配向を自動的に制御している段階と、
を具備している。

0091

ある実施態様によると、測量器を操作している前述の方法は、方向基準値RV及び/又はRHの手動制御にそれぞれ対応して実行される。これは例えばユーザが測量器の垂直制御ノブ及び/又は水平制御ノブを手動的に操作するとき達成される。

0092

別の実施態様によると、測量器の制御器は、前記測量器の遠隔制御中に検知された誤差を自動的に補正するようにさせる。この実施態様において、図5の入力部290及び/又は入力部390へそれぞれ基準値RV及び/又はRHを配信するため連結された受信器(示されていない)が配備される。ユーザによる操作用の入力部を具備している送信器(示されていない)は、ユーザ入力に対応して測量器が遠隔制御されるように基準値RV及び/又はRHを表示するデータを受信器へ送信するようになっている。送信器/受信器は無線方式で即ち無線リンクを経由してあるいは変調光によって通信する。あるバージョンにおいて、送信器/受信器は、基準値RV及び/又はRHについての情報を送信するため変調されるレーザ光によって光学的に通信する。ユーザが基準値RV及び/又はRH用の送信器上の操作ノブ手動操作するとき、送信器は受信器へ関連方向データを配信するため動作する。方向データの受信に対応して、受信器は、基準値RV及び/又はRHが基準値入力部520と、620と、290と、390とへ配信されるように適正な制御信号を配信するため動作する。好適な実施態様によると、制御システム200Aと、200Bとは、受信器と、基準値入力部290と、390と、520と、620と通信するため連結されるサーボプロセッサを含む。送信器と受信器は、以下の双方向通信を可能にしている送受信器により統合される。

0093

本発明のさらに別のバージョンにおいて、オペレータは座標値あるいは目標基準値に関して特定の目標を測量器自体のユーザ入力部を経由して入力しまたそれに対応して測量器のプロセッサは照準線が目標に向かうように照準線と一致する方向を自動的に計算する。これは図5において示される入力部290と390とに対応する方向基準値を入力することにより達成される。本発明のさらに別の実施態様において、座標値あるいは目標基準値は遠隔位置のユーザ入力部に入力されまた送信器/受信器集合体によって測量器へ転送しそれによって測量器を座標値あるいは目標基準値により画定された目標に照準線を自動的に向くようにするために、遠隔位置の送信器へ配信される。送信器/受信器集合体は前述と同一の方法で動作する。

0094

さらなる実施態様において、水平線機能用の手順が開示される。いくつかの出願において、壁あるいは類似物上の地点を測量しているあるいは構造を照合しているために所定の垂直高さを維持できることが有利である。これを行うためオペレータは機器メニューの機能“水平線”を選択してもよい。

0095

“水平線”の選択は、既知の距離の対象物を照準化するとき所定の照準高さを維持するため測量器が対頂角Vの自動補正をするよう制御されることを意味する。距離は例えば予め画定された平坦表面あるいは直線上に存在しているように画定できる。機能を図示するため、垂直な平坦表面が選択される。次にいずれかの平坦表面上の水平線を追跡する方法が示される。

0096

作業の流れは、図8のフローチャートに図示される。手順はユーザが段階801の機器のメニュから“水平線”を選択することにより開始する。段階802において、一表面が画定され、それは通常は表面の任意の二点(AとB)を画定することによりなされる。これは様々な方法で行うことができる。点を照準化しまた機器を使用して距離と角度の測量により座標を決定するかあるいは座標をキーボードから機器に入力しまたは座標をデータベースから取って来ることかのどちらかである。段階803において、基準高さを画定する。これも少なくとも二つの異なる方法で行うことができる。所望の高さをキーボードから入力するかあるいは機器を所望の高さを有している実際の表面上の基準点に照準化し、またこの高さを登録するかのどちらかである。直ちに所望の移動用のパラメータは決定され、また段階804において水平角変更用のノブは回転される。機器は次にあらゆる水平角と対応する対頂角を計算し、また段階805において、表面で所望の高さを構成する方向に照準化するよう垂直サーボを制御する。段階806において、機器のさらなる移動のいずれかに対する決定がなされる。

0097

実際の垂直制御角度を計算するための式は、図9と10から誘導できる。
図9は、水平XY面の垂直表面(700)と機器(710)の投影図を示す。
図10は、機器のZ軸と表面(700)上の任意点とを通る側面図を示す。
表面上の点AとBとの座標(XA、YA,ZA)と(XB,YB,ZB)とは、機器により測量された距離と角度を用いて計算でき;また機器の位置は、この座標系の(0,0,0)になっている。
これらの座標から、水平面の表面の投影図の式を見出すことができ、またこの式は表面に垂直な線に対する角度H0と表面への垂直距離dとを決定する。偏差はベクトル代数に関する教科書において求めることができる。

0098

図9と10とからの表記法を用いて、以下の式を求めることができる。
tan(π/2−V)=h*cos(H−H0)/d (1) あるいは、
V= π/2−arctan[h*cos(H−H0)/d] (2)
したがって、所定表面上の所定高さhを決定している対頂角Vは、式(2)を用いていずれの方向Hに対しても測量できる。

0099

この値を垂直サーボに対する入力基準値RVとして用いることにより、機器は水平標準化にかかわらず同一の垂直高さで表面の点へ照準化される。

0100

前述の手順は、図8に示される実施態様により実証され、図8は以下の段階を具備する:
段階801メニューから“水平線”を選択する。
段階802 表面上の二(あるいは三)の任意の点を画定する。
段階803 所望の高さの値を入力する。
段階804 水平照準を選定量変更するためにノブを回転する。
段階805機器は対応する対頂角を計算しまた所望の所定の垂直高さを維持するため に垂直照準を自動的に調整する。
段階806 段階804−段階805の反復に対する決定がなされる。

0101

垂直でない表面上の水平線を追跡することは極めて類似している。違いは表面を画定するのに三点が必要とされることである。さらに図9は、平坦表面上の所望の高さにある所望の水平線のXY面内の投影図と考えられる。この場合もやはり既知のベクトル代数によりパラメータdとH0がこの投影図へ与えられ、また対頂角Vを計算するための式は同一である。

0102

さらなる実施態様において、任意の二点間のライン機能の手順が開示される。いくつかの出願において、一つのノブのみを操作することにより機器の照準を平坦表面上、例えば壁、天井あるいは床上の任意の二点間の直線の方へ進ませることは重要である。この機能は水平照準機能と同一の方法で達成できる。最初に二点が画定される必要がある。これはさまざまな方法で行うことができる。二点の座標はデータベースから機器へ利用することができ、またそれらはキーボードから入力できるかあるいは機器により測量できまた計算できる。

0103

図11において、ZY面に投影された二点AとBとが示される。点はいずれかの配向の平坦表面上に存在すると想定される。角度Θと高さZ0は、ベクトル代数においての既知の手法によりAとBとの座標から両方とも取得できる。目的は、所定のノブを回転するとき機器の照準方向が点AとBとの間の直線の方に進むように機器を制御することであり、それは例えば指示レーザのスポットが二点を含んでいるいずれかの平坦表面上のこの直線の方に進むことを意味している。前述と同一の図9を用いて、700で表示される点AとBとを通る線は、AとBとを通る真の線のXY面内の投影であり、またdは機器からこの線への直交距離であると考えられる。この場合もやはり、投影された距離dと角度H0と同様に点AとBとを通る線の式も、既知のベクトル代数を用いて決定できる。設定の形状のため、水平角度H0は定義によりXY面内の投影された角度に等しい。図9から、線上のいずれかの点のY座標は、
Y=d*cos(H)/cos(H−H0) (3)
として計算できることは明らかである。

0104

図11は、垂直ZY面上の二点AとBとの投影図を示す。図11からAとBとを通る線上の任意の点(P´)のZ座標は:
tan(Θ)=(Z−Z0)/Y から得られる、
Z=Z0+Y*tan(Θ) (4)
から求められる。これから、点P´と機器(Z軸)とを通る垂直面を考える。
式(1)と等価に:
tan(π/2−V)=Z*cos(H−H0)/d あるいは
V=π/2−arctan[Z*cos(H−H0)/d] (5)
を得る。
(4)からZと(3)からYを代入して、最終的に:
V=π/2−arctan[Z0*cos(H−H0)/d +cos(H)*tan(Φ)] (6)
を得る。

0105

任意の水平方向Hにおいて照準化することによって、Z0とH0とΘとが全て直線の式から取得できるため、所定の線上の一点に対応している対頂角を計算できる。この値(V)は次に垂直サーボへの基準入力として使用でき、またそれは水平照準化用のノブを操作しているとき、全体の照準化が所定の二点間の直線の方へ進むように垂直照準化を制御できることを意味している。この式(6)がHの値を求めることができることは明らかであるがそれよりもむしろ、任意の対頂角V用に、対応している水平角Hを計算できることを意味している。このことは垂直照準化用のノブのみを操作することにより、水平サーボへ入力するときのH用の計算値を使用することにより所定の点の間の直線を追跡できることを意味する。

0106

図12において、この機能のためのフローチャートが示される。
段階1201メニューから“任意の線”を選択する。
段階1202 表面上に終点AとBとを画定する。
段階1203水平移動用あるいは垂直移動用のノブかあるいは両方のノブのどちらか を選定量回転する。
段階1204機器は対応している対頂角を計算し、また所望の所定の垂直高さを維持 するために垂直照準を自動的に調整する。
段階1205 この中においては終点に到達したか、またそうでないなら段階1203 −1205を終点まで反復するかどうかを決定する。

0107

したがって、前述に記載の測量器を操作する方法を通して本発明に記載の任意の線を描き、前記制御器は、
面上の二点AとBとを画定する段階であって、この直線上の任意点はP´で表示される段階と;
角度Θと、角度H0と、高さZ0とを計算する段階であって、Θは機器710(0,0,0)
を通YZ面内の投影線間の角度であり、角度H0は、Y軸と、AとBの間の線の投影に垂直な線との間のXY面内の角度になっていて、また高さZ0は、AとBとの間の前記線がZ軸と交差する基底上部の高さになっている;また、
これらの値を機器の移動を制御するために使用する段階;
を使用して二点間の任意の直線を追跡している時、検知した誤差を自動的に補正するようになっている。

0108

任意の水平方向Hに照準化するとき水平手動制御を使用するために、線A−B上の一点に対応している対頂角VがZ0と、H0と、Θから計算され、この値Vは垂直サーボへの基準入力値と同一の入力値として使用され、またそれは機器が前記二点間の直線を追跡できるように垂直照準を制御する水平照準化用のノブの操作を可能にしている。

0109

任意の垂直方向Hに照準化するとき垂直手動制御を使用するために、線A−B上の一点に対応している対頂角VがZ0と、H0と、Θから計算され、この値Hは水平サーボへの基準入力値と同一の入力値として使用され、またそれは機器が前記二点間の直線を追跡できるように水平照準を制御する垂直照準化用のノブの操作を可能にしている。

0110

本発明を本発明の実施態様を使用して説明してきたが、当業者には周知の方法あるいはここに開示された方法とは別の方法を、添付の請求項の要旨を逸脱しない範囲で使用してもよいことは理解される。

図面の簡単な説明

0111

図1は、本発明の実施態様に記載の測量器の正面図である。
図2Aは、図1において矢印130の方向の外観を見ている図である。
図2Bは、照準線の角度方向(H,V)を図示し、そのとき測量器は測量を実行するために目標に照準化される。
図2Cは、図1の測量器において水平視準誤差CHを図示しているために、図1において矢印140の方向の外観を見ている図である。
図2Dは、観測者が図1を見るのと同一の透視図で見ているトラニオン軸誤差Tを図示する。
図2Eは、観測者が図1を見る透視図に見られるような第二軸90と、真の垂直線155と、トラニオン軸50を示す。図2Eにおいて図示されるように、垂直線155と第二軸90との間の角度偏差はPIで表示される。
図2Fは、図2Eの透視図に垂直な透視図において第二軸90を図示する。図2Fにおいて図示されるように垂直線155と第二軸90との間の角度偏差はPIIで表示される。
図3は、図1において示される型の測量器に使用するための制御システム200の第一実施態様の概ブロック図を示す。
図4は、図3を参照して説明されるように測量器が制御システムを具備するときの測量器を操作する方法の実施態様を図示しているフローチャートである。
図5は、図1において示される型の測量器に使用するための制御システムの第二実施態様の概ブロック図を示す。
図6は、図5に記載の制御システムを操作する方法の実施態様を図示しているフローチャートである。
図7は、図5に記載の制御システムを操作する方法の実施態様を図示しているフローチャートである。
図8は、水平線を創出するように測量器を操作する方法の実施態様を図示しているフローチャートである。
図9は、平坦表面上の所望の高さで所望の水平線のXY面内への投影図を示す。
図10は、機器のZ軸と表面上の任意の点Pとを通る側面図を示す。
図11は、基本的にいずれの方向についても平坦表面である、ZY面上に投影された任意の二点AとBとを示す。
図12は、任意の線を創出するように測量器を操作する方法の実施態様を図示しているフローチャートである。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ