図面 (/)

技術 送信装置、受信装置および移動通信システム並びに送信制御方法

出願人 株式会社NTTドコモ
発明者 大藤義顕樋口健一新博行佐和橋衛
出願日 2006年2月8日 (14年8ヶ月経過) 出願番号 2006-031749
公開日 2007年6月14日 (13年4ヶ月経過) 公開番号 2007-151059
状態 特許登録済
技術分野 交流方式デジタル伝送 時分割方式以外の多重化通信方式 移動無線通信システム
主要キーワード 希望周波数帯域 仮割り当て ポッピング 自受信装置 ランキング表 とびとびの 送信周波数帯域幅 タイムインターバル
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2007年6月14日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (20)

課題

シングルキャリア型の無線アクセス方式マルチキャリア型の無線アクセス方式とを切り替えることができる送信装置受信装置および移動通信システム並びに送信制御方法を提供する。

解決手段

送信装置に、無線アクセス方式を切り替える切り替え手段と、切り替えられた無線アクセス方式に応じて高速フーリエ変換および直並列変換の一方が行われた拡散後のチップ系列に対して、無線リソース割り当て、周波数領域の信号を生成する周波数領域信号生成手段と、周波数領域の信号に対して高速逆フーリエ変換を行い、送信信号を生成する送信信号生成手段とを備えることで達成される。

概要

背景

IMT−2000(International Mobile Telecommunication 2000)の次世代の移動通信方式である第4世代移動通信方式(4G)の開発が進められている。第4世代移動通信方式では、セルラシステムを始めとするマルチセル環境から、ホットスポットエリア屋内などの孤立セル環境までを柔軟にサポートし、さらに双方のセル環境周波数利用効率の増大を図ることが望まれている。

第4世代移動通信方式において移動局から基地局へのリンク(以下、上りリンクと呼ぶ)については、以下の無線アクセス方式が提案されている。シングルキャリア伝送方式では、例えばDS−CDMA(direct sequence code division multiple access) 方式、IFDMA(Interleaved Frequency Division Multiple Access) 方式、可変拡散率チップ繰り返しファクタ(VSCRF-CDMA: Variable Spreading and Chip Repetition Factors-CDMA) 方式が提案されている。マルチキャリア伝送方式では、例えばOFDM(Orthogonal Frequency Division Multiplexing) 方式、Spread OFDM、マルチキャリア符号分割多元接続(MC-CDMA: Multi-Carrier Code Division Multiple Access) 方式、VSF−Spread OFDM(Variable Spreading Factor Spread OFDM) 方式が提案されている。

シングルキャリア方式は、端末消費電力に関して、ピーク電力が小さいので、送信電力増幅器バックオフを小さくでき、電力効率がよい。

シングルキャリア方式の一例として、VSCRF−CDMA方式について、図1を参照して説明する(例えば、特許文献1参照)。

拡散部1は、符号乗算部2と、符号乗算部2と接続された繰り返し合成部8と、繰り返し合成部8と接続された移相部10とを備える。

符号乗算部2は、送信信号拡散符号乗算する。例えば、乗算器4は、所与符号拡散率SFの下で定められたチャネリゼーションコードを送信信号に乗算する。さらに、乗算器6は、スクランブルコードを送信信号に乗算する。

繰り返し合成部8は、拡散後の送信信号を、時間的に圧縮し、所定数回(CRF回)反復する。チップ繰り返しが適用された送信信号は、くしの歯状の周波数スペクトラムを示す。繰り返し数CRFが1に等しい場合の構成および動作は、通常のDS−CDMA方式の場合と等しくなる。

移相部10は、移動局毎固有に設定された所定の周波数分だけ送信信号の位相をずらす(シフトさせる)。

VSCRF−CDMA方式において、CRF>1の場合、例えばCRF=4の場合には、図2Aに示すように、各ユーザの使用する周波数スペクトラムが、くしの歯状に全帯域にまたがって分散配置される。この場合、ユーザ固有周波数オフセットが、割り当てられた帯域幅よりも小さくなる。

一方、CRF=1の場合には、図2Bに示すように、各ユーザの使用するスペクトラムが、ブロック上にまとまって配置される。この場合、ユーザ固有の周波数オフセットが、割り当てられた帯域幅よりも大きくなる。

また、周波数領域で、くしの歯状の周波数スペクトラムを得る無線アクセス方式が提案されている(例えば、非特許文献1および2参照)。

この無線アクセス方式を適用する送信装置30は、図3に示すように、拡散されたデータ系列が入力されるFFT部12と、FFT部12と接続されたレート変換部14と、レート変換部14と接続された周波数領域信号生成部16と、周波数領域信号生成部16と接続されたIFFT部18と、IFFT部18と接続されたGI付加部20と、GI付加部20と接続されたフィルタ22とを備える。

高速フーリエ変換(FFT)部12は、拡散されたデータ系列をQチップ毎にブロック化して高速フーリエ変換を行うことにより、周波数領域に変換する。その結果、周波数領域においてQ個のシングルキャリアの信号が得られる。ここで、拡散されたデータ系列は、図1を参照して説明した拡散部1において、乗算器6の出力信号に相当する。

レート変換部14は、Q個のシングルキャリアの信号を所定数回、例えばCRF回繰り返す。その結果、Nsub=Q×CRF個のシングルキャリアの信号が生成する。

周波数領域信号生成部16は、くしの歯状のスペクトラムとなるように周波数軸上で各シングルキャリアの信号をシフトさせる。例えば、CRF=4に相当する処理を行う場合には、各シングルキャリアの信号の間にを3つ配置する。その結果、図2Aおよび図2Bを参照して説明したくしの歯状の周波数スペクトラムが形成される。

IFFT部18は、周波数軸上で各シングルキャリアの信号をシフトさせることにより得られたくしの歯状のスペクトラムを高速逆フーリエ変換する。

ガードインターバル付加部20は、送信する信号にガードインターバルを付加する。ガードインターバルは、伝送するシンボル先頭または末尾の一部を複製することによって得られる。フィルタ22は、送信信号に対して帯域制限を行う。

一方、マルチキャリア方式は、シンボル長が長く、ガードインターバルを設けることにより、マルチパス環境で良好な受信品質を得ることができる。

一例として、OFDM方式について、図4を参照して説明する。

図4は、OFDM方式の送信装置に使用される送信部のブロック図である。

送信部40は、拡散前の送信信号が入力される直並列(S/P)変換部32と、直並列変換部32と接続されたサブキャリアマッピング部34と、サブキャリアマッピング部34と接続されたIFFT部36と、IFFT部36と接続されたGI付加部38とを備える。

直並列変換部(S/P)32は、直列的信号系列並列的な複数の信号系列に変換する。

サブキャリアマッピング部34は、直並列変換部32において並列的な信号系列に変換された各信号を各サブキャリアに割り当てる。例えば、サブキャリアマッピング部34は、周波数ダイバーシチ効果を得るために、図5Aに示すように、各ユーザに対して飛び飛びのサブキャリアを割り当てる。また、サブキャリアマッピング部34は、図5Bに示すように各ユーザに対して連続したサブキャリアを割り当てる。

高速フーリエ(IFFT)変換部36は、入力された信号を高速逆フーリエ変換し、OFDM方式の変調を行う。

ガードインターバル付加部38は、送信する信号にガードインターバルを付加し、OFDM方式におけるシンボルを作成する。
特開2004−297756号公報
M.Schnell, I.Broeck, and U. Sorger, “A promising new wideband multiple-access scheme for future mobile communication,” European Trans. on Telecommun. (ETT), vol. 10, no. 4, pp.417-427, July/Aug. 1999.
R. Dinis, D. Falconer, C.T. Lam, and M. Sabbaghian, “A Multiple Access Scheme for the Uplink of Broadband Wireless Systems,” in Proc. Globecom2004, Dec. 2004.

概要

シングルキャリア型の無線アクセス方式とマルチキャリア型の無線アクセス方式とを切り替えることができる送信装置、受信装置および移動通信システム並びに送信制御方法を提供する。送信装置に、無線アクセス方式を切り替える切り替え手段と、切り替えられた無線アクセス方式に応じて高速フーリエ変換および直並列変換の一方が行われた拡散後のチップ系列に対して、無線リソースを割り当て、周波数領域の信号を生成する周波数領域信号生成手段と、周波数領域の信号に対して高速逆フーリエ変換を行い、送信信号を生成する送信信号生成手段とを備えることで達成される。

目的

そこで本発明においては、シングルキャリア型の無線アクセス方式とマルチキャリア型の無線アクセス方式とを切り替えることができる送信装置、受信装置および移動通信システム並びに送信制御方法を提供することを目的としている。

効果

実績

技術文献被引用数
7件
牽制数
11件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

シングルキャリア方式通信ステムおよびマルチキャリア方式の通信システムで使用できる送信装置であって:無線アクセス方式切り替える切り替え手段;切り替えられた無線アクセス方式に応じて高速フーリエ変換および直並列変換の一方が行われた拡散後のチップ系列に対して、無線リソース割り当て、周波数領域の信号を生成する周波数領域信号生成手段;前記周波数領域の信号に対して高速逆フーリエ変換を行い、送信信号を生成する送信信号生成手段;を備えることを特徴とする送信装置。

請求項2

請求項1に記載の送信装置において:前記切り替え手段は、通知された無線アクセス方式を示す情報に応じて、無線アクセス方式を切り替えることを特徴とする送信装置。

請求項3

請求項1または2に記載の送信装置において:前記切り替え手段は、シングルキャリア方式の無線アクセス方式に切り替える場合に、割り当てを希望する所定の周波数帯域を使用して伝搬路状態測定用信号を送信することを特徴とする送信装置。

請求項4

請求項1または2に記載の送信装置において:シングルキャリア方式の無線アクセス方式に切り替える場合に、データチャネル希望周波数帯域幅、送信データ量およびデータレートのうち少なくとも1つを示す情報を通知するパイロット信号生成手段;を備えることを特徴とする送信装置。

請求項5

請求項4に記載の送信装置において:前記パイロット信号生成手段は、パイロット信号の希望最大送信帯域幅を示す情報を通知することを特徴とする送信装置。

請求項6

請求項5に記載の送信装置において:前記パイロット信号生成手段は、前記パイロット信号の希望最大送信帯域幅を示す情報に基づいて指定された中心周波数および周波数帯域幅にしたがって、パイロット信号を送信することを特徴とする送信装置。

請求項7

請求項6に記載の送信装置において:前記パイロット信号生成手段は、周波数ホッピング方式によりパイロット信号を送信することを特徴とする送信装置。

請求項8

請求項7に記載の送信装置において:前記パイロット信号生成手段は、指定された周波数帯域幅毎に周波数ホッピングしてパイロット信号を送信することを特徴とする送信装置。

請求項9

請求項1ないし8のいずれか1項に記載の送信装置において:前記周波数領域信号生成手段は、高速フーリエ変換が行われた拡散後のチップ系列を所定数回繰り返し、所定数回繰り返された各チップ系列をシフトさせ、一定のチップパターンを生成することを特徴とする送信装置。

請求項10

請求項1ないし9のいずれか1項に記載の送信装置において:前記周波数領域信号生成手段は、物理チャネルの種類に応じて、無線リソースを割り当てることを特徴とする送信装置。

請求項11

請求項10に記載の送信装置において:前記周波数領域信号生成手段は、物理チャネルに周波数ブロックを割り当てる場合に、周波数ブロックのトランスミッションタイムインターバル長を単位として、無線リソースを割り当てることを特徴とする送信装置。

請求項12

請求項10または11に記載の送信装置において:前記周波数領域信号生成手段は、送信する信号が衝突型のチャネルである場合に、割り当てられた周波数帯域のうち少なくとも一部の帯域を利用するように無線リソースを割り当てることを特徴とする送信装置。

請求項13

請求項10または11に記載の送信装置において:前記周波数領域信号生成手段は、送信する信号が共有制御チャネルである場合に、通知されたスケジューリングの結果に基づいて、無線リソースを割り当てることを特徴とする送信装置。

請求項14

請求項10または11に記載の送信装置において:前記周波数領域信号生成手段は、送信する信号が共有データチャネルである場合に、通知されたスケジューリングの結果に基づいて、無線リソースを割り当てることを特徴とする送信装置。

請求項15

請求項14に記載の送信装置において:前記周波数領域信号生成手段は、通知された周波数分割多元接続での時間領域におけるスケジューリングの結果に基づいて、無線リソースを割り当てることを特徴とする送信装置。

請求項16

請求項15に記載の送信装置において:前記周波数領域信号生成手段は、データレートに基づいて、複数の周波数ブロックを割り当てることを特徴とする送信装置。

請求項17

請求項14に記載の送信装置において:前記周波数領域信号生成手段は、通知された時間領域および周波数領域におけるスケジューリングの結果に基づいて、無線リソースを割り当てることを特徴とする送信装置。

請求項18

請求項17に記載の送信装置において:前記周波数領域信号生成手段は、周波数ブロックをグループ化して割り当てることを特徴とする送信装置。

請求項19

請求項14ないし18のいずれか1項に記載の送信装置において:前記周波数領域信号生成手段は、シングルキャリア伝送が行われる場合に、データレートにしたがって、割り当てられる帯域幅を変更することを特徴とする送信装置。

請求項20

送信装置が使用する無線アクセス方式を決定する無線アクセス方式決定手段;決定された無線アクセス方式を示す情報を通知する通知手段;を備えることを特徴とする受信装置

請求項21

請求項20に記載の受信装置において:前記無線アクセス方式決定手段は、自受信装置が設置された環境に基づいて、無線アクセス方式を決定することを特徴とする受信装置。

請求項22

請求項20に記載の受信装置において:前記無線アクセス方式決定手段は、セル構成に基づいて、無線アクセス方式を決定することを特徴とする受信装置。

請求項23

請求項20に記載の受信装置において:前記無線アクセス方式決定手段は、送信装置毎に、無線アクセス方式を決定することを特徴とする受信装置。

請求項24

請求項20に記載の受信装置において:前記無線アクセス方式決定手段は、自受信装置と送信装置との距離に基づいて、無線アクセス方式を決定することを特徴とする受信装置。

請求項25

請求項20に記載の受信装置において:前記無線アクセス方式決定手段は、送信装置における送信電力に基づいて、無線アクセス方式を決定することを特徴とする受信装置。

請求項26

請求項20ないし25のいずれか1項に記載の受信装置において:伝搬路状態測定用信号の送信された周波数帯域に基づいて、割り当てる周波数帯域を決定する無線リソース割り当て決定手段;を有し、前記通知手段は、決定された周波数帯域を示す情報を送信することを特徴とする受信装置。

請求項27

請求項26に記載の受信装置において:無線リソース割り当て決定手段は、伝搬路状態測定用信号を送信している周波数帯域の範囲内で、周波数帯域を割り当てることを特徴とする受信装置。

請求項28

請求項27に記載の受信装置において:前記無線リソース割り当て決定手段は、受信装置における伝搬路状態測定用信号の受信電力、送信装置が送信しようとするデータの種類、送信待ち時間および各移動局最大送信電力のうち少なくとも1つに基づいて、予め決定された周波数の割り当て単位毎に周波数を割り当てる送信装置を決定することを特徴とする受信装置。

請求項29

請求項26に記載の受信装置において:シングルキャリア方式の無線アクセス方式に決定した場合に、前記無線リソース割り当て決定手段は、各送信装置に対する受信特性に基づき、同一送信装置に対して、連続した周波数帯を割り当てることを特徴とする受信装置。

請求項30

請求項20ないし25のいずれか1項に記載の受信装置において:パイロット信号の希望最大送信帯域幅を示す情報に基づいて、送信装置毎にパイロット信号の送信帯域幅および中心周波数を決定し、決定されたパイロット信号の送信帯域幅および中心周波数を示す情報を対応する各送信装置に送信するパイロット信号指定手段;を備えることを特徴とする受信装置。

請求項31

請求項30に記載の受信装置において:前記パイロット信号指定手段は、周波数ブロックのIDを送信することにより、決定されたパイロット信号の送信帯域幅および中心周波数を示す情報を対応する各送信装置に通知することを特徴とする受信装置。

請求項32

請求項30または31に記載の受信装置において:前記パイロット信号指定手段は、各送信装置の最大送信電力と、各送信装置と受信装置との間のパスロスとに基づいて、送信帯域幅を決定することを特徴とする受信装置。

請求項33

請求項32に記載の受信装置において:前記パイロット信号指定手段は、システムで定められた最小送信帯域幅整数倍および2n倍の一方に、送信帯域幅を決定することを特徴とする受信装置。

請求項34

請求項33に記載の受信装置において:前記パイロット信号指定手段は、送信装置が最大送信電力で前記パイロット信号を送信した場合に予測される受信SINRが、所要受信SINR以上となる最大の帯域幅に、送信帯域幅を決定することを特徴とする受信装置。

請求項35

請求項33に記載の受信装置において:前記パイロット信号指定手段は、送信装置が最小送信帯域幅で前記パイロット信号を送信した場合に予測される受信SINRが、所要受信SINR未満となる場合、最小送信帯域幅に、送信帯域幅を決定することを特徴とする受信装置。

請求項36

請求項34または35に記載の受信装置において:前記パイロット信号指定手段は、前記予測される受信SINRを、自受信装置と送信装置間の平均パスロスおよび自受信装置における平均干渉電力を用いて算出することを特徴とする受信装置。

請求項37

請求項30ないし36のいずれか1項に記載の受信装置において:前記パイロット信号指定手段は、上りリンク総受信電力に基づいて、パイロット信号の送信帯域幅および中心周波数を決定することを特徴とする受信装置。

請求項38

請求項37に記載の受信装置において:前記パイロット信号指定手段は、各送信装置のパイロット信号の受信電力の偏りを示す基準値を予め決定し、この基準値以下となるように、各送信装置に対して、パイロット信号の送信帯域幅および中心周波数の決定を行うことを特徴とする受信装置。

請求項39

請求項37に記載の受信装置において:前記パイロット信号指定手段は、各周波数帯で、前記パイロット信号を送信する送信装置の数の偏りが小さくなるように、前記パイロット信号の送信帯域を割り当てることを特徴とする受信装置。

請求項40

請求項30ないし36のいずれか1項に記載の受信装置において:前記パイロット信号指定手段は、繰り返し係数残数に基づいて、各送信装置に対して、パイロット信号の送信帯域幅および中心周波数を決定することを特徴とする受信装置。

請求項41

請求項30ないし40のいずれか1項に記載の受信装置において:パイロット信号の受信特性を測定する受信特性測定手段;前記受信特性、パイロット信号の送信帯域およびデータチャネルの希望周波数帯域幅を示す情報に基づいて、前記パイロット信号の送信帯域の範囲内で各送信装置に周波数帯域を割り当てる無線リソース割り当て決定手段;を備えることを特徴とする受信装置。

請求項42

請求項41に記載の受信装置において:前記無線リソース割り当て決定手段は、予め決定された周波数割り当て単位に基づいて、各送信装置に周波数帯域を割り当てることを特徴とする受信装置。

請求項43

請求項41または42に記載の受信装置において:前記無線リソース割り当て測定手段は、パイロットが送信されていない帯域の受信特性として、過去に測定された受信特性を使用することを特徴とする受信装置。

請求項44

請求項41ないし43のいずれか1項に記載の受信装置において:前記受信特性測定手段は、予め決定された周波数帯域の割り当て単位を測定単位として、送信されたパイロット信号の受信特性を測定することを特徴とする受信装置。

請求項45

請求項41ないし43に記載の受信装置において:前記受信特性測定手段は、データチャネルの希望割り当て帯域を測定単位として、送信されたパイロット信号の受信特性を測定することを特徴とする受信装置。

請求項46

請求項26ないし45のいずれか1項に記載の受信装置において:前記無線リソース割り当て決定手段は、割り当てた周波数帯域幅に基づいて、上りリンクの送信電力を指定することを特徴とする受信装置。

請求項47

請求項26ないし45のいずれか1項に記載の受信装置において:前記無線リソース割り当て決定手段は、割り当てようとする帯域における干渉電力に基づいて、希望波電力対干渉電力比が所望の値となるように送信電力を指定することを特徴とする受信装置。

請求項48

請求項26ないし45のいずれか1項に記載の受信装置において:前記無線リソース割り当て決定手段は、データチャネルに対する所要品質および伝搬路状態測定用信号に対する所要品質のうち少なくとも一方を設定することを特徴とする受信装置。

請求項49

請求項48に記載の受信装置において:前記無線リソース割り当て決定手段は、前記データチャネルに対する所要品質および前記伝搬路状態測定用信号に対する所要品質のうち少なくとも一方を、報知チャネルにより、通知することを特徴とする受信装置。

請求項50

請求項48または49に記載の受信装置において:前記無線リソース割り当て決定手段は、データチャネルの割り当てがない場合、前記搬路状態測定用信号に対する所要品質に基づいて、送信電力制御を行うことを特徴とする受信装置。

請求項51

請求項48または49に記載の受信装置において:前記無線リソース割り当て決定手段は、データチャネルの割り当てがある場合、送信フレーム内時間多重されたデータ部および伝搬路状態測定用信号部に対して、前記データチャネルに対する所要品質に基づいて、送信電力制御を行うことを特徴とする受信装置。

請求項52

請求項26ないし45のいずれか1項に記載の受信装置において:前記無線リソース割り当て決定手段は、一定の送信電力密度となるように送信電力を指定することを特徴とする受信装置。

請求項53

請求項46ないし52のいずれか1項に記載の受信装置において:前記無線リソース割り当て決定手段は、指定した送信電力、および伝搬路状態測定用信号の受信電力に基づいて、周波数帯域を割り当てた送信装置が信号を送信した場合に、割り当てた周波数帯域において推定される、送信装置が送信した信号の受信装置における受信電力および干渉電力の瞬時値および平均値のいずれか1つを使用することを決定し、決定された受信電力と干渉電力との比に基づいて、変調方法誤り訂正符号化率を決定することを特徴とする受信装置。

請求項54

請求項53に記載の受信装置において:前記無線リソース割り当て決定手段は、周波数帯域の割り当て単位毎に測定されたパイロット信号の受信品質に基づいて、MCSを決定し、送信装置に通知することを特徴とする受信装置。

請求項55

請求項53に記載の受信装置において:前記無線リソース割り当て決定手段は、割り当て帯域におけるパイロット信号の受信品質に基づいて、MCSを決定し、送信装置に通知することを特徴とする受信装置。

請求項56

請求項46ないし52のいずれか1項に記載の受信装置において:前記無線リソース割り当て決定手段は、一度割り当てた周波数帯域について、その周波数帯域における、割り当てた送信装置の伝搬路状態測定用信号の受信電力が予め指定された閾値を超えて変化するまで、同一の送信局にその周波数帯域を時間的に連続して割り当て続けることを特徴とする受信装置。

請求項57

シングルキャリア方式の通信システムおよびマルチキャリア方式の通信システムで使用できる送信装置と、受信装置とを備える移動通信システムであって:送信装置が使用する無線アクセス方式を決定する無線アクセス方式決定手段;決定された無線アクセス方式を示す情報を通知する通知手段;無線アクセス方式を切り替える切り替え手段;切り替えられた無線アクセス方式に応じて高速フーリエ変換および直並列変換の一方が行われた拡散後のチップ系列に対して、無線リソースを割り当て、周波数領域の信号を生成する周波数領域信号生成手段;前記周波数領域の信号に対して高速逆フーリエ変換を行い、送信信号を生成する送信信号生成手段;を備えることを特徴とする移動通信システム。

請求項58

受信装置が、使用する無線アクセス方式を決定するステップ;受信装置が、決定された無線アクセス方式を示す情報を通知するステップ;送信装置が、無線アクセス方式を示す情報を受信するステップ;送信装置が、前記無線アクセス方式を示す情報にしたがって、無線アクセス方式を切り替えるステップ;送信装置が、切り替えられた無線アクセス方式に応じて高速フーリエ変換および直並列変換の一方が行われた拡散後のチップ系列に対して、無線リソースを割り当て、周波数領域の信号を生成するステップ;送信装置が、前記周波数領域の信号に対して高速逆フーリエ変換を行い、送信信号を生成するステップ;を有することを特徴とする送信制御方法

請求項59

請求項58に記載の送信制御方法において:シングルキャリア方式の無線アクセス方式に切り替える場合に、送信装置が、データチャネルの希望周波数帯域幅、送信データ量およびデータレートのうち少なくとも1つを示す情報を、受信装置に通知するステップ;を有することを特徴とする送信制御方法。

請求項60

請求項59に記載の送信制御方法において:送信装置が、パイロット信号の希望最大送信帯域幅を示す情報を通知するステップ;を有することを特徴とする送信制御方法。

請求項61

請求項59に記載の送信制御方法において:送信装置が、前記パイロット信号の希望最大送信帯域幅を示す情報に基づいて指定された中心周波数および周波数帯域幅にしたがって、パイロット信号を送信するステップ;を有することを特徴とする送信制御方法。

請求項62

請求項61に記載の送信装置において:前記パイロット信号を送信するステップは、周波数ホッピング方式によりパイロット信号を送信することを特徴とする送信制御方法。

請求項63

請求項58ないし62のいずれか1項に記載の送信制御方法において:前記周波数領域の信号を生成するステップは、高速フーリエ変換が行われた拡散後のチップ系列を所定数回繰り返すステップ;所定数回繰り返された各チップ系列をシフトさせ、一定のチップパターンを生成するステップ;を有することを特徴とする送信制御方法。

請求項64

請求項58ないし63のいずれか1項に記載の送信制御方法において:前記周波数領域の信号を生成するステップは、物理チャネルの種類に応じて、無線リソースを割り当てるステップ;を有することを特徴とする送信制御方法。

請求項65

請求項64に記載の送信制御方法において:前記無線リソースを割り当てるステップは、物理チャネルに周波数ブロックを割り当てる場合に、周波数ブロックのトランスミッションタイムインターバル長を単位として、無線リソースを割り当てるステップを有することを特徴とする送信制御方法。

請求項66

請求項64または65に記載の送信制御方法において:前記無線リソースを割り当てるステップは、送信する信号が共有データチャネルである場合に、通知されたスケジューリングの結果に基づいて、無線リソースを割り当てるステップを有することを特徴とする送信制御方法。

請求項67

請求項66に記載の送信制御方法において:前記無線リソースを割り当てるステップは、通知された周波数分割多元接続での時間領域におけるスケジューリングの結果に基づいて、無線リソースを割り当てるステップを有することを特徴とする送信制御方法。

請求項68

請求項67に記載の送信制御方法において:前記無線リソースを割り当てるステップは、データレートに基づいて、複数の周波数ブロックを割り当てるステップを有することを特徴とする送信制御方法。

請求項69

請求項64に記載の送信制御方法において:前記無線リソースを割り当てるステップは、通知された時間領域および周波数領域におけるスケジューリングの結果に基づいて、無線リソースを割り当てるステップを有することを特徴とする送信制御方法。

請求項70

請求項64に記載の送信制御方法において:前記無線リソースを割り当てるステップは、周波数ブロックをグループ化して割り当てるステップを有することを特徴とする送信制御方法。

請求項71

請求項66ないし70のいずれか1項に記載の送信制御方法において:前記無線リソースを割り当てるステップは、シングルキャリア伝送が行われる場合に、データレートにしたがって、割り当てられる帯域幅を変更するステップを有することを特徴とする送信制御方法。

請求項72

請求項64に記載の通信制御方法において:前記無線リソースを割り当てるステップは、伝搬路状態測定用信号を送信している周波数帯域の範囲内で、周波数帯域を割り当てるステップを有することを特徴とする送信制御方法。

請求項73

請求項72に記載の送信制御方法において:前記無線リソースを割り当てるステップは、受信装置における伝播路状態測定用信号の受信電力、移動局が送信しようとするデータの種類、送信待ち時間および各移動局の最大送信電力のうち少なくとも1つに基づいて、周波数の割り当て単位毎に周波数を割り当てる移動局を決定するステップ;を有することを特徴とする送信制御方法。

請求項74

請求項72または73に記載の送信制御方法において:シングルキャリア方式の無線アクセス方式に決定した場合に、前記無線リソースを割り当てるステップは、各移動局に対する受信特性に基づき、同一移動局に対して、連続した周波数帯を割り当てるステップ;を有することを特徴とする送信制御方法。

請求項75

請求項58または59に記載の送信制御方法において:受信装置が、パイロット信号の希望最大送信帯域幅を示す情報に基づいて、送信装置毎にパイロット信号の送信帯域幅および中心周波数を指定するステップ;受信装置が、決定されたパイロット信号の送信帯域幅および中心周波数を示す情報を対応する各送信装置に送信するステップ;を有することを特徴とする送信制御方法。

請求項76

請求項75に記載の送信制御方法において:前記送信するステップは、周波数ブロックのIDを送信することにより、決定されたパイロット信号の送信帯域幅および中心周波数を示す情報を対応する各送信装置に通知することを特徴とする送信制御方法。

請求項77

請求項75または76に記載の受信装置において:前記送信帯域幅および中心周波数を指定するステップは、各送信装置の最大送信電力と、各送信装置と受信装置との間のパスロスとに基づいて、送信帯域幅を決定することを特徴とする送信制御方法。

請求項78

請求項77に記載の送信制御方法において:前記送信帯域幅および中心周波数を指定するステップは、システムで定められた最小送信帯域幅の整数倍および2n倍の一方に、送信帯域幅を決定することを特徴とする送信制御方法。

請求項79

請求項78に記載の送信制御方法において:前記送信帯域幅および中心周波数を指定するステップは、送信装置が最大送信電力で前記パイロット信号を送信した場合に予測される受信SINRが、所要受信SINR以上となる最大の帯域幅に、送信帯域幅を決定することを特徴とする送信制御方法。

請求項80

請求項78に記載の送信制御方法において:前記送信帯域幅および中心周波数を指定するステップは、送信装置が最小送信帯域幅で前記パイロット信号を送信した場合に予測される受信SINRが、所要受信SINR未満となる場合、最小送信帯域幅に、送信帯域幅を決定することを特徴とする送信制御方法。

請求項81

請求項79または80に記載の送信制御方法において:前記送信帯域幅および中心周波数を指定するステップは、前記予測される受信SINRを、自受信装置と送信装置間の平均パスロスおよび自受信装置における平均干渉電力を用いて算出することを特徴とする受信装置。

請求項82

請求項75ないし77のいずれか1項に記載の送信制御方法において:前記送信帯域幅および中心周波数を指定するステップは、上りリンクの総受信電力に基づいて、パイロット信号の送信帯域幅および中心周波数を決定することを特徴とする送信制御方法。

請求項83

請求項75ないし77のいずれか1項に記載の送信制御方法において:前記送信帯域幅および中心周波数を指定するステップは、繰り返し係数の残数に基づいて、各送信装置に対して、パイロット信号の送信帯域幅および中心周波数を決定することを特徴とする送信制御方法。

請求項84

請求項75ないし83のいずれか1項に記載の送信制御方法において:受信装置が、パイロット信号の受信特性を測定するステップ;受信装置が、前記受信特性、パイロット信号の送信帯域およびデータチャネルの希望周波数帯域幅を示す情報に基づいて、前記パイロット信号の送信帯域の範囲内で各送信装置に周波数帯域を割り当てるステップ;を有することを特徴とする送信制御方法。

請求項85

請求項84に記載の送信制御方法において:前記周波数帯域を割り当てるステップは、予め決定された周波数割り当て単位に基づいて、各送信装置に周波数帯域を割り当てることを特徴とする送信制御方法。

請求項86

請求項84または85に記載の送信制御方法において:前記周波数帯域を割り当てるステップは、パイロットが送信されていない帯域の受信特性として、過去に測定された受信特性を使用することを特徴とする送信制御方法。

請求項87

請求項84ないし86のいずれか1項に記載の送信制御方法において:前記パイロット信号の受信特性を測定するステップは、予め決定された周波数帯域の割り当て単位を測定単位として、パイロット信号の受信特性を測定することを特徴とする送信制御方法。

請求項88

請求項84ないし86に記載の送信制御方法において:前記パイロット信号の受信特性を測定するステップは、データチャネルの希望割り当て帯域を測定単位として、送信されたパイロット信号の受信特性を測定することを特徴とする送信制御方法。

請求項89

請求項65に記載の送信制御方法において:割り当てた周波数帯域幅に基づいて、上りリンクの送信電力を指定するステップ;を有することを特徴とする送信制御方法。

請求項90

請求項89に記載の送信制御方法において:前記送信電力を指定するステップは、割り当てようとする帯域における干渉電力に基づいて、希望波電力対干渉電力比が所望の値となるように送信電力を指定するステップ;を有することを特徴とする送信制御方法。

請求項91

請求項65に記載の送信制御方法において:前記送信電力を決定するステップは、データチャネルに対する所要品質および伝搬路状態測定用信号に対する所要品質のうち少なくとも一方を設定することを特徴とする送信制御方法。

請求項92

請求項91に記載の送信制御方法において:前記送信電力を決定するステップは、前記データチャネルに対する所要品質および前記伝搬路状態測定用信号に対する所要品質のうち少なくとも一方を、報知チャネルにより、通知することを特徴とする送信制御方法。

請求項93

請求項91または92に記載の送信制御方法において:前記送信電力を決定するステップは、データチャネルの割り当てがない場合、前記搬路状態測定用信号に対する所要品質に基づいて、送信電力制御を行うことを特徴とする送信制御方法。

請求項94

請求項91または92に記載の送信制御方法において:前記送信電力を決定するステップは、データチャネルの割り当てがある場合、送信フレーム内に時間多重されたデータ部および伝搬路状態測定用信号部に対して、前記データチャネルに対する所要品質に基づいて、送信電力制御を行うことを特徴とする送信制御方法。

請求項95

請求項89に記載の送信制御方法において:前記送信電力を指定するステップは、一定の送信電力密度となるように送信電力を指定するステップ;を有することを特徴とする送信制御方法。

請求項96

請求項89ないし95のいずれか1項に記載の送信制御方法において:指定した送信電力、および伝搬路状態測定用信号の受信電力に基づいて、周波数帯域を割り当てた送信装置が信号を送信した場合に、割り当てた周波数帯域において推定される、送信装置が送信した信号の受信装置における受信電力および干渉電力の瞬時値および平均値のいずれか1つを使用することを決定するステップ;決定された送信希望波電力と干渉電力との比に基づいて、変調方法、誤り訂正符号化率を決定するステップ;を有することを特徴とする送信制御方法。

請求項97

請求項96に記載の送信制御方法において:前記変調方法、誤り訂正符号化率を決定するステップは、周波数帯域の割り当て単位毎に測定されたパイロット信号の受信品質に基づいて、MCSを決定することを特徴とする送信制御方法。

請求項98

請求項96に記載の送信制御方法において:前記変調方法、誤り訂正符号化率を決定するステップは、割り当て帯域におけるパイロット信号の受信品質に基づいて、MCSを決定することを特徴とする送信制御方法。

請求項99

請求項65に記載の送信制御方法において:前記無線リソースを割り当てるステップは、一度割り当てた周波数帯域について、その周波数帯域における、割り当てた送信装置の伝搬路状態測定用信号の受信電力が、予め指定された閾値を超えて変化するまで、同一の送信局にその周波数帯域を時間的に連続して割り当て続けるステップ;を有することを特徴とする送信制御方法。

技術分野

0001

本発明は、送信装置受信装置および移動通信システム並びに送信制御方法に関する。

背景技術

0002

IMT−2000(International Mobile Telecommunication 2000)の次世代の移動通信方式である第4世代移動通信方式(4G)の開発が進められている。第4世代移動通信方式では、セルラシステムを始めとするマルチセル環境から、ホットスポットエリア屋内などの孤立セル環境までを柔軟にサポートし、さらに双方のセル環境周波数利用効率の増大を図ることが望まれている。

0003

第4世代移動通信方式において移動局から基地局へのリンク(以下、上りリンクと呼ぶ)については、以下の無線アクセス方式が提案されている。シングルキャリア伝送方式では、例えばDS−CDMA(direct sequence code division multiple access) 方式、IFDMA(Interleaved Frequency Division Multiple Access) 方式、可変拡散率チップ繰り返しファクタ(VSCRF-CDMA: Variable Spreading and Chip Repetition Factors-CDMA) 方式が提案されている。マルチキャリア伝送方式では、例えばOFDM(Orthogonal Frequency Division Multiplexing) 方式、Spread OFDM、マルチキャリア符号分割多元接続(MC-CDMA: Multi-Carrier Code Division Multiple Access) 方式、VSF−Spread OFDM(Variable Spreading Factor Spread OFDM) 方式が提案されている。

0004

シングルキャリア方式は、端末消費電力に関して、ピーク電力が小さいので、送信電力増幅器バックオフを小さくでき、電力効率がよい。

0005

シングルキャリア方式の一例として、VSCRF−CDMA方式について、図1を参照して説明する(例えば、特許文献1参照)。

0006

拡散部1は、符号乗算部2と、符号乗算部2と接続された繰り返し合成部8と、繰り返し合成部8と接続された移相部10とを備える。

0007

符号乗算部2は、送信信号拡散符号乗算する。例えば、乗算器4は、所与符号拡散率SFの下で定められたチャネリゼーションコードを送信信号に乗算する。さらに、乗算器6は、スクランブルコードを送信信号に乗算する。

0008

繰り返し合成部8は、拡散後の送信信号を、時間的に圧縮し、所定数回(CRF回)反復する。チップ繰り返しが適用された送信信号は、くしの歯状の周波数スペクトラムを示す。繰り返し数CRFが1に等しい場合の構成および動作は、通常のDS−CDMA方式の場合と等しくなる。

0009

移相部10は、移動局毎固有に設定された所定の周波数分だけ送信信号の位相をずらす(シフトさせる)。

0010

VSCRF−CDMA方式において、CRF>1の場合、例えばCRF=4の場合には、図2Aに示すように、各ユーザの使用する周波数スペクトラムが、くしの歯状に全帯域にまたがって分散配置される。この場合、ユーザ固有周波数オフセットが、割り当てられた帯域幅よりも小さくなる。

0011

一方、CRF=1の場合には、図2Bに示すように、各ユーザの使用するスペクトラムが、ブロック上にまとまって配置される。この場合、ユーザ固有の周波数オフセットが、割り当てられた帯域幅よりも大きくなる。

0012

また、周波数領域で、くしの歯状の周波数スペクトラムを得る無線アクセス方式が提案されている(例えば、非特許文献1および2参照)。

0013

この無線アクセス方式を適用する送信装置30は、図3に示すように、拡散されたデータ系列が入力されるFFT部12と、FFT部12と接続されたレート変換部14と、レート変換部14と接続された周波数領域信号生成部16と、周波数領域信号生成部16と接続されたIFFT部18と、IFFT部18と接続されたGI付加部20と、GI付加部20と接続されたフィルタ22とを備える。

0014

高速フーリエ変換(FFT)部12は、拡散されたデータ系列をQチップ毎にブロック化して高速フーリエ変換を行うことにより、周波数領域に変換する。その結果、周波数領域においてQ個のシングルキャリアの信号が得られる。ここで、拡散されたデータ系列は、図1を参照して説明した拡散部1において、乗算器6の出力信号に相当する。

0015

レート変換部14は、Q個のシングルキャリアの信号を所定数回、例えばCRF回繰り返す。その結果、Nsub=Q×CRF個のシングルキャリアの信号が生成する。

0016

周波数領域信号生成部16は、くしの歯状のスペクトラムとなるように周波数軸上で各シングルキャリアの信号をシフトさせる。例えば、CRF=4に相当する処理を行う場合には、各シングルキャリアの信号の間にを3つ配置する。その結果、図2Aおよび図2Bを参照して説明したくしの歯状の周波数スペクトラムが形成される。

0017

IFFT部18は、周波数軸上で各シングルキャリアの信号をシフトさせることにより得られたくしの歯状のスペクトラムを高速逆フーリエ変換する。

0018

ガードインターバル付加部20は、送信する信号にガードインターバルを付加する。ガードインターバルは、伝送するシンボル先頭または末尾の一部を複製することによって得られる。フィルタ22は、送信信号に対して帯域制限を行う。

0019

一方、マルチキャリア方式は、シンボル長が長く、ガードインターバルを設けることにより、マルチパス環境で良好な受信品質を得ることができる。

0020

一例として、OFDM方式について、図4を参照して説明する。

0021

図4は、OFDM方式の送信装置に使用される送信部のブロック図である。

0022

送信部40は、拡散前の送信信号が入力される直並列(S/P)変換部32と、直並列変換部32と接続されたサブキャリアマッピング部34と、サブキャリアマッピング部34と接続されたIFFT部36と、IFFT部36と接続されたGI付加部38とを備える。

0023

直並列変換部(S/P)32は、直列的信号系列並列的な複数の信号系列に変換する。

0024

サブキャリアマッピング部34は、直並列変換部32において並列的な信号系列に変換された各信号を各サブキャリアに割り当てる。例えば、サブキャリアマッピング部34は、周波数ダイバーシチ効果を得るために、図5Aに示すように、各ユーザに対して飛び飛びのサブキャリアを割り当てる。また、サブキャリアマッピング部34は、図5Bに示すように各ユーザに対して連続したサブキャリアを割り当てる。

0025

高速フーリエ(IFFT)変換部36は、入力された信号を高速逆フーリエ変換し、OFDM方式の変調を行う。

0026

ガードインターバル付加部38は、送信する信号にガードインターバルを付加し、OFDM方式におけるシンボルを作成する。
特開2004−297756号公報
M.Schnell, I.Broeck, and U. Sorger, “A promising new wideband multiple-access scheme for future mobile communication,” European Trans. on Telecommun. (ETT), vol. 10, no. 4, pp.417-427, July/Aug. 1999.
R. Dinis, D. Falconer, C.T. Lam, and M. Sabbaghian, “A Multiple Access Scheme for the Uplink of Broadband Wireless Systems,” in Proc. Globecom2004, Dec. 2004.

発明が解決しようとする課題

0027

しかしながら、上述した背景技術には以下の問題がある。

0028

シングルキャリア方式は、シンボル長が小さいため、マルチパス干渉により、特に高速信号伝送時に受信品質が劣化する問題がある。

0029

また、マルチキャリア方式は、端末の消費電力に関して、ピーク電力が大きくなるため、バックオフを大きくする必要があり、電力効率が悪くなる問題がある。

0030

そこで本発明においては、シングルキャリア型の無線アクセス方式とマルチキャリア型の無線アクセス方式とを切り替えることができる送信装置、受信装置および移動通信システム並びに送信制御方法を提供することを目的としている。

課題を解決するための手段

0031

上記課題を解決するため、本発明の送信装置は、シングルキャリア方式の通信ステムおよびマルチキャリア方式の通信システムで使用できる送信装置であって、無線アクセス方式を切り替える切り替え手段と、切り替えられた無線アクセス方式に応じて高速フーリエ変換および直並列変換の一方が行われた拡散後のチップ系列に対して、無線リソースを割り当て、周波数領域の信号を生成する周波数領域信号生成手段と、前記周波数領域の信号に対して高速逆フーリエ変換を行い、送信信号を生成する送信信号生成手段とを備えることを特徴の1つとする。

0032

このように構成することにより、シングルキャリア型の無線アクセス方式とマルチキャリア方式の無線アクセス方式とを、共通化したモジュールにより実現することができ、シングルキャリア型の無線アクセス方式とマルチキャリア方式の無線アクセス方式とにより通信を行うことができる。

0033

また、本発明の受信装置は、送信装置が使用する無線アクセス方式を決定する無線アクセス方式決定手段と、決定された無線アクセス方式を示す情報を通知する通知手段とを備えることを特徴の1つとする。

0034

このように構成することにより、送信装置が使用する無線アクセス方式を決定し、通知することができる。

0035

また、本発明の移動通信システムは、シングルキャリア方式の通信システムおよびマルチキャリア方式の通信システムで使用できる送信装置と、受信装置とを備える移動通信システムであって、送信装置が使用する無線アクセス方式を決定する無線アクセス方式決定手段と、決定された無線アクセス方式を示す情報を通知する通知手段と、無線アクセス方式を切り替える切り替え手段と、切り替えられた無線アクセス方式に応じて高速フーリエ変換および直並列変換の一方が行われた拡散後のチップ系列に対して、無線リソースを割り当て、周波数領域の信号を生成する周波数領域信号生成手段と、前記周波数領域の信号に対して高速逆フーリエ変換を行い、送信信号を生成する送信信号生成手段とを備えることを特徴の1つとする。

0036

このように構成することにより、シングルキャリア型の無線アクセス方式とマルチキャリア方式の無線アクセス方式とを共通化したモジュールにより実現することができ、決定された無線アクセス方式にしたがって、シングルキャリア型の無線アクセス方式とマルチキャリア方式の無線アクセス方式とにより通信を行うことができる。

0037

また、本発明の送信制御方法は、受信装置が、使用する無線アクセス方式を決定するステップと、受信装置が、決定された無線アクセス方式を示す情報を通知するステップと、送信装置が、無線アクセス方式を示す情報を受信するステップと、送信装置が、前記無線アクセス方式を示す情報にしたがって、無線アクセス方式を切り替えるステップと、送信装置が、切り替えられた無線アクセス方式に応じて高速フーリエ変換および直並列変換の一方が行われた拡散後のチップ系列に対して、無線リソースを割り当て、周波数領域の信号を生成するステップと、送信装置が、前記周波数領域の信号に対して高速逆フーリエ変換を行い、送信信号を生成するステップとを有することを特徴の1つとする。

0038

このように構成することにより、決定された無線アクセス方式にしたがって、シングルキャリア型の無線アクセス方式とマルチキャリア方式の無線アクセス方式とにより通信を行うことができる。

発明の効果

0039

本発明の実施例によれば、シングルキャリア型の無線アクセス方式とマルチキャリア型の無線アクセス方式とを切り替えることができる送信装置、受信装置および移動通信システム並びに送信制御方法を実現できる。

発明を実施するための最良の形態

0040

次に、本発明を実施するための最良の形態を、以下の実施例に基づき図面を参照しつつ説明する。
なお、実施例を説明するための全図において、同一機能を有するものは同一符号を用い、繰り返しの説明は省略する。

0041

本発明の実施例にかかる移動通信システムは、移動局と、移動局と無線による通信が可能である基地局とを備える。

0042

本発明の実施例にかかる送信装置について説明する。

0043

送信装置は、例えば移動局に備えられ、上りチャネルを送信する。

0044

本実施例にかかる送信装置は、セルラ環境およびローカルエリア環境において使用される。

0045

セルラ環境は、図6Aに示すように、セルセクタ)をカバーする基地局、例えば基地局2001、2002、2003、2004および2005と、基地局2001と無線通信が可能である移動局300とを備える。セルラ環境は、ローカルエリア環境と比較してセル半径が大きく、移動局の送信電力が大きくなる。また、セルラ環境では実現できるデータレート周りのセルからの干渉などにより小さくなる。

0046

したがって、セルラ環境では、上りリンクの無線アクセス方式として、シングルキャリア方式を使用した方が、マルチキャリア方式を使用した場合より有利である。

0047

一方、ローカルエリア環境、例えば屋内、ホットスポットなどの環境は、図6Bに示すように、セル(セクタ)をカバーする基地局、例えば基地局2006と、基地局2006と無線通信が可能である移動局300とを備える。ローカルエリア環境は、セルラ環境と比較してセル半径が小さく、移動局の消費電力は小さくなる。また、ローカルエリア環境では実現できるデータレートは比較的大きくなる。

0048

したがって、ローカルエリア環境では、上りリンクの無線アクセス方式として、マルチキャリア方式を使用した方が、シングルキャリア方式を使用した場合より有利である。

0049

次に、本実施例にかかる送信装置について、図7を参照して説明する。

0050

本実施例にかかる送信装置100は、シンボル系列が入力される拡散およびチャネルコード部102と、拡散およびチャネルコード部102と接続された切り替え部106と、切り替え部106と接続された高速フーリエ変換(FFT)部108および直並列(S/P)変換部110と、FFT部108およびS/P変換部110と接続されたレート変換部112とを備える。

0051

また、本実施例にかかる送信装置100は、レート変換部112と接続された周波数領域信号生成部114と、周波数領域信号生成部114と接続された逆高速フーリエ変換(IFFT)部116と、IFFT部116と接続されたガードインターバル(GI)付加部118と、GI付加部118と接続されたフィルタ120とを備える。

0052

また、本実施例にかかる送信装置100は、拡散およびチャネルコード部102および周波数領域信号生成部114と接続されたデータ変調拡散率チャネル符号化制御部104と、周波数領域信号生成部114と接続された無線リソース割り当て制御部122と備える。切り替え部106は、フィルタ120と接続される。

0053

また、データ変調・拡散率・チャネル符号化制御部104には各ユーザに対するMCS(Modulation and Coding Scheme)情報が入力され、無線リソース割り当て制御部122には各物理チャネルへの無線リソース割り当てを示す報知情報および各ユーザに対するスケジューリング結果を示す情報が入力される。

0054

データ変調・拡散率・チャネル符号化制御部104は、拡散およびチャネルコード部102において適用される直交符号の拡散率を決定し、決定された拡散率の直交符号とセル固有のスクランブルコードとを、入力された各ユーザに対するMCS情報とともに、拡散およびチャネルコード部102に入力する。

0055

例えば、データ変調・拡散率・チャネル符号化制御部104は、セルラセル環境では、セルラセル環境に対応する拡散率の直交符号とセル固有のスクランブルコードとを決定する。また、データ変調・拡散率・チャネル符号化制御部104は、ローカルエリア環境では、ローカルエリア環境に対応する拡散率の直交符号とセル固有のスクランブルコードとを決定する。また、データ変調・拡散率・チャネル符号化制御部104は、サブキャリアのセットの数を周波数領域信号生成部114に入力する。

0056

拡散およびチャネルコード部102は、入力されたMCS情報にしたがって、入力された2値情報系列に、ターボ符号畳み込み符号などの誤り訂正符号を適用してチャネル符号化を行い、チャネル符号化されたデータを変調する。さらに、拡散およびチャネルコード部102は、入力された拡散率の直交符号とセル固有のスクランブルコードとを用いて拡散処理を行うことにより、拡散されたチップ系列を生成し、切り替え部106に入力する。

0057

切り替え部106は、基地局200から通知された無線アクセス方式を示す情報がシングルキャリア方式であるかマルチキャリア方式であるかを判断する。また、切り替え部106は、通知された無線アクセス方式を示す情報がシングルキャリア方式であると判断した場合には入力された拡散されたチップ系列をFFT部108に入力し、マルチキャリア方式であると判断した場合には入力された拡散されたチップ系列をS/P変換部110に入力する。また、切り替え部106は、通知された無線アクセス方式を示す情報をフィルタ120に入力する。

0058

例えば、切り替え部106は、基地局200からの報知情報に基づいてアクセス方式を決定する。この場合、基地局200は、後述する無線アクセス方式決定部402において、各ユーザ(移動局)にシングルキャリア方式を使用させるかマルチキャリア方式を使用させるかを決定し、図8に示すように、決定された無線アクセス方式を示す制御情報を通知する。

0059

また、例えば、切り替え部106は、セル毎に決定された無線アクセス方式に基づいて、シングルキャリア方式であるかマルチキャリア方式であるかを判断するようにしてもよい。この場合、基地局200に備えられた受信装置の無線アクセス方式決定部402は、セル構成に応じて、基地局毎に上りリンクの無線アクセス方式を固定的に予め決定する。

0060

例えば、基地局200が設置される段階で、無線アクセス方式決定部402は、セル構成、例えばセルの半径隣接セルの有無などに応じて、使用する無線アクセス方式を決定する。例えば、セル半径が大きい場合にはシングルキャリア方式を使用する、またセル半径が小さい場合にはマルチキャリア方式を使用するように決定する。無線アクセス決定部402は、決定されたアクセス方式を示す情報を、図9に示すように全ユーザの共通制御情報として移動局300に報知する。

0061

このようにすることにより、基地局が設置される段階で決定されるため、構成および制御が容易である。

0062

また、例えば、切り替え部106は、ユーザ(移動局)毎に決定された無線アクセス方式に基づいて、シングルキャリア方式であるかマルチキャリア方式であるかを判断するようにしてもよい。この場合、各ユーザの基地局までの距離に応じてアクセス方式を切り替えるようにしてもよいし、各ユーザの送信電力の余裕に応じてアクセス方式を切り替えるようにしてもよい。

0063

例えば、各ユーザの基地局200までの距離に応じてアクセス方式を切り替える場合、各ユーザの基地局200までの距離に相当する量として、例えばパスロスを使用する。この場合、移動局300は下りリンクで、例えば下りパイロット信号受信電力を使用してパスロスを測定し、測定されたバスロスを示す情報を上りリンクで基地局200に通知する。

0064

基地局200に備えられた受信装置の無線アクセス方式決定部402は、受信したパスロスの値が、所定の閾値よりも大きい場合、自基地局200と移動局300との距離が大きいと判断しシングルキャリア方式を使用することを決定し、図10に示すように、移動局300に通知する。

0065

また、基地局200に備えられた受信装置の無線アクセス方式決定部402は、受信したパスロスが、所定の閾値よりも小さい場合、自基地局200と移動局300との距離が小さいと判断しマルチキャリア方式を使用することを決定し、図10に示すように、移動局300に通知する。

0066

このようにすることにより、移動局と基地局との距離に応じて、移動局毎に無線アクセス方式を制御することができる。

0067

また、移動局側で、測定したパスロスに基づいて、シングルキャリア方式を使用するか、マルチキャリア方式を使用するかを決定し、その結果を基地局200に通知するようにしてもよい。

0068

また、例えば、各ユーザの送信電力の余裕に応じてアクセス方式を切り替える場合、各ユーザの送信電力の余裕を示す値として、例えば、最大許容送信電力−現在の送信電力を用いる。この場合、移動局は、「最大許容送信電力−現在の送信電力」を示す値を基地局に通知する。

0069

基地局200に備えられた受信装置の無線アクセス方式決定部402は、受信した「最大許容送信電力−現在の送信電力」を示す値が、所定の閾値よりも小さい場合、送信電力の余裕が小さいと判断し、シングルキャリア方式を使用することを決定し、図10に示すように、移動局300に通知する。

0070

また、基地局200に備えられた受信装置の無線アクセス方式決定部402は、受信した「最大許容送信電力−現在の送信電力」を示す値が、所定の閾値よりも大きい場合、送信電力の余裕が大きいと判断し、マルチキャリア方式を使用することを決定し、図10に示すように、移動局300に通知する。

0071

このようにすることにより、移動局毎の能力に応じて、アクセス方式を制御することができる。

0072

また、移動局300は、最大許容送信電力を示す情報と、現在の送信電力を示す情報とを送信し、基地局200に備えられた受信装置の無線アクセス方式決定部402は「最大許容送信電力−現在の送信電力」を計算し、この計算値に基づいて、無線アクセス方式を制御するようにしてもよい。

0073

また、移動局側で、送信電力の余裕に基づいて、シングルキャリア方式を使用するかマルチキャリア方式を使用するかを決定し、基地局200に通知するようにしてもよい。

0074

また、切り替え部106は、ユーザ(移動局)毎に決定された無線アクセス方式に基づいて、図11に示すように、割り当てを希望する所定の周波数帯域を使用して伝搬路状態測定用信号、例えばパイロット信号を送信するようにしてもよい。例えば、切り替え部106は、システムに割り当てられた周波数帯域のうち、指定の周波数帯域のみで伝搬路状態測定用信号を送信する。具体的には、例えばシステムに20MHzの周波数帯域が割り当てられている場合には、例えば移動局(送信装置)は、20MHz、10MHz、5MHzで送信できるものにクラス分けされる。この場合、切り替え部106は、ユーザ(移動局)毎に決定された無線アクセス方式に基づいて、自移動局(送信装置)のクラスに相当する周波数帯域のみで伝搬路測定用信号を送信する。

0075

受信装置400の無線リソース割り当て決定部404は、伝搬路測定用信号を送信した移動局(送信装置)に対して、伝搬路測定用信号の送信された周波数帯域に基づいて、周波数帯域の割り当てを行う。

0076

すなわち、各移動局(送信装置)はパイロット信号を送信し、基地局(受信装置)はそのパイロット信号を測定し、自基地局と移動局との伝搬路状態を測定し、周波数帯域の割り当てを行う。移動局は、システムに割り当てられた全周波数帯域に対してパイロット信号を送信する必要はなく、予め決定された所定の帯域でパイロット信号を送信する。基地局では、各ユーザからパイロット信号を受信するが、その周波数帯域の範囲内で割り当てるべき帯域があれば割り当て、その決定された周波数帯域を示す情報を、送信装置に送信する。

0077

また、受信装置400側で、無線アクセス方式決定部402において、伝搬路状態測定用信号を送信する周波数帯域を決定し、該周波数帯域を示す情報を送信するようにしてもよい。

0078

また、切り替え部106はパイロット信号生成部を備え、該パイロット信号生成部は、ユーザ(移動局)毎に決定された無線アクセス方式に基づいて、決定された無線アクセス方式がシングルキャリア方式である場合に、基地局に対してデータチャネルの希望(最大)送信帯域幅を示す情報、送信を行おうとするデータ量を示す情報およびデータレートを示す情報のうち少なくとも1つの情報を基地局に送信するようにしてもよい。また、パイロット信号生成部は、パイロット信号の希望(最大)送信帯域幅を示す情報を基地局に送信するようにしてもよい。

0079

例えば、パイロット信号生成部は、パイロット信号の希望(最大)送信帯域幅を示す情報およびデータチャネルの希望(最大)送信帯域幅を示す情報、送信を行おうとするデータ量を示す情報およびデータレートを示す情報のうち少なくとも1つの情報を、衝突許容チャネルにより基地局に送信する。例えば、最大の送信帯域幅は5MHzであり、希望送信帯域幅はこの5MHzよりも小さい値となる。

0080

例えば、図12Aに示すように、W_ableを移動局が送信可能な最大帯域幅、Wp_reqをパイロット信号の希望最大送信帯域幅、Wd_reqをデータチャネルの希望(最大)送信帯域幅とする。パイロット信号生成部は、Wd_req<=W_ableの範囲で、送信しようとするデータ量、データレートに基づいて、Wd_reqを決定する。また、パイロット信号生成部は、Wd_req<=Wp_req<=W_ableの範囲で、Wp_reqを決定する。

0081

また、切り替え部106は、伝搬路状態測定用信号の送信帯域幅を、システムで定めた最小送信帯域幅整数倍または2n倍とするようにしてもよい。

0082

この場合、切り替え部106は、最大送信電力または「最大送信電力−ΔP」で送信した場合に予測される受信SINRが、所要受信SINRを上回ることのできる最大の送信帯域幅で送信する。例えば、切り替え部106は、予測される受信SINRを、基地局(受信装置)と移動局(送信装置)との間の平均パスロスおよび基地局における平均干渉電力に基づいて算出する。

0083

例えば、図12Bに示すように、最大送信帯域幅が5MHzで、最小送信帯域幅が1.25MHzである場合に、各送信帯域幅、すなわち1.25MHz、2.5MHzおよび3.75MHzにおいて、伝搬路状態測定用信号の所要SINRを満たす送信帯域幅は1.25MHzと2.5MHzである。したがって、所要受信SINRを上回ることのできる最大の送信帯域幅は、2.5MHzとなる。

0084

この場合、最小送信帯域幅で送信しても、所要SINRを実現できないと予測される場合であっても、送信帯域幅は、最小送信帯域幅以下にはせず、最小送信帯域幅で送信する。

0085

伝搬路状態測定用信号の所要SINRは、報知チャネルでセル全体に通知される。

0086

また、切り替え部106は、データチャネルに対する所要品質、例えば所要SINRとは別に、伝搬路状態測定用信号に対する所要品質を設定するようにしてもよい。

0087

この場合、各所要品質は、基地局装置より報知チャネルを用いて、セクタ配下の移動局に通知される。例えば、基地局装置は、データチャネルに対する所要品質を、個別制御チャネルを用いて通知する。

0088

切り替え部106は、データチャネルの割り当てが無く、伝搬路状態測定用信号のみを送信する場合には、伝搬路測定用信号の所要品質に基づいた送信電力制御を行う。例えば、切り替え部106は、パイロット信号のみを送信する場合の所要品質に基づく送信電力制御により決まる送信電力で送信する。例えば、図12Cに示すように、切り替え部106は、伝搬路状態の測定に必要十分な低い所要品質を設定する。このようにすることにより、パイロット信号による干渉を低減でき、全体としてスループットを向上させることができる。

0089

切り替え部106は、データチャネルの割り当てがある場合には、送信フレーム内時間多重されたデータ部、伝搬路状態測定用信号部とも、データチャネルの所要品質に基づいて送信電力制御を行う。例えば、図12Dに示すように、切り替え部106は、データチャネルの割り当てがある場合、データ部と同じ電力で送信する。この場合、データ部には、高効率な変調方式符号化率が用いられるため、高い所要品質が設定される。切り替え部106は、高精度なチャネル推定が必要なためパイロット信号も高い送信電力で送信する。

0090

具体的には、データチャネルの割り当てがあり、データチャネルの割り当て帯域幅が、伝搬路状態測定用信号の送信帯域幅よりも狭い場合、切り替え部106は、図12Eに示すように、伝搬路状態測定用信号の送信電力を、伝搬路状態測定用信号の送信帯域幅において、データチャネルの所要品質、例えば所要SINRを満足できる送信電力に制御する。

0091

送信電力に余裕が無く、所要品質を満足できない場合、切り替え部106は、図12Fに示すように、最大送信電力に制御する。

0092

基地局200は、移動局から送信された情報、例えばパイロット信号の希望(最大)送信帯域幅に基づいて、移動局が送信するパイロット信号の送信周波数帯域幅(送信帯域幅)、中心周波数を決定し、該決定されたパイロット信号の送信帯域幅を示す情報と中心周波数を示す情報とを移動局に通知する。

0093

パイロット信号生成部は、通知された送信帯域幅を示す情報、中心周波数を示す情報にしたがって、パイロット信号を送信する。また、パイロット信号生成部は、周波数ブロックのIDが通知された場合には、通知された周波数ブロックのIDにより指定された送信帯域幅および中心周波数にしたがって、パイロット信号を送信する。この場合、パイロット信号生成部は、周波数ホッピング方式により、パイロット信号を送信するようにしてもよい。さらに、パイロット信号生成部は、指定された帯域毎に送信する帯域を変更して、周波数ホッピングしてパイロット信号を送信するようにしてもよい。

0094

FFT部108は、拡散されたデータ系列をQチップ毎にブロック化して高速フーリエ変換を行うことにより、周波数領域に変換し、レート変換部112に入力する。その結果、周波数領域においてQ個のシングルキャリアの信号が得られる。

0095

直並列変換部(S/P)110は、Q個毎に直列的な信号系列(ストリーム)を並列的な複数の信号系列に変換し、レート変換部112に入力する。

0096

レート変換部112は、FFT部108から出力されたQ個のシングルキャリアの信号を所定数回、例えばCRF回繰り返す。その結果、Nsub=Q×CRF個のシングルキャリアの信号が生成する。また、レート変換部112は、直並列変換部(S/P)110から出力された並列的なQ個の信号系列毎に周波数領域信号生成部114に入力する。

0097

一方、無線リソース割り当て制御部122は、基地局200より通知された各物理チャネルへの無線リソース割り当てを示す報知情報および各ユーザに対するスケジューリングの結果を示す情報に基づいて、各物理チャネルに割り当てる周波数ブロックおよび時間を制御する。

0098

また、無線リソース割り当て制御部122は、各物理チャネルに周波数ブロックおよび時間を割り当てる場合に、複数の周波数ブロックのトランスミッションタイムインターバル(TTI: Transmission Time Interval)長を単位としたある時間に対して、無線リソースを割り当てるように制御するようにしてもよい。

0099

ここで、共有データチャネルのスケジューリングについて、図13図14を参照して説明する。共有データチャネルは、後述するが、基地局200におけるスケジューリングに基づいて割り当てられる。

0100

周波数ブロックは、図13に示すように、固定的に周波数が割り当てられる周波数分割多元接続での時間領域におけるスケジューリングの制御情報に基づいて割り当てられる。この場合、高速データレートのユーザに対しては複数の周波数ブロックが割り当てられる。このようにすることにより、各ユーザは予め割り当てられた周波数ブロックのみを使用する。このため、送信装置100は、受信装置400がチャネル状態情報(CQI: Channel Quality Indicator)を測定できるように送信する他の周波数ブロックのパイロットチャネルを予め送信する必要がない。

0101

最適な周波数ブロックの帯域幅としては、例えば、1.25−5MHzである。周波数ブロックの帯域幅を広くすることにより、周波数ブロック内でマルチユーザダイバーシチの効果を大きくすることができる。

0102

シングルキャリア伝送が行われる場合には、データレートにしたがって、各ユーザに対して割り当てられる帯域幅は可変としてもよい。

0103

また、あるユーザのトラヒックサイズが周波数ブロックのペイロードサイズよりも大きい場合には、1周波数ブロックが排他的に1ユーザにより使用されるようにしてもよい。

0104

周波数ブロック上に配置されたさらに狭いFDMA(localized FDMA)が、複数の低データレートユーザにより使用される。すなわち、図2Aおよび図2Bを参照して説明したように、各ユーザの使用するスペクトラムが、ブロック上にまとめて、周波数ブロック内に配置される。また、各ユーザの使用する周波数スペクトラムが、くしの歯状に周波数ブロック内にまたがって、分散配置されるようにしてもよい。他のユーザは、くしの歯状のスペクトラムを使用する。共有データチャネルに対しては、主にlocalized FDMAを使用するようにしてもよい。

0105

また、図14に示すように、1つの帯域、例えば周波数ブロックを複数のユーザに割り当てるようにしてもよい。この場合は、くしの歯状の周波数スペクトルを用いた周波数多重あるいは1フレームの中に複数のユーザが以下の説明のように多重される。TTIには、チップ情報がある単位で、時分割で格納されている。このチップ情報を単位として送信する周波数を変更する。このように、ある帯域に複数のユーザを割り当て、周波数ホッピングを使用して送信する。このように、ある周波数帯域を複数ユーザに割り当てることにより、他セル(セクタ)からの干渉を平均化することができる。このため、ある周波数帯域において、ユーザを切り替えて送信した場合よりも、時間的に他セル(セクタ)からの干渉の変動を小さくできる。

0106

例えば、図15に示すように、基地局200のカバーするエリアが3のセクタ、セクタ2501、2502および2503により構成され、セクタ2501には移動局A3001が在圏し、セクタ2503には移動局B3002、移動局C3003、移動局D3004および移動局E3005が在圏している場合について説明する。

0107

ユーザ毎に周波数ブロックを割り当てた場合、隣接セクタの自移動局に近い位置に他の移動局が存在すると干渉電力が大きくなり、遠い位置に他のユーザが存在しても干渉電力は小さい。

0108

例えば、セクタ2501に在圏する移動局A3001については、隣接するセクタ2503に在圏し、移動局A3001の近傍に位置する移動局D3004からの干渉電力は大きくなるが、遠くに位置している移動局E3005からの干渉電力は小さい。したがって、図16Aに示すように、干渉電力は時間に対して変動する。

0109

一方、くしの歯状の周波数スペクトルを用いる周波数多重や周波数ホッピングを行う場合、図16Bに示すように、干渉電力の合計は平均化されほぼ一定となるため、干渉電力の時間に対する変動は小さくなる。この場合、1ユーザ当たりの送信電力は小さくなるが、複数タイムスロットに渡って連続的に割り当てることにより、ユーザあたりの効率は変わらず、他セル(セクタ)からの干渉の変動は小さくなる。

0110

また、周波数ブロックは、図17に示すように、時間領域および周波数領域におけるスケジューリングの制御情報に基づいて割り当てられるようにしてもよい。

0111

この場合、受信装置400がチャネル状態情報(CQI: Channel Quality Indicator)を測定するために送信されるパイロットチャネルが全ての周波数ブロック上で伝送される。すなわち、全てのチャネル帯域幅上で伝送される。

0112

また、あるユーザのトラヒックサイズが周波数ブロックのペイロードサイズよりも大きい場合には、1周波数ブロックが排他的に1ユーザにより使用される。

0113

低データレートのユーザが複数である場合には、1周波数ブロックが複数のユーザにより使用される。この場合、直交する周波数スペクトラム、すなわち周波数ブロック上に配置されたさらに狭いFDMA(localized FDMA)またはくしの歯状のスペクトラム(distributed FDMA)が、同じ周波数ブロック内に適用される。すなわち、図2Aおよび図2Bを参照して説明したように、各ユーザの使用するスペクトラムが、ブロック上にまとめて、周波数ブロック内に配置される。また、各ユーザの使用する周波数スペクトラムが、くしの歯状に周波数ブロック内にまたがって、分散配置されるようにしてもよい。このようにすることにより、マルチユーザ干渉を低減できる。

0114

例えば、最適な周波数ブロックの帯域幅としては、0.3125−1.25MHzである。周波数ブロックの帯域幅を狭くすることにより、周波数領域でのチャネルのスケジューリングにより、マルチユーザダイバーシチの効果を大きくすることができる。

0115

シングルキャリア伝送が行われる場合には、データレートにしたがって、各ユーザに対して割り当てられる帯域幅は可変としてもよい。

0116

周波数ブロック上に配置されたさらに狭いFDMA(localized FDMA)が、複数の低データレートユーザにより使用される。

0117

また、時間領域および周波数領域においてスケジューリングを行う場合に、周波数ブロックをグループ化するようにしてもよい。このようにすることにより、パイロットチャネルのオーバヘッドを減少させることができる。

0118

また、図18に示すように、伝搬路状態に基づいて、帯域幅を変えるようにしてもよい。例えば、システムに割り当てられた周波数帯域を複数の周波数ブロックに分割して割り当てる。この場合、伝搬状態がよい場合は、複数の周波数ブロック、例えば2個の周波数ブロックが割り当てられ(ユーザA、BおよびC)、伝搬状態がよくない場合には、よい場合よりも少ない周波数ブロックが割り当てられる(ユーザD)。このように割り当てられた周波数帯域においてシングルキャリア伝送が行われる。このようにすることにより、全体の効率を向上させることができる。

0119

周波数ブロックのグループ化について、図19を参照して説明する。

0120

周波数ブロックのグループ化を行わない場合には、周波数ブロック上に配置されたさらに狭いFDMA(localized FDMA)またはくしの歯状のスペクトラムが、複数の低データレートユーザにより使用される。

0121

周波数ブロックのグループ化を行う場合には、飛び飛びの周波数ブロックがグループ化される場合(Distributed grouping)と、連続した周波数ブロックをグループ化する場合(Localized grouping)がある。

0122

このように、予め周波数ブロックをグループ化し、周波数領域のスケジューリングを行うことにより、CQI測定に使用されるパイロットチャネルのオーバヘッドを減少させることができる。

0123

例えば基地局200に備えられた受信装置の無線リソース割り当て決定部404は、衝突型チャネル(Contention-based channel)、例えばランダムアクセスチャネル予約パケットチャネルに割り当てられる周波数と時間とを、チャネルロードなどに応じて決定し、下りリンクの報知チャネルで各移動局に通知する。例えば、無線リソース割り当て決定部404は、送信する信号が衝突型のチャネルである場合に、割り当てられた周波数帯域のうち少なくとも一部の帯域を利用するように無線リソースを割り当てることを決定する。

0124

また、基地局200に備えられた受信装置の無線リソース割り当て決定部404は、チャネル状態に応じて、スケジューリングを行い、スケジューリング型のチャネル(Scheduled channel)、例えば共有データチャネルなどに割り当てられる周波数と時間とを決定し、下りリンクの報知チャネルで各移動局に通知する。共有データチャネルでは、トラヒックデータレイヤ3制御メッセージが伝送される。また、共有データチャネルを用いて通信を行う場合にH−ARQ(hybrid automatic repeat request)を適用するようにしてもよい。

0125

また、基地局200に備えられた受信装置の無線リソース割り当て決定部404は、スケジューリングを行い、スケジューリング型のチャネル、例えば制御情報を送信するチャネル(以下、共有制御チャネルと呼ぶ)に割り当てられる周波数と時間とを決定し、下りリンクの報知チャネルで各移動局に通知する。

0126

無線リソース割り当て制御部122は、衝突型チャネルとスケジューリング型のチャネルとを多重するように制御する。例えば、無線リソース割り当て部122は、図20Aに示すように、衝突型チャネルとスケジューリング型のチャネルとを時間多重するように制御する。この場合、無線リソース割り当て制御部122は、適応TTI長制御を行い、TTI長を長く設定するようにしてもよい。このようにすることにより、TTI全体の長さに占める共有制御チャネルの割合を低下させることができるため、共有制御チャネルのオーバヘッドを減少させることができる。

0127

また、例えば、無線リソース割り当て部122は、図20Bに示すように衝突型チャネルとスケジューリング型のチャネルとを周波数多重するように制御するようにしてもよい。

0128

また、例えば、無線リソース割り当て部122は、図20Cに示すように衝突型チャネルとスケジューリング型のチャネルとを時間多重と周波数多重とを混在させるように制御するようにしてもよい。この場合、無線リソース割り当て制御部122は、適応TTI長制御を行い、TTI長を長く設定するようにしてもよい。このようにすることにより、TTI全体の長さに占める共有制御チャネルの割合を低下させることができるため、共有制御チャネルのオーバヘッドを減少させることができる。

0129

周波数領域信号生成部114は、くしの歯状のスペクトラムとなるように周波数軸上で各シングルキャリアの信号をシフトさせる。例えば、CRF=4に相当する処理を行う場合には、各シングルキャリアの信号または信号系列の間に零を3つ配置する。また、周波数領域信号生成部114は、入力された無線リソースの割り当て情報にしたがって、物理チャネルの種類に応じて、各物理チャネルに無線リソースを割り当てる。このようにシングルキャリア方式を使用する場合には、CRFの値と、各シングルキャリアの信号をシフトさせるオフセットの値とを変更し、ユーザ数を変更する。

0130

また、周波数領域信号生成部114は、並列的なQ個の信号系列毎にマッピングを行い、周波数成分に信号系列を直接配置し、マッピングされた信号毎に無線リソースを割り当てる。

0131

IFFT部116は、周波数軸上で各シングルキャリアの信号をシフトさせることにより得られたくしの歯状のスペクトラムを高速逆フーリエ変換し、シングルキャリア方式の送信スペクトラム波形を生成する。

0132

また、IFFT部116は、複数のサブキャリアからなるマルチキャリアの信号を高速逆フーリエ変換し、OFDM方式の変調を行い、マルチキャリア方式の送信スペクトラム波形を生成する。

0133

ガードインターバル(GI)付加部118は、送信する信号にガードインターバルを付加し、シングルキャリア方式およびマルチキャリア方式の一方のシンボルを作成する。ガードインターバルは、伝送するシンボルの先頭または末尾の一部を複製することによって得られる。

0134

フィルタは、切り替え部106により通知された無線アクセス方式を示す情報に基づいて帯域制限を行う。帯域制限された信号は送信される。

0135

次に、本実施例にかかる受信装置400について、図21を参照して説明する。

0136

受信装置400は、例えば基地局に備えられ、下りチャネルを送信する。

0137

本実施例にかかる受信装置は、上述したセルラ環境およびローカルエリア環境において使用される。

0138

次に、本実施例にかかる受信装置400は、シングルキャリア方式およびマルチキャリア方式の無線アクセス方式により送信された信号を受信することができる。また、受信装置400は、無線アクセス方式決定部402と、無線リソース割り当て決定部404とを備える。

0139

無線アクセス方式決定部402は、自受信装置400が設置された環境に基づいて、移動局300に使用させる無線アクセス方式を決定する。

0140

例えば、無線アクセス決定部402は、設置された環境がセルラセル環境である場合、シングルキャリア方式を使用させることを決定し、移動局300に通知する。また、例えば、無線アクセス決定部402は、設置された環境がローカルエリア環境である場合、マルチキャリア方式を使用させることを決定し、移動局300に通知する。

0141

例えば、基地局200が設置される段階で、無線アクセス方式決定部402は、セル構成、例えばセルの半径、隣接セルの有無などに応じて、使用する無線アクセス方式を決定する。例えば、セル半径が大きい場合にはシングルキャリア方式を使用する、またセル半径が小さい場合にはマルチキャリア方式を使用するように決定する。無線アクセス決定部402は、決定されたアクセス方式を示す情報を、全ユーザの共通制御情報として移動局300に報知する。

0142

このようにすることにより、基地局が設置される段階で決定されるため、構成および制御が容易である。

0143

また、各ユーザの基地局までの距離に応じてアクセス方式を切り替えるようにしてもよいし、各ユーザの送信電力の余裕に応じてアクセス方式を切り替えるようにしてもよい。

0144

例えば、各ユーザの基地局200までの距離に応じてアクセス方式を切り替える場合、各ユーザの基地局200までの距離に相当する量として、例えばパスロスを使用する。この場合、移動局300は下りリンクで、例えば下りパイロット信号の受信電力を使用してパスロスを測定し、測定されたバスロスを示す情報を上りリンクで基地局200に通知する。

0145

無線アクセス方式決定部402は、受信したパスロスの値が、所定の閾値よりも大きい場合、自基地局200と移動局300との距離が大きいと判断しシングルキャリア方式を使用することを決定し、移動局300に通知する。

0146

また、無線アクセス方式決定部402は、受信したパスロスが、所定の閾値よりも小さい場合、自基地局200と移動局300との距離が小さいと判断しマルチキャリア方式を使用することを決定し、移動局200に通知する。

0147

このようにすることにより、移動局と基地局との距離に応じて、移動局毎に無線アクセス方式を制御することができる。

0148

また、例えば、各ユーザの送信電力の余裕に応じてアクセス方式を切り替える場合、各ユーザの送信電力の余裕を示す値として、例えば、最大許容送信電力−現在の送信電力を用いる。この場合、移動局は、「最大許容送信電力−現在の送信電力」を示す値を基地局に通知する。

0149

無線アクセス方式決定部402は、受信した「最大許容送信電力−現在の送信電力」を示す値が、所定の閾値よりも小さい場合、送信電力の余裕が小さいと判断し、シングルキャリア方式を使用することを決定し、移動局300に通知する。

0150

また、無線アクセス方式決定部402は、受信した「最大許容送信電力−現在の送信電力」を示す値が、所定の閾値よりも大きい場合、送信電力の余裕が大きいと判断し、マルチキャリア方式を使用することを決定し、移動局300に通知する。

0151

このようにすることにより、移動局毎の能力に応じて、アクセス方式を制御することができる。

0152

また、移動局300は、最大許容送信電力を示す情報と、現在の送信電力を示す情報とを送信し、無線アクセス方式決定部402は「最大許容送信電力−現在の送信電力」を計算し、この計算値に基づいて、無線アクセス方式を制御するようにしてもよい。

0153

無線リソース割り当て決定部404は、各物理チャネルへの無線リソースの割り当てを決定し、移動局300に通知する。

0154

また、無線リソース割り当て部404は、各ユーザに対してスケジューリングを行い、その結果を移動局300に通知する。

0155

無線リソース割り当て制御部404は、各物理チャネルに周波数ブロックおよび時間を割り当てる場合に、複数の周波数ブロックのTTI(Transmission Time Interval)長を単位としたある時間に対して、無線リソースを割り当てるようにしてもよい。

0156

また、無線リソース割り当て部404は、共有データチャネルについてスケジューリングを行う。

0157

無線リソース割り当て部404は、図13に示すように、固定的に周波数が割り当てられる周波数分割多元接続での時間領域におけるスケジューリングを行い、制御情報を生成する。この場合、高速データレートのユーザに対しては複数の周波数ブロックが割り当てられる。このようにすることにより、各ユーザは予め割り当てられた周波数ブロックのみを使用する。このため、送信装置100は、受信装置400がチャネル状態情報(CQI: Channel Quality Indicator)を測定できるように送信する他の周波数ブロックのパイロットチャネルを予め受信する必要がない。

0158

例えば、最適な周波数ブロックの帯域幅としては、1.25−5MHzである。周波数ブロックの帯域幅を広くすることにより、周波数ブロック内でマルチユーザダイバーシチの効果を大きくすることができる。

0159

シングルキャリア伝送が行われる場合には、データレートにしたがって、各ユーザに対して割り当てられる帯域幅は可変としてもよい。

0160

また、あるユーザのトラヒックサイズが周波数ブロックのペイロードサイズよりも大きい場合には、1周波数ブロックが排他的に1ユーザにより使用されるようにしてもよい。

0161

また、図17に示すように、伝搬路状態に基づいて、帯域幅を変えるようにしてもよい。

0162

周波数ブロック上に配置されたさらに狭いFDMA(localized FDMA)が、複数の低データレートユーザにより使用されるようにしてもよい。すなわち、図2Aおよび図2Bを参照して説明したように、各ユーザの使用するスペクトラムが、ブロック上にまとめて、周波数ブロック内に配置される。また、各ユーザの使用する周波数スペクトラムが、くしの歯状に周波数ブロック内にまたがって、分散配置されるようにしてもよい。他のユーザは、くしの歯状のスペクトラムを使用する。共有データチャネルに対しては、主にlocalized FDMAが使用されるようにしてもよい。

0163

また、無線リソース割り当て部404は、図18に示すように、時間領域および周波数領域におけるスケジューリングを行い、制御情報を生成するようにしてもよい。

0164

この場合、チャネル状態情報(CQI: Channel Quality Indicator)を測定するために送信されるパイロットチャネルが全ての周波数ブロック上で伝送される。すなわち、全てのチャネル帯域幅上で伝送される。

0165

また、あるユーザのトラヒックサイズが周波数ブロックのペイロードサイズよりも大きい場合には、1周波数ブロックが排他的に1ユーザにより使用される。

0166

低データレートのユーザが複数である場合には、1周波数ブロックが複数のユーザにより使用される。この場合、直交する周波数スペクトラム、すなわち周波数ブロック上に配置されたさらに狭いFDMA(localized FDMA)またはくしの歯状のスペクトラム(distributed FDMA)が、同じ周波数ブロック内に適用される。すなわち、図2Aおよび図2Bを参照して説明したように、各ユーザの使用するスペクトラムが、ブロック上にまとめて、周波数ブロック内に配置される。また、各ユーザの使用する周波数スペクトラムが、くしの歯状に周波数ブロック内にまたがって、分散配置されるようにしてもよい。このようにすることにより、マルチユーザ干渉を低減できる。

0167

例えば、最適な周波数ブロックの帯域幅としては、0.3125−1.25MHzである。周波数ブロックの帯域幅を狭くすることにより、周波数領域でのチャネルのスケジューリングにより、マルチユーザダイバーシチの効果を大きくすることができる。

0168

シングルキャリア伝送が行われる場合には、データレートにしたがって、各ユーザに対して割り当てられる帯域幅は可変としてもよい。

0169

周波数ブロック上に配置されたさらに狭いFDMA(localized FDMA)が、複数の低データレートユーザにより使用されるようにしてもよい。

0170

この場合、周波数ブロックをグループ化するようにしてもよい。このようにすることにより、パイロットチャネルのオーバヘッドを減少させることができる。

0171

また、図14に示すように、1つの帯域、例えば周波数ブロックを複数のユーザに割り当てるようにしてもよい。この場合は、くしの歯状の周波数スペクトルを用いた周波数多重、あるいは1フレームの中に複数のユーザが以下の説明のように多重される。TTIには、チップ情報がある単位で、時分割で格納されている。このチップ情報を単位として送信する周波数を変更する。このように、ある帯域に複数のユーザを割り当て、周波数ホッピングを使用して送信する。このようにある周波数帯域を複数ユーザに割り当てることにより、他セル(セクタ)からの干渉を平均化することができる。このため、ある周波数帯域において、ユーザを切り替えて送信するよりも。時間的に他セル(セクタ)からの干渉の変動を小さくできる。

0172

周波数ブロックのグループ化について、図19を参照して説明する。

0173

周波数ブロックのグループ化を行わない場合には、周波数ブロック上に配置されたさらに狭いFDMA(localized FDMA)またはくしの歯状のスペクトラムが、複数の低データレートユーザにより使用される。

0174

周波数ブロックのグループ化を行う場合には、飛び飛びの周波数ブロックがグループ化される場合(Distributed grouping)と、連続した周波数ブロックをグループ化する場合(Localized grouping)がある。

0175

このように、予め周波数ブロックをグループ化し、周波数領域のスケジューリングを行うことにより、CQI測定に使用されるパイロットチャネルのオーバヘッドを減少させることができる。

0176

例えば、無線リソース割り当て決定部404は、衝突型チャネル(Contention-based channel)、例えばランダムアクセスチャネル、予約パケットチャネルに割り当てられる周波数と時間とを、チャネルロードなどに応じて決定し、下りリンクの報知チャネルで各移動局に通知する。例えば、無線リソース割り当て決定部404は、送信する信号が衝突型のチャネルである場合に、割り当てられた周波数帯域のうち少なくとも一部の帯域を利用するように無線リソースを割り当てることを決定する。

0177

また、無線リソース割り当て決定部404は、チャネル状態に応じて、スケジューリングを行い、スケジューリング型のチャネル(Scheduled channel)、例えば共有データチャネルなどに割り当てられる周波数と時間とを決定し、下りリンクの報知チャネルで各移動局に通知する。共有データチャネルでは、トラヒックデータ、レイヤ3制御メッセージが伝送される。

0178

例えば、無線リソース割り当て決定部404は、チャネル状態、例えばCQI測定結果に基づいて、チャネルをグループ化して、割り当てる。このようにすることにより、パイロットチャネルのオーバヘッドを低減することができる。

0179

また、共有データチャネルを用いて通信を行う場合にH−ARQ(hybrid automatic repeat request)を適用するようにしてもよい。

0180

また、無線リソース割り当て決定部404は、スケジューリングを行い、スケジューリング型のチャネル、例えば共有制御チャネルに割り当てられる周波数と時間とを決定し、下りリンクの報知チャネルで各移動局に通知する。

0181

次に、伝搬路状態に基づいて、帯域幅を変えるように割り当てを行う受信機の構成について、図22を参照して詳細に説明する。

0182

この受信機400は、図21を参照して説明した受信機と同様の構成である。

0183

この受信機400の無線リソース割り当て決定部404は、受信特性測定部406と、受信特性測定部406と接続されたランキング部408と、ランキング部408と接続された周波数ブロック割り当て部410と、周波数ブロック割り当て部410と接続された送信電力決定部412と、送信電力決定部412と接続されたMCS決定部414とを備える。

0184

受信特性測定部406は、全てのユーザに対して、各周波数ブロックにおける受信特性、例えば受信SINRを測定する。全てのユーザは帯域全体においてパイロット信号を送信している。受信特性測定部406は、各帯域の受信状態、例えば受信SINRを測定する。また、受信特性測定部406は、図23Aに示すように、ユーザが帯域全体(システム帯域幅)のうちの一部の周波数帯域を用いてパイロット信号を送信している場合には、予め決定された周波数帯域の割り当て単位毎、例えば周波数ブロック毎に受信SINRを測定する。すなわち、受信特性測定部406は、予め決定された周波数帯域の割り当て単位を測定単位として、送信されたパイロット信号の受信特性を測定する。

0185

また、受信特性測定部406は、図23Bに示すように、ユーザが帯域全体のうちの一部の周波数帯域を用いてパイロット信号を送信している場合には、その帯域における受信状態を測定するようにしてもよい。すなわち、受信特性測定部406は、希望割り当て単位、例えばパイロット信号の送信周波数を測定単位として、送信されたパイロット信号の受信特性を測定する。

0186

ランキング部408は、測定された受信特性に基づいて、優先度を求め、所定の順番並び替える。例えば、受信SINRの高い順に並び替え、ランキングテーブルを作成する。また、ランキング部408は、各移動局から送信されるパイロット信号の基地局における受信状態、すなわち受信装置における伝搬路状態測定用信号の受信電力、各移動局から送信しようとするデータの種類および送信待ち時間、各移動局の最大送信電力のうち少なくとも1つに基づいて、ランキングテーブルを作成するようにしてもよい。その結果、周波数帯域の割り当て単位毎に、周波数帯域を割り当てる移動局が決定される。

0187

周波数ブロック割り当て部410は、作成されたランキングテーブルに基づいて、周波数ブロックを割り当てる。例えば、周波数ブロック割り当て部410は、ランキングテーブルを参照し、優先度の高いユーザに対応する周波数ブロックの仮割り当てを行う。また、周波数ブロック割り当て部410は、最大の優先度に対応するユーザに対して仮割り当てされた周波数ブロックと、隣接する周波数ブロックを割り当てる。また、周波数ブロック割り当て部410は、割り当てたユーザ、および周波数ブロックに対応する優先度を除いて、改めて優先度の順に並び替えランキングテーブルを作成し、同様の処理を行う。このように、各送信装置に対する受信特性に基づいて、同一装置に対して、連続した周波数帯が割り当てられる。

0188

この場合、周波数ブロック割り当て部410は、図24Aに示すように、パイロット信号の送信周波数の範囲内で、周波数帯域を割り当てる。さらに、周波数ブロック割り当て部410は、図24Bに示すように、周波数帯域の割り当て単位、例えば周波数ブロックの整数倍で、周波数帯域を割り当てるようにしてもよい。

0189

また、移動局が、帯域割り当て単位毎に、周波数ポッピングしてパイロット信号を送信する場合に、周波数ブロック割り当て部410は、図25Aに示すように、パイロットが送信されている帯域に対してスケジューリングを行い、データチャネルの割り当てを行うようにしてもよい。また、パイロット信号を送信する帯域が時間の経過とともにずれるように指定される。この場合、周波数割り当て部410は、パイロット信号が送信された帯域毎に、データチャネルを決定する。この場合、スケジューリング周期長周期化する。

0190

例えば、時間t(Time t)では、全ての移動局、例えばMS1、MS2、MS3およびMS4は同じ帯域でパイロット信号を送信する。周波数ブロック割り当て部410は、同じ帯域でパイロット信号を送信した移動局間でスケジューリングを行う。この場合、MS1、MS2、MS3およびMS4間でスケジューリングが行われ、MS3にデータチャネルが割り当てられる。

0191

時間t+1(Time t+1)では、時間tにおいてパイロット信号が送信された帯域とは異なる帯域で、MS1、MS2、MS3およびMS4はパイロット信号を送信する。例えば、MS1、MS2、MS3およびMS4は、時間tにおいてパイロット信号が送信された帯域に隣接する帯域でパイロット信号を送信する。周波数ブロック割り当て部410は、同じ帯域でパイロット信号を送信した移動局間でスケジューリングを行う。この場合、MS1、MS2、MS3およびMS4間でスケジューリングが行われ、MS2にデータチャネルが割り当てられる。

0192

時間t+2(Time t+2)では、時間t+1においてパイロット信号が送信された帯域とは異なる帯域で、MS1、MS2、MS3およびMS4はパイロット信号を送信する。例えば、MS1、MS2、MS3およびMS4は、時間t+1においてパイロット信号が送信された帯域に隣接する帯域でパイロット信号を送信する。周波数ブロック割り当て部410は、同じ帯域でパイロット信号を送信した移動局間でスケジューリングを行う。この場合、MS1、MS2、MS3およびMS4間でスケジューリングが行われ、MS2にデータチャネルが割り当てられる。以下、同様にデータチャネルの割り当てが行われる。

0193

また、各移動局が独立に、周波数ポッピングしてパイロット信号を送信する場合に、周波数ブロック割り当て部410は、図25Bに示すように、周波数割り当て単位毎に、その帯域でパイロット信号を送信している移動局間でスケジューリングを行い、データチャネルを割り当てるようにしてもよい。例えば、ある移動局は、すでに割り当てられた帯域に隣接する帯域が割り当てられる。

0194

例えば、時間t(Time t)では、移動局、例えばMS3、MS4、MS4およびMS6は互いに異なる帯域でパイロット信号を送信し、MS1はMS3およびMS4がパイロット信号を送信した帯域でパイロット信号を送信し、MS2はMS5およびMS6がパイロット信号を送信した帯域でパイロット信号を送信する。

0195

周波数ブロック割り当て部410は、各帯域でパイロット信号を送信した移動局間でスケジューリングを行う。周波数ブロック割り当て部410は、帯域割り当て単位毎にスケジューリングを行う。例えば、周波数ブロック割り当て部410は、MS1とMS3との間でスケジューリングを行いMS1にデータチャネルを割り当て、MS1とMS4との間でスケジューリングを行いMS4にデータチャネルを割り当て、MS2とMS5との間でスケジューリングを行いMS5にデータチャネルを割り当て、MS2とMS6との間でスケジューリングを行いMS6にデータチャネルを割り当てる。

0196

時間t+1(Time t+1)では、移動局、例えばMS3、MS4、MS4およびMS6は互いに異なる帯域でパイロット信号を送信する。例えば、時刻tにおいてパイロット信号を送信した帯域に隣接する帯域でパイロット信号を送信する。また、移動局、例えばMS1およびMS2は互いに異なる帯域でパイロット信号を送信する。例えば、時刻tにおいてパイロット信号を送信した帯域に隣接する帯域でパイロット信号を送信する。

0197

周波数ブロック割り当て部410は、各帯域でパイロット信号を送信した移動局間でスケジューリングを行う。周波数ブロック割り当て部410は、帯域割り当て単位毎にスケジューリングを行う。例えば、周波数ブロック割り当て部410は、MS2とMS6との間でスケジューリングを行いMS2にデータチャネルを割り当て、MS2とMS3との間でスケジューリングを行いMS2にデータチャネルを割り当て、MS1とMS4との間でスケジューリングを行いMS4にデータチャネルを割り当て、MS1とMS5との間でスケジューリングを行いMS5にデータチャネルを割り当てる。

0198

時間t+2(Time t+2)では、移動局、例えばMS3、MS4、MS4およびMS6は互いに異なる帯域でパイロット信号を送信する。例えば、時刻t+1においてパイロット信号を送信した帯域に隣接する帯域でパイロット信号を送信する。また、移動局、例えばMS1およびMS2は互いに異なる帯域でパイロット信号を送信する。例えば、時刻t+1においてパイロット信号を送信した帯域に隣接する帯域でパイロット信号を送信する。

0199

周波数ブロック割り当て部410は、各帯域でパイロット信号を送信した移動局間でスケジューリングを行う。周波数ブロック割り当て部410は、帯域割り当て単位毎にスケジューリングを行う。例えば、周波数ブロック割り当て部410は、MS1とMS5との間でスケジューリングを行いMS5にデータチャネルを割り当て、MS1とMS6との間でスケジューリングを行いMS6にデータチャネルを割り当て、MS2とMS3との間でスケジューリングを行いMS2にデータチャネルを割り当て、MS2とMS4との間でスケジューリングを行いMS4にデータチャネルを割り当てる。

0200

また、各移動局が独立に、周波数ホッピングしてパイロット信号を送信する場合に、周波数ブロック割り当て部410は、図25Cに示すように、パイロットが送信されていない帯域の受信特性(受信品質)は過去の受信品質を用い、各周波数割り当て単位において、データチャネルを割り当てるようにしてもよい。この場合、同じ周波数帯域で、パイロットを送信する移動局が複数いるようにしてもよい。

0201

例えば、時間t(Time t)では、移動局、例えばMS1、MS2、MS3およびMS4は互いに異なる帯域でパイロット信号を送信する。

0202

周波数ブロック割り当て部410は、各帯域でパイロット信号を送信した移動局間でスケジューリングを行う。周波数ブロック割り当て部410は、帯域割り当て単位毎にスケジューリングを行う。

0203

時間t+1(Time t+1)では、移動局、例えばMS1、MS2、MS3およびMS4は互いに異なる帯域でパイロット信号を送信する。例えば、時刻tにおいてパイロット信号を送信した帯域に隣接する帯域でパイロット信号を送信する。

0204

周波数ブロック割り当て部410は、各帯域でパイロット信号を送信した移動局間でスケジューリングを行う。周波数ブロック割り当て部410は、パイロット信号が送信されていない帯域の受信特性(受信品質)は過去の受信品質を用い、帯域割り当て単位毎にスケジューリングを行う。

0205

時間t+2(Time t+2)では、移動局、例えばMS1、MS2、MS3およびMS4は互いに異なる帯域でパイロット信号を送信する。例えば、時刻t+1においてパイロット信号を送信した帯域に隣接する帯域でパイロット信号を送信する。

0206

周波数ブロック割り当て部410は、各帯域でパイロット信号を送信した移動局間でスケジューリングを行う。周波数ブロック割り当て部410は、パイロット信号が送信されていない帯域の受信特性(受信品質)は過去の受信品質を用い、帯域割り当て単位毎にスケジューリングを行う。

0207

伝搬路状態の変動が小さい場合に、パイロット信号を送信する帯域が固定された場合、その帯域の伝搬路状態が悪い場合には受信特性が悪いままである。このように、パイロット信号を送信する帯域を変更することにより、基地局における受信特性を改善することができる。

0208

また、周波数割り当て帯域にデータチャネルを割り当てた場合、図26に示すように、一度割り当てた帯域は、その受信状態がある程度の変化量以上にならない限りは、変更を行わない。すなわち、周波数ブロック割り当て部410は、一度割り当てた周波数帯域について、その周波数帯域における、割り当てた送信装置の伝搬路状態測定用信号の受信電力が、予め指定された閾値を超えて変化するまで、同一の送信局にその周波数帯域を時間的に連続して割り当て続ける。このようにすることにより、他セル(セクタ)からの干渉の変動を低減できる。受信機400では、AMCの適用の前に、受信状態に応じて、変調方式などの変更が行われる。変調方式などの決定が行われた後に、状態が変化すると正しく受信できない。すなわち、上りリンクでは、受信状態は他セル(セクタ)干渉、特に近くに存在するユーザからの干渉により生じる。例えば、図15において、移動局A3001が送信している場合に、隣接するセクタ2503に在圏している移動局D3004が送信している場合には、移動局A3001は、移動局D3004からの干渉の影響を受ける。

0209

また、移動局A3001が送信している場合に、隣接するセクタ2503に在圏している移動局B3002が送信している場合には、移動局A3001は、移動局B3002からの干渉の影響を受ける。移動局A3001は、そのときの希望波干渉波の比に応じて、変調方式を決定する。ここで、移動局B3002に割り当てていた周波数帯域が移動局C3004に切り替えられた場合には、干渉量が増大する。移動局A3001は、移動局B3002の干渉信号を想定してMCSを決定したが、周波数帯域の割り当てが、突然移動局C3003に切り替わることによって、隣接セクタからの干渉量が増大し、最初に決定された変調方式では、受信局は受信できない。

0210

このようなことを避けるために、一度割り当てた帯域は、その受信状態がある程度の変化量以上にならない限りは、変更を行わない。受信状態がある程度の変化量以上になった場合、例えば、変動幅がある閾値以上になった場合、帯域を開放し、各移動局の伝搬路状態などに基づいて、再割り当てが行われる。

0211

送信電力決定部412は、周波数帯域を割り当てた移動局に対して、上りリンクの送信電力を指定する。この場合、周波数帯域を割り当てた移動局(送信機)に対して,割り当てた周波数帯域幅に基づいて、上りリンクの送信電力を指定する。例えば、移動局(送信機)が送信できる最大電力量は決まっている。例えば、図27Aに示すように、ある割り当て帯域に対する送信電力がXである場合について説明する。その割り当て帯域を広くし、例えば2倍にした場合には、図27Bに示すように送信電力は1/2倍になり、X/2となる。このように、割り当てられた帯域幅に応じて、送信電力を決定する。送信電力決定部412は、スケジューリングの結果と、送信電力を示す情報を送信機に送信する。これらの情報は、無線リソース割り当て制御部122に入力される。

0212

例えば、ある割り当て帯域に対する送信電力のピークがXである場合、その割り当て帯域を広くし、例えば2倍にした場合には、送信電力のピークはX/2となる。

0213

送信電力決定部412は、スケジューリングの結果と、送信電力を示す情報を送信機に送信する。これらの情報は、無線リソース割り当て制御部122に入力される。その結果、移動局は、割り当てられた周波数帯域において、最大送信電力で、上りリンクの信号伝送を行う。

0214

このように、ある帯域に電力を集中させて送信することにより、希望波電力を大きくできる。特に、基地局(受信装置)から遠い場所に位置する移動局に対して、ある帯域に電力を集中させて送信させることにより、基地局側で高い電力で受信できるため、受信品質を向上させることができる。

0215

また、送信電力決定部412は、割り当てようとする帯域における干渉電力を測定し、その干渉電力を使用して、所望の希望波電力対干渉電力比が所望の値となるように送信電力を指定するようにしてもよい。

0216

この場合、所望の希望波電力対干渉電力比を得る送信電力が、移動局の出力できる送信電力以上となる場合がある。この場合には移動局の出力できる送信電力を指定する。一方、所望の希望波電力対干渉電力比を得る送信電力が、移動局の出力できる送信電力以下である場合には、所望の希望波電力対干渉電力比を得る送信電力を指定する。

0217

このようにすることにより、基地局側での受信品質に基づいて、送信電力の制御を行うことができる。

0218

また、移動局は、割り当てられた周波数帯域において、最大送信電力で、上りリンクの信号伝送を行う。このようにすることにより、基地局側で高い電力で受信できるため、受信品質を向上させることができる。

0219

また、送信電力は、移動局が、割り当てられた周波数帯域幅によらず、一定の送信電力密度で、上りリンクの信号伝送を行うようにしてもよい。例えば、図28Aおよび図28Bに示すように、無線リソース割り当て制御部122は、所定の周波数帯域幅における送信電力に基づいて、その所定の周波数帯域よりも狭い帯域が割り当てられた場合にも、その送信電力で送信する。このように帯域あたり一定の電力で送信することにより、他セル(セクタ)に与える干渉の影響を小さくできる。

0220

また、移動局の存在する位置に応じて、切り替えるようにしてもよい。すなわち、割り当てられた周波数帯域において、最大送信電力で上りリンクの信号伝送を行うか、割り当てられた周波数帯域幅によらず一定の送信電力密度で上りリンクの信号伝送を行うかを決定し、決定された方法より送信電力を決定し、決定された送信電力を示す情報の通知を行うようにしてもよい。

0221

基地局が、周波数帯域を割り当てた移動局に対して、上りリンクの信号伝送における、変調方法、および誤り訂正符号化率を指定するようにしてもよい。

0222

また、上りリンクの信号伝送における、変調方法および誤り訂正符号化率は、基地局のMCS決定部414において、希望波電力と干渉電力の比に基づいて決定するようにしてもよい。ここで、希望波電力、干渉電力とも、瞬時値あるいは平均値のいずれかを用いる。例えば、指定した送信電力、および伝搬路状態測定用信号の受信電力に基づいて、周波数帯域を割り当てた送信装置が信号を送信した場合に、割り当てた周波数帯域において推定される、送信装置が送信した信号の受信装置における受信電力および干渉電力に基づいて、瞬時値および平均値のいずれか1つが使用され、受信電力と干渉電力との比に基づいて、変調方法、誤り訂正符号化率が決定される。

0223

例えば、移動局が、割り当てられた周波数帯域において、最大送信電力で、上りリンクの信号伝送を行う場合について説明する。上りリンクの場合、干渉電力の変動が大きい。瞬時の受信電力に基づいて変調方式が決定されると、送信するまでの時間により、干渉電力のレベルが変動する。したがって、このような信号伝送が行われている場合、受信電力、希望波電力、干渉電力ともに平均値を用いる。

0224

一方、移動局が、割り当てられた周波数帯域幅によらず、一定の送信電力密度で、上りリンクの信号伝送を行う場合について説明する。このように、干渉電力の変動が小さいように制御が行われている場合には、受信電力、希望波電力、干渉電力ともに瞬時値を用いる。

0225

また、MCS決定部414は、送信を許可した移動局がデータチャネルを送信する場合のMCSの指定を行う場合に、図29に示すように、受信特性測定部406において周波数帯域の割り当て単位毎に受信SINRが測定された場合には、割り当てられた帯域における、周波数帯域の割り当て単位毎に測定されたパイロットの信号の受信品質に基づいてMCSを指定するようにしてもよい。例えば、割り当て単位毎に測定された受信SINRを用いて、それらの平均のSINR,最も高いSINR、最も低いSINRのいずれか1つに基づいて、MCSを指定する。

0226

また、伝搬路状態に基づいて、帯域幅を変えるように割り当てを行う受信機を、図30のように構成するようにしてもよい。

0227

この受信機400は、図21を参照して説明した受信機と同様の構成であり、図22を参照して説明した受信機と、受信特性測定部406と接続されたパイロット信号指定部416を備える点で異なる。

0228

パイロット信号指定部416は、移動局から送信されたデータチャネルの希望(最大)送信周波数帯域幅を示す情報、送信を行おうとするデータ量を示す情報およびデータレートを示す情報のうち少なくとも1つの情報を受信する。また、パイロット信号指定部416は、移動局からパイロット信号の希望(最大)送信帯域幅を示す情報を受信する。パイロット信号指定部416は、その移動局に対して、パイロット信号の送信帯域幅を指定する。例えば、パイロット信号指定部416は、各移動局に対してパイロット信号の希望(最大)送信帯域幅を示す情報に基づいて、パイロット信号の送信帯域幅と中心周波数とを決定し、決定されたパイロット信号の送信帯域幅および中心周波数を示す情報を、対応する各移動局に送信する。また、パイロット信号指定部416は、周波数ブロックのIDを送信することにより、決定されたパイロット信号の送信帯域幅および中心周波数を示す情報を対応する各送信装置に通知するようにしてもよい。この場合、パイロット信号指定部416は、複数の周波数ブロックを指定するようにしてもよい。

0229

例えば、パイロット信号指定部416は、図31に示すように、基地局との距離が大きいなどの理由により、希望する最大の帯域幅(希望(最大)送信帯域幅)で移動局がパイロット信号を送信した場合に、パイロット信号の受信品質が不十分であると判断した場合には、移動局の希望する最大帯域幅よりも狭いパイロット信号の帯域幅を指定する。例えば、パイロット信号指定部416は、各移動局の最大送信電力、各移動局と基地局との間のパスロスに基づいて、パイロット信号の送信帯域幅を指定する。

0230

また、パイロット信号指定部416は、各移動局のパイロット信号の送信帯域幅と中心周波数の指定を行う場合、図32に示すように、周波数領域において、基地局において観測される各移動局のパイロット信号の受信電力に偏りが生じない、または小さくなるように指定する。例えば、パイロット信号指定部416は、各移動局のパイロット信号の受信電力の偏りを示す基準値を予め決定し、この基準値以下となるように、各移動局に対して、パイロット信号の送信帯域幅および中心周波数の決定を行う。この場合、パイロット信号指定部416は、各移動局のパイロット信号の送信帯域および基地局における受信電力に基づいて、基地局における各移動局のパイロット信号の上りリンクの総受信電力を求め、該送受信電力が周波数領域において偏りが小さくなるように、各移動局パイロット信号の送信帯域幅および中心周波数を指定する。

0231

また、パイロット信号指定部416は、例えば移動局に対して、パイロット信号をIFDMA方式により送信させる場合には、図33Aに示すように、各周波数成分が過不足なく使用されるように、各移動局のパイロット信号の周波数帯域および繰り返し係数(Repetition factor)を決定する。すなわち、周波数シフト量が決定され、周波数分割多重方式により送信される。この場合、同じユーザが重なる帯域がないように周波数オフセットが与えられる。例えば、パイロット信号指定部416は、各移動局の送信するパイロット信号の中心周波数および送信帯域幅を指定する際に、繰り返し係数の残数に基づいて指定する。この場合、パイロット信号指定部416は、パイロット信号の中心周波数、周波数帯域幅および繰り返し係数を指定し、通知する。

0232

また、パイロット信号指定部416は、各周波数帯で、伝搬路測定用信号を送信する移動局数に偏りが生じないように、伝搬路測定用信号の送信帯域を割り当てる。例えば、パイロット信号指定部416は、送信帯域の広い移動局から、伝搬路測定用信号の送信帯域を割り当てる。この場合、例えば、送信帯域幅が、最小送信帯域幅の2nである。

0233

例えば、10MHzのシステム帯域幅に、5MHz、2.5MHz、1.25MHzの送信帯域幅となる移動局数が、N5、N2.5、N1.25である場合について説明する。この場合、最小送信帯域幅、例えば周波数ブロック帯域幅は1.25MHzとする。
(1)変数Φ5MHz、Φ2.5MHzおよびΦ1.25MHzに、それぞれ乱数を与える。ここで、与える乱数は整数である。
(2)n5番目の送信帯域幅5MHzの移動局に対して、周波数ブロックID、(Φ5MHz+n5)mod(10/5)×(10/5)から5/1.25=4ブロックを割り当てる。
(3)n25番目の送信帯域幅2.5MHzの移動局に対して、周波数ブロックID、(Φ5MHz+N5+n2.5)mod(10/5)×(10/5)+(Φ2.5MHz+n2.5)mod(5/2.5)×(5/2.5)から2.5/1.25=2ブロックを割り当てる。
(4)n25番目の送信帯域幅2.5MHzの移動局に対して、周波数ブロックID、(Φ5MHz+N5+N2.5+n1.25)mod(10/5)×(10/5)+(Φ2.5MHz+N2.5+n1.25)mod(5/2.5)×(5/2.5)+(Φ1.25MHz+N2.5+n1.25)mod(2.5/1.25)×(2.5/1.25から1.25/1.25=1ブロックを割り当てる。

0234

例えば、N5=3、N25=3、N1.25=4、Φ5MHz、Φ2.5MHz、Φ1.25MHz=0の場合、セクタにおける帯域の割り当ては、図33Bに示すように、送信帯域幅の広い移動局から順次割り当てられる。

0235

パイロット信号指定部416は、移動局の移動によるパスロスの変化や、ハンドオーバにより、セクタ内の移動局数および送信帯域幅が変化するため、所定の一定周期で上述した割り当てを実行する。

0236

受信特性測定部406は、図34に示すように、移動局が希望(最大)送信周波数帯域幅を用いてパイロットを送信している場合には、データチャネルの希望周波数帯域幅(希望割り当て帯域幅)を測定単位として、受信SINRを測定する。

0237

周波数ブロック割り当て部410は、測定された受信SINR、パイロット信号の送信帯域およびデータチャネルの希望周波数帯域幅を示す情報に基づいて、パイロット信号の送信帯域の範囲内で、各移動局に周波数帯域を割り当てる。この場合、周波数ブロック割り当て部410は、予め決定された周波数割り当て単位、例えば周波数ブロックを単位として割り当てるようにしてもよい。

0238

MCS決定部414は、図35に示すように、送信を許可した移動局に対して、割り当て帯域におけるパイロット信号の受信品質に基づいて、MCSを指定する。

0239

次に、本実施例にかかる送信装置100の動作について、図36を参照して説明する。

0240

基地局200は、移動局300が使用する無線アクセス方式を決定し、移動局300に通知する。

0241

最初に、無線アクセス方式を示す情報が受信される(ステップS1302)。

0242

次に、切り替え部106は、受信された無線アクセス方式を示す情報がシングルキャリア方式であるか否かを判断する(ステップS1304)。

0243

受信された無線アクセス方式を示す情報がシングルキャリア方式である場合(ステップS1304:YES)、切り替え部106は、シングルキャリア方式に切り替える。すなわち、切り替え部106は、入力された拡散されたチップ系列をFFT部108に入力する。

0244

次に、周波数領域信号生成部114は、送信データが衝突型チャネルであるか否かを判断する(ステップS1308)。

0245

送信データが衝突型チャネルである場合(ステップS1308:YES)、周波数領域信号生成部114は、入力された無線リソース割り当て情報にしたがって、衝突型チャネルに無線リソースを割り当てる。無線リソースが割り当てられた送信データは送信される(ステップS1310)。

0246

一方、送信データが衝突型チャネルでない場合、すなわちスケジューリング型のチャネルである場合(ステップS1308:NO)、周波数領域信号生成部114は、入力された無線リソース割り当て情報にしたがって、スケジューリング型のチャネルに無線リソースを割り当てる。無線リソースが割り当てられた送信データは送信される(ステップS1312)。

0247

一方、受信された無線アクセス方式を示す情報がマルチキャリア方式である場合(ステップS1304:NO)、切り替え部106は、マルチキャリア方式に切り替える。すなわち、切り替え部106は、入力された拡散されたチップ系列をS/P変換部110に入力する(ステップS1314)。

0248

次に、周波数領域信号生成部114は、送信データが衝突型チャネルであるか否かを判断する(ステップS1316)。

0249

送信データが衝突型チャネルである場合(ステップS1316:YES)、周波数領域信号生成部114は、入力された無線リソース割り当て情報にしたがって、衝突型チャネルに無線リソースを割り当てる。無線リソースが割り当てられた送信データは送信される(ステップS1318)。

0250

一方、送信データが衝突型チャネルでない場合、すなわちスケジューリング型のチャネルである場合(ステップS1316:NO)、周波数領域信号生成部114は、入力された無線リソース割り当て情報にしたがって、スケジューリング型のチャネルに無線リソースを割り当てる。無線リソースが割り当てられた送信データは送信される(ステップS1320)。

0251

次に、本実施例にかかる受信装置400の動作について、図37を参照して説明する。

0252

最初に、無線アクセス方式決定部402は、移動局300が使用する無線アクセス方式を決定する。

0253

次に、無線アクセス方式決定部402が、移動局300が使用する無線アクセス方式としてシングルキャリア方式を決定した場合について説明する。

0254

受信特性測定部406は、全てのユーザに対して、各周波数ブロックにおける優先度、例えば受信SINRを計測する(ステップS2602)。優先度は、各ユーザに対して周波数ブロック数分求められる。

0255

次に、ランキング部408は、(ユーザ数×周波数ブロック数)の優先度を高い順にランキングし、ユーザと周波数ブロックとを対応付けて、ランキングテーブルの作成を行う(ステップS2604)。

0256

各ユーザが全帯域を使用してパイロットチャネルを送信した場合、ランキングテーブルのランクはユーザ数×周波数ブロック数だけある。各ユーザがパイロットを送信する周波数帯域が異なる場合には、ユーザがパイロットチャネルを送信しない周波数ブロックに対応するランクはない。例えば、あるユーザが8個の周波数ブロックのうち、5個の周波数ブロックでパイロットチャネルを送信した場合、3個の周波数ブロックに対応するランクはない。

0257

次に、周波数ブロック割り当て部410は、高い優先度から、その優先度に対応するユーザに対応する周波数ブロックの仮割り当てを行う(ステップS2606)。

0258

周波数ブロック割り当て部410は、ランキングテーブルを参照し、ランクの高い順に、対応するユーザに周波数ブロックを割り当てる。例えば、ランキング表によれば、ランクの1位は、ユーザAで対応する周波数ブロックは4である。この場合、周波数ブロック4には、ユーザAでランクが一位であることを示す“A1”が記載される。同様に、周波数ブロック5には、ユーザAでランクが2位であることを示す“A2”が記載される。以下同様にして、周波数ブロックの仮割り当てが行われる。

0259

次に、周波数ブロック割り当て部410は、最大の優先度に対応するユーザに対して仮割り当てされた周波数ブロックのうち、隣接する周波数ブロックの割り当てを行う(ステップS2608)。

0260

帯域を割り当てる場合、ユーザAについては、周波数ブロック3から5と、8が仮割り当てされている。しかし、シングルキャリア方式であるので、ランクの一番高い周波数ブロックを含む帯域を割り当てる。したがって、ユーザAには、周波数ブロック3から5が割り当てられる。

0261

次に、周波数ブロック割り当て部410は、全周波数ブロック割り当て済みか、または全ユーザが割り当て済みであるか否かを判断する(ステップS2610)。

0262

全周波数ブロックが割り当て済みか、または全ユーザが割り当て済みである場合(ステップS2610:YES)、周波数ブロックが割り当てられた各ユーザに対して、送信電力およびMCSを決定する(ステップS2614)。

0263

一方、全周波数ブロックが割り当て済みか、または全ユーザが割り当て済みでない場合(ステップS2610:NO)、周波数ブロック割り当て部410は、割り当てたユーザの優先度を除いて、改めて優先度を高い順にランキングを行い(ステップS2612)、ステップS2606に戻る。

0264

この場合、周波数ブロック3から5には、ユーザAが割り当てられたので、周波数ブロック3から5を除いて、上述した処理と同様の処理を行う。

0265

このように、伝搬路状態のよい帯域をユーザ毎に割り当てる。同一ユーザには、とびとびの帯域とならないように、連続した帯域を割り当てることができる。

0266

次に、本実施例にかかる他の受信装置400の動作について、図38を参照して説明する。ここでは、図30を参照して説明した受信装置400の動作について説明する。上述したように、基地局が受信装置400を備え、移動局が送信装置100を備える。

0267

最初に、無線アクセス方式決定部402は、移動局300が使用する無線アクセス方式を決定する。

0268

ここでは、無線アクセス方式決定部402が、移動局300が使用する無線アクセス方式としてシングルキャリア方式を決定した場合について説明する。

0269

パイロットチャネル生成部は、基地局に対してデータチャネルの希望(最大)送信周波数帯域幅を示す情報、送信を行おうとするデータ量を示す情報およびデータレートを示す情報のうち少なくとも1つの情報を基地局に送信する。また、パイロットチャネル生成部は、パイロット信号の希望最大送信帯域幅を示す情報を通知する(ステップS3802)。

0270

パイロット信号指定部416は、パイロット信号の希望最大送信帯域幅を示す情報に基づいて、移動局が送信するパイロット信号の中心周波数、周波数帯域幅を決定し(ステップS3804)、該決定されたパイロット信号の中心周波数、周波数帯域幅を示す情報を移動局に通知する(ステップS3806)。また、パイロット信号指定部416は、周波数ブロックのIDを送信することにより、決定されたパイロット信号の送信帯域幅および中心周波数を示す情報を対応する各送信装置に通知するようにしてもよい。この場合、パイロット信号指定部416は、複数の周波数ブロックを指定するようにしてもよい。例えば、パイロットチャネル指定部416は、各移動局の最大送信電力、各移動局と基地局との間のパスロスに基づいて、送信帯域幅を指定する。

0271

パイロットチャネル生成部は、通知された中心周波数、周波数帯域幅を示す情報にしたがって、パイロット信号を送信する(ステップS3808)。この場合、パイロット信号生成部は、周波数ホッピング方式により、パイロット信号を送信するようにしてもよい。

0272

次に、受信特性測定部406は、パイロット信号の受信SINRを測定する。また、周波数ブロック割り当て部410は、パイロット信号の受信SINRに基づいて、周波数帯域を割り当てる移動局を決定する。また、MCS決定部414は、周波数帯域を割り当てて送信を許可する移動局に対して、MCSを決定する(ステップS3810)。ここで、送信電力決定部412は、周波数帯域を割り当てて送信を許可する移動局に対して、送信電力を決定するようにしてもよい。

0273

次に、無線リソース割り当て部404は、送信を許可する移動局に対して、データチャネルの割り当て帯域(チャンク、周波数ブロック)を示す情報、使用するMCSを通知する(ステップS3812)。

0274

基地局から送信されたデータチャネルの割り当て帯域を示す情報は無線リソース割り当て制御部122に入力され、MCSの情報は拡散およびチャネルコード部102に入力される。

0275

拡散およびチャネルコード部102は、入力されたMCS情報にしたがって、入力された2値の情報系列に、ターボ符号、畳み込み符号などの誤り訂正符号を適用してチャネル符号化を行い、チャネル符号化されたデータを変調する。

0276

周波数領域信号生成部114は、割り当てられた帯域幅に応じて、データサイズを決定する。ユーザID、MCS、新規再送区分、データサイズを示す情報は、制御チャネルに多重される。その結果、送信フレームが生成される(ステップS3814)。

0277

次に、移動局はデータチャネルの送信を行う(ステップS3816)。

0278

移動局から送信されたデータチャネルは、基地局で復調復号が行われる(ステップS3818)。

0279

基地局は、データチャネルの復調・復号結果に基づいて、ACK/NACKを送信する。

0280

本発明にかかる送信装置、受信装置および移動通信システム並びに送信制御方法は、パケット伝送を行う移動通信システムに適用できる。

図面の簡単な説明

0281

VSCRF−CDMA方式の送信機に使用される拡散部を示すブロック図である。
移動局の送信信号の周波数スペクトラムの一例を示す図である。
移動局の送信信号の周波数スペクトラムの一例を示す図である。
シングルキャリア伝送を行う送信機を示す部分ブロック図である。
マルチキャリア伝送を行う送信機を示す部分ブロック図である。
移動局の送信信号の周波数スペクトラムの一例を示す図である。
移動局の送信信号の周波数スペクトラムの一例を示す図である。
セルラ環境を示す説明図である。
ローカルエリア環境を示す説明図である。
本発明の一実施例にかかる送信装置を示す部分ブロック図である。
シングルキャリア方式とマルチキャリア方式との切り替え方法を示す説明図である。
シングルキャリア方式とマルチキャリア方式との切り替え方法を示す説明図である。
シングルキャリア方式とマルチキャリア方式との切り替え方法を示す説明図である。
上りリンクの伝搬路状態測定用信号の送信方法を示す説明図である。
データチャネルおよびパイロット信号の希望最大送信帯域幅の通知を示す説明図である。
最大送信電力で送信した場合に予測される伝搬路状態測定用信号の受信SINRを示す説明図である。
データチャネルの割り当てが無く、伝搬路状態測定用信号のみを送信する場合における送信電力制御を示す説明図である。
データチャネルの割り当てがある場合における送信電力制御示す説明図である。
データチャネルの割り当てがある場合における伝搬路状態測定用信号の送信電力制御の一例を示す説明図である。
データチャネルの割り当てがある場合における伝搬路状態測定用信号の送信電力制御の一例を示す説明図である。
共有データチャネルのスケジューリングを示す説明図である。
共有データチャネルのスケジューリングを示す説明図である。
他の移動局からの干渉を示す説明図である。
干渉電力の変動を示す説明図である。
干渉電力の変動を示す説明図である。
共有データチャネルのスケジューリングを示す説明図である。
共有データチャネルのスケジューリングを示す説明図である。
共有データチャネルのスケジューリングを示す説明図である。
本発明の一実施例にかかる送信装置における無線リソースの割り当てを示す説明図である。
本発明の一実施例にかかる送信装置における無線リソースの割り当てを示す説明図である。
本発明の一実施例にかかる送信装置における無線リソースの割り当てを示す説明図である。
本発明の一実施例にかかる受信装置を示す部分ブロック図である。
本発明の一実施例にかかる受信装置を示す部分ブロック図である。
本発明の一実施例にかかる受信装置における、各移動局の送信するパイロット信号の受信SINRの測定を示す説明図である。
本発明の一実施例にかかる受信装置における、各移動局の送信するパイロット信号の受信SINRの測定を示す説明図である。
本発明の一実施例にかかる受信装置における、移動局に対するデータチャネルの送信のための周波数帯域の割り当てを示す説明図である。
本発明の一実施例にかかる受信装置における、移動局に対するデータチャネルの送信のための周波数帯域の割り当てを示す説明図である。
本発明の一実施例にかかる受信装置における、移動局に対するデータチャネルの送信のための周波数帯域の割り当てを示す説明図である。
本発明の一実施例にかかる受信装置における、移動局に対するデータチャネルの送信のための周波数帯域の割り当てを示す説明図である。
本発明の一実施例にかかる受信装置における、移動局に対するデータチャネルの送信のための周波数帯域の割り当てを示す説明図である。
周波数帯域の再割り当てを示す説明図である。
送信電力の決定を示す説明図である。
送信電力の決定を示す説明図である。
送信電力の決定を示す説明図である。
送信電力の決定を示す説明図である。
本発明の一実施例にかかる受信装置における、送信を許可した移動局に対するデータチャネル送信時のMCSの指定を示す説明図である。
本発明の一実施例にかかる受信装置を示す部分ブロック図である。
本発明の一実施例にかかる受信装置における、各移動局のパイロット信号の中心周波数と帯域幅の指定を示す説明図である。
本発明の一実施例にかかる受信装置における、各移動局のパイロット信号の中心周波数と帯域幅の指定を示す説明図である。
本発明の一実施例にかかる受信装置における、各移動局のパイロット信号の中心周波数と帯域幅の指定を示す説明図である。
本発明の一実施例にかかる受信装置における、各移動局のパイロット信号の送信帯域の割り当てを示す説明図である。
本発明の一実施例にかかる受信装置における、各移動局の送信するパイロット信号の受信SINRの測定を示す説明図である。
本発明の一実施例にかかる受信装置における、送信を許可した移動局に対するデータチャネル送信時のMCSの指定を示す説明図である。
本発明の一実施例にかかる送信装置の動作を示すフローチャートである。
本発明の一実施例にかかる受信装置の動作を示すフローチャートである。
本発明の一実施例にかかる移動通信システムの動作を示すフロー図である。

符号の説明

0282

1拡散部
2符号乗算部
3移相部
30、40、100送信装置
200、2001、2002、2003、2004、2005、2006基地局
300移動局
400 受信装置

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ