図面 (/)

技術 長さ測定装置、長さ測定方法および長さ測定用コンピュータプログラム

出願人 ニッテツ北海道制御システム株式会社新日鐵住金株式会社パルステック工業株式会社
発明者 阿閉信雄久保三敏藤沢淳一佐藤達也富田一臣高井利久
出願日 2005年10月11日 (14年8ヶ月経過) 出願番号 2005-296737
公開日 2007年4月26日 (13年2ヶ月経過) 公開番号 2007-107927
状態 特許登録済
技術分野 光学的手段による測長装置 画像処理 イメージ分析
主要キーワード 各測定情報 量測定情報 丸棒体 Y座標 微小エリア 測定対象空間内 各支持台 測定基準位置
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2007年4月26日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (20)

課題

測定対象物における各端部を撮像する撮像装置厳格位置決めして配置する必要がないとともに、撮像装置に対する測定対象物の端面の向きに関わらず測定対象物の長さを精度よく測定することを可能にする。

解決手段

次元形状測定装置20A,20Bにおける各座標原点間のワークWKの軸線方向に沿った距離を基準距離L0として記憶しておくとともに、ワークWKの軸線に直交する基準面Pka,Pkbを定義する。次に、3次元形状測定装置20A,20BによりワークWKの端面Sa,Sbを含む各端部を測定し、同端面Sa,Sbを表す平面Pwa,Pwbを定義するとともに、同平面Pka,Pkbを用いて基準面Pka,Pkbに平行な測定用平面Pma,Pmbを定義する。そして、基準距離L0から測定用平面Pma,Pmbと前記各座標原点との距離を減算してワークWKの長さLを計算する。

概要

背景

一般に、圧延加工などにより柱状または管状に成形された長尺材は、切断加工により所定の長さに切断されて製品となる。この場合、切断された長尺状の製品の長さを測定して同製品の長さが所定の長さ、すなわち製品仕様規格内であるか否かが検査される。このような製品の長さの検査における長さ測定装置として、例えば下記特許文献1に示されているようなCCD(charge-coupled-device)を用いた装置が知られている。
特開平6−18228号公報

特許文献1に記載の長さ測定装置においては、圧延機により圧延された後、所定の長さに切断された長尺状の製品の先端部を材料揃えストッパーに当接させて位置決めし、位置決めされた製品の先端部および後端部の上方にそれぞれ配置されたCCDカメラによって同製品の先端部および後端部を撮像している。この場合、各CCDカメラには、それぞれ製品の先端部および後端部を照らす照明が併設されており、各CCDカメラは、製品の先端部および後端部からの各反射光受光して、光量に応じた電気信号を各画素ごとに画像処理装置に出力する。画像処理装置は、各CCDカメラから各画素ごとに出力された電気信号に基づいて製品の先端部および後端部の形状を表す2次元形状データを生成し同製品の先端部および後端部の各端部を検出して製品の長さを測定している。

しかしながら、このようなCCDカメラを用いた長さ測定装置においては、測定対象物(製品)の先端部および後端部における各端部を正確に検出するために、CCDカメラの受光面が測定対象物の各端部における各端面に対して直交するようにCCDカメラを配置しなければならない。このため、CCDカメラの配置位置が狭い範囲に限定される。このCCDカメラの配置作業は煩雑な作業であるとともに、定期的にCCDカメラの配置位置を校正する作業も必要であるという問題がある。また、画像処理装置によって生成される測定対象物の各端部の形状を表す画像データは測定対象物の外周を表す2次元画像データであるため、測定対象物の各端部の形状が曲がっている、または同各端部における端面が測定対象物の軸方向に対して傾いている場合には、CCDカメラの受光面に対する測定対象物の向きによって異なる端面形状の画像データが検出され、精度よく測定対象物の長さを測定することができないという問題があった。

概要

測定対象物における各端部を撮像する撮像装置厳格に位置決めして配置する必要がないとともに、撮像装置に対する測定対象物の端面の向きに関わらず測定対象物の長さを精度よく測定することを可能にする。3次元形状測定装置20A,20Bにおける各座標原点間のワークWKの軸線方向に沿った距離を基準距離L0として記憶しておくとともに、ワークWKの軸線に直交する基準面Pka,Pkbを定義する。次に、3次元形状測定装置20A,20BによりワークWKの端面Sa,Sbを含む各端部を測定し、同端面Sa,Sbを表す平面Pwa,Pwbを定義するとともに、同平面Pka,Pkbを用いて基準面Pka,Pkbに平行な測定用平面Pma,Pmbを定義する。そして、基準距離L0から測定用平面Pma,Pmbと前記各座標原点との距離を減算してワークWKの長さLを計算する。

目的

本発明は上記問題に対処するためなされたもので、その目的は、測定対象物における各端部を撮像する撮像装置を厳格に位置決めして配置する必要がないとともに、測定対象物における各端部の形状が曲がっている、または同各端部における端面が測定対象物の軸方向に対して傾いている場合であっても撮像装置に対する同端面の向きに関わらず測定対象物の長さを精度よく測定することができる長さ測定装置、長さ測定方法および長さ測定用コンピュータプログラムを提供する

効果

実績

技術文献被引用数
2件
牽制数
2件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

測定対象物の長さを測定する長さ測定装置において、測定対象物を支持する支持手段と、測定対象物に向けて光を照射して同測定対象物からの反射光を用いて、同測定対象物における長さ測定の対象となる端面を含む端部を少なくとも含む測定対象物の表面の3次元形状を測定する3次元形状測定装置と、前記支持手段に支持される測定対象物における長さ測定の対象となる端面間の軸線と直交する平面を基準面として定義する基準面定義手段と、前記3次元形状測定装置の座標系内における所定の第1測定基準位置と、同3次元形状測定装置により測定される測定対象物の端部の反対側の端部における端面の位置を特定するための所定の第2測定基準位置との測定対象物の前記軸線に沿った距離を基準距離として記憶する記憶手段と、前記3次元形状測定装置によって測定された測定対象物の3次元表面形状を表す3次元形状データ群を生成する3次元形状データ群生成手段と、前記生成された3次元形状データ群を用いて、前記測定対象物における長さ測定の対象となる端面を定義する端面定義手段と、前記端面定義手段により定義された端面内の一点を含み、かつ前記基準面に平行な測定用平面を定義する測定用平面定義手段と、前記測定用平面定義手段により定義された測定用平面と前記記憶装置に記憶された基準距離とを用いて、測定対象物の長さを計算する長さ計算手段とを備えたことを特徴とする長さ測定装置。

請求項2

請求項1に記載の長さ測定装置において、前記第1測定基準位置は、前記3次元形状測定装置の座標系における座標原点であり、前記第2測定基準位置は、前記3次元形状測定装置により測定される測定対象物の端部とは反対側の端部を特定の位置に位置決めする位置である長さ測定装置。

請求項3

測定対象物の長さを測定する長さ測定装置において、測定対象物を支持する支持手段と、測定対象物に向けてそれぞれ光を照射して同測定対象物からの各反射光を用いて、同測定対象物における長さ測定の対象となる2つの端面をそれぞれ含む各端部をそれぞれ少なくとも含む測定対象物の表面の3次元形状をそれぞれ測定する2つの3次元形状測定装置と、前記支持手段に支持される測定対象物における長さ測定の対象となる2つの端面間の軸線と直交する平面を基準面として定義する基準面定義手段と、前記2つの3次元形状測定装置のうち、一方の3次元形状測定装置の座標系内における所定の第1測定基準位置と、他方の3次元形状測定装置の座標系内における所定の第2測定基準位置との測定対象物の前記軸線に沿った距離を基準距離として記憶する記憶手段と、前記2つの3次元形状測定装置によってそれぞれ測定された測定対象物の3次元表面形状を表す3次元形状データ群をそれぞれ生成する3次元形状データ群生成手段と、前記それぞれ生成された各3次元形状データ群を用いて、前記測定対象物における長さ測定の対象となる2つの端面をそれぞれ定義する端面定義手段と、前記端面定義手段により定義された各端面内の一点を含み、かつ前記基準面に平行な測定用平面をそれぞれ定義する測定用平面定義手段と、前記一方の3次元形状測定装置に対応する測定用平面と前記第1測定基準位置との距離を第1距離として計算するとともに、前記他方の3次元形状測定装置に対応する測定用平面と前記第2測定基準位置との距離を第2距離として計算して、前記記憶装置に記憶された基準距離から前記第1距離および第2距離を減算することにより測定対象物の長さを計算する長さ計算手段とを備えたことを特徴とする長さ測定装置。

請求項4

請求項3に記載の長さ測定装置において、前記第1測定基準位置は、前記一方の3次元形状測定装置の座標系における座標原点であり、前記第2測定基準位置は、前記他方の3次元形状測定装置の座標系における座標原点である長さ測定装置。

請求項5

請求項1ないし請求項4のうちのいずれか1つに記載の長さ測定装置において、前記端面定義手段により定義された各端面において前記測定用平面に含まれる一点は、同端面における中心点、同端面における重心点、同端面に面する3次元形状測定装置に対して最も近い点および同端面に面する3次元形状測定装置に対して最も遠い点のうちのいずれか1つである長さ測定装置。

請求項6

請求項1ないし請求項4のうちのいずれか1つに記載の長さ測定装置において、さらに、前記測定用平面定義手段は、前記3次元形状データ群のうち測定対象物の端部における外周面表面形状を表す3次元データを用いて、同測定対象物における中心軸を計算する中心軸計算手段と、前記端面定義手段により定義された端面と中心軸計算手段により計算された中心軸との交点を前記測定対象物の端面における中心点として計算する端面中心計算手段とを備え、前記端面中心計算手段にて計算された端面の中心点を含むとともに前記基準面に平行な平面を測定用平面として定義する長さ測定装置。

請求項7

請求項1ないし請求項6のうちのいずれか1つに記載の長さ測定装置において、さらに、前記端面定義手段により定義された端面の前記基準面に対する角度が所定の範囲内であるとき、測定対象物の長さ測定が可能であると判定する長さ測定可否判定手段を有し、前記長さ計算手段は、前記長さ測定可否判定手段により測定対象物の長さ測定が可能と判定されたとき、同測定対象物の長さを計算する長さ測定装置。

請求項8

測定対象物の長さを測定する長さ測定装置において、測定対象物を支持する支持手段と、測定対象物に向けて光を照射して同測定対象物からの反射光を用いて、同測定対象物における長さ測定の対象となる端面を含む端部を少なくとも含む測定対象物の表面の3次元形状を測定する3次元形状測定装置と、前記支持手段に支持される測定対象物における長さ測定の対象となる端面間の軸線と直交する平面を基準面として定義する基準面定義手段と、前記3次元形状測定装置の座標系内における所定の第1測定基準位置と、同3次元形状測定装置により測定される測定対象物の端部の反対側の端部における端面の位置を特定するための所定の第2測定基準位置との測定対象物の前記軸線に沿った距離を基準距離として記憶する記憶手段と、前記3次元形状測定装置によって測定された前記測定対象物の3次元表面形状を表す3次元形状データ群を生成する3次元形状データ群生成手段と、前記生成された3次元形状データ群を用いて、前記測定対象物における長さ測定の対象となる端面を定義する端面定義手段と、前記端面定義手段により定義された端面内の一点を含み、かつ前記基準面に平行な測定用平面を定義する測定用平面定義手段と、前記3次元形状データ群のうち測定対象物における端部の表面形状を表す3次元データを用いて、同測定対象物における端部の曲がりの有無を判定する曲がり判定手段と、前記曲がり判定手段により測定対象物における端部の曲がりが有りと判定されたとき、前記測定用平面定義手段にて定義された測定用平面を、前記測定対象物における端部が直線状である場合における測定用平面に補正する測定用平面補正手段と、前記測定用平面定義手段により定義された測定用平面または前記測定用平面補正手段により補正した測定用平面と前記記憶装置に記憶された基準距離とを用いて、測定対象物の長さを計算する長さ計算手段とを備えたことを特徴とする長さ測定装置。

請求項9

請求項1ないし請求項8のうちのいずれか1つに記載の長さ測定装置において、さらに、前記支持手段に支持された複数の測定対象物に対応して生成される3次元形状データ群を、同複数の測定対象ごとに分類する3次元形状データ分類手段を有し、前記端面定義手段は、前記複数の測定対象物ごとに長さ測定の対象となる端面を定義し、前記測定用平面定義手段は、前記複数の測定対象物ごとに測定用平面を定義し、前記長さ計算手段は、前記複数の測定対象物ごとに測定対象物の長さを計算する長さ測定装置。

請求項10

測定対象物の長さを測定する長さ測定方法において、測定対象物を支持する支持手段と、物体の表面の3次元形状を測定する3次元形状測定装置とを用意し、前記3次元形状測定装置の座標系内における所定の第1測定基準位置と、同3次元形状測定装置により測定される測定対象物の端部の反対側の端部における端面の位置を特定するための所定の第2測定基準位置との測定対象物の前記軸線に沿った距離を基準距離として記憶手段に記憶しておくとともに、前記支持手段に支持される測定対象物における長さ測定の対象となる端面間の軸線と直交する平面を基準面として定義しておき、前記3次元形状測定装置の測定対象空間内に前記支持手段に支持された測定対象物における長さ測定の対象となる端面を含む端部を少なくとも配置した状態で、前記3次元形状測定装置に前記支持手段に支持された測定対象物に向けて光を照射させて同測定対象物からの反射光を用いて前記長さ測定の対象となる端面を含む端部を少なくとも含む測定対象物の表面の3次元形状を測定させ、同測定対象物の3次元表面形状を表す3次元形状データ群を生成する3次元形状データ群生成ステップと、前記生成された3次元形状データ群を用いて、前記測定対象物における長さ測定の対象となる端面を定義する端面定義ステップと、前記端面定義ステップにより定義された端面内の一点を含み、かつ前記基準面に平行な測定用平面を定義する測定用平面定義ステップと、前記測定用平面定義ステップにより定義された測定用平面と前記記憶装置に記憶された基準距離とを用いて、測定対象物の長さを計算する長さ計算ステップとを含むことを特徴とする長さ測定方法。

請求項11

請求項10に記載の長さ測定方法において、前記第1測定基準位置は、前記3次元形状測定装置の座標系における座標原点であり、前記第2測定基準位置は、前記3次元形状測定装置により測定される測定対象物の端部とは反対側の端部を特定の位置に位置決めする位置である長さ測定方法。

請求項12

測定対象物の長さを測定する長さ測定方法において、測定対象物を支持する支持手段と、物体の表面の3次元形状を測定する2つの3次元形状測定装置とを用意し、前記2つの3次元形状測定装置のうち、一方の3次元形状測定装置の座標系内における所定の第1測定基準位置と、他方の3次元形状測定装置の座標系内における所定の第2測定基準位置との測定対象物の前記軸線に沿った距離を基準距離として記憶手段に記憶しておくとともに、前記支持手段に支持される測定対象物における長さ測定の対象となる端面間の軸線と直交する平面を基準面として定義しておき、前記2つの3次元形状測定装置の各測定対象空間内にそれぞれ前記支持手段に支持された測定対象物における長さの測定の対象となる2つの端面をそれぞれ含む各端部を少なくとも配置した状態で、前記2つの3次元形状測定装置に前記支持手段に支持された測定対象物に向けてそれぞれ光を照射させて同測定対象物からの各反射光を用いて前記長さ測定の対象となる2つの端面をそれぞれ含む各端部を少なくとも含む測定対象物の表面の3次元形状をそれぞれ測定させ、同測定対象物の各3次元表面形状を表す3次元形状データ群をそれぞれ生成する3次元形状データ群生成ステップと、前記それぞれ生成された各3次元形状データ群を用いて、前記測定対象物における長さ測定の対象となる2つの端面をそれぞれ定義する端面定義ステップと、前記端面定義ステップによりそれぞれ定義された各端面内の一点を含み、かつ前記基準面に平行な測定用平面をそれぞれ定義する測定用平面定義ステップと、前記一方の3次元形状測定装置に対応する測定用平面と前記第1測定基準位置との距離を第1距離として計算するとともに、前記他方の3次元形状測定装置に対応する測定用平面と前記第2測定基準位置との距離を第2距離として計算して、前記記憶装置に記憶された基準距離から前記第1距離および第2距離を減算することにより測定対象物の長さを計算する長さ計算ステップとを含むことを特徴とする長さ測定方法。

請求項13

請求項12に記載の長さ測定方法において、前記第1測定基準位置は、前記一方の3次元形状測定装置の座標系における座標原点であり、前記第2測定基準位置は、前記他方の3次元形状測定装置の座標系における座標原点である長さ測定方法。

請求項14

請求項10ないし請求項14のうちのいずれか1つに記載の長さ測定方法において、前記端面定義ステップにより定義された各端面において前記測定用平面に含まれる一点は、同端面における中心点、同端面における重心点、同端面に面する3次元形状測定装置に対して最も近い点および同端面に面する3次元形状測定装置に対して最も遠い点のうちのいずれか1つである長さ測定方法。

請求項15

請求項10ないし請求項14のうちのいずれか1つに記載の長さ測定方法において、さらに、前記測定用平面定義ステップは、前記3次元形状データ群のうち測定対象物の端部における外周面の表面形状を表す3次元データを用いて、同測定対象物における中心軸を計算する中心軸計算ステップと、前記端面定義ステップにより定義された端面と中心軸計算ステップにより計算された中心軸との交点を前記測定対象物の端面における中心点として計算する端面中心計算ステップとを備え、前記端面中心計算ステップにて計算された端面の中心点を含むとともに前記基準面に平行な平面を測定用平面として定義する長さ測定方法。

請求項16

請求項10ないし請求項15のうちのいずれか1つに記載の長さ測定方法において、さらに、前記端面定義ステップにより定義された端面の前記基準面に対する角度が所定の範囲内であるとき、測定対象物の長さ測定が可能であると判定する長さ測定可否判定ステップを有し、前記長さ計算ステップは、前記長さ測定可否判定ステップにより測定対象物の長さ測定が可能と判定されたとき、同測定対象物の長さを計算する長さ測定方法。

請求項17

測定対象物の長さを測定する長さ測定方法において、測定対象物を支持する支持手段と、物体の表面の3次元形状を測定する3次元形状測定装置とを用意し、前記3次元形状測定装置の座標系内における所定の第1測定基準位置と、同3次元形状測定装置により測定される測定対象物の端部の反対側の端部における端面の位置を特定するための所定の第2測定基準位置との測定対象物の前記軸線に沿った距離を基準距離として記憶手段に記憶しておくとともに、前記支持手段に支持される測定対象物における長さ測定の対象となる端面間の軸線と直交する平面を基準面として定義しておき、前記3次元形状測定装置の測定対象空間内に前記支持手段に支持された測定対象物における長さ測定の対象となる端面を含む端部を少なくとも配置した状態で、前記3次元形状測定装置に前記支持手段に支持された測定対象物に向けて光を照射させて同測定対象物からの反射光を用いて前記長さ測定の対象となる端面を含む端部を少なくとも含む測定対象物の表面の3次元形状を測定させ、同測定対象物の3次元表面形状を表す3次元形状データ群を生成する3次元形状データ群生成ステップと、前記生成された3次元形状データ群を用いて、前記測定対象物における長さ測定の対象となる端面を定義する端面定義ステップと、前記端面定義ステップにより定義された端面内の一点を含み、かつ前記基準面に平行な測定用平面を定義する測定用平面定義ステップと、前記3次元形状データ群のうち測定対象物における端部の表面形状を表す3次元データを用いて、同測定対象物における端部の曲がりの有無を判定する曲がり判定ステップと、前記曲がり判定ステップにより測定対象物における端部の曲がりが有りと判定されたとき、前記測定用平面定義ステップにて定義された測定用平面を、前記測定対象物における端部が直線状である場合における測定用平面に補正する測定用平面補正ステップと、前記測定用平面定義ステップにより定義された測定用平面または前記測定用平面補正ステップにより補正した測定用平面と前記記憶装置に記憶された基準距離とを用いて、測定対象物の長さを計算する長さ計算ステップとを含むことを特徴とする長さ測定方法。

請求項18

請求項10ないし請求項17のうちのいずれか1つに記載の長さ測定方法において、さらに、前記支持手段に支持された複数の測定対象物に対応して生成される3次元形状データ群を、同複数の測定対象ごとに分類する3次元形状データ分類ステップを有し、前記端面定義ステップは、前記複数の測定対象物ごとに長さ測定の対象となる端面を定義し、前記測定用平面定義ステップは、前記複数の測定対象物ごとに測定用平面を定義し、前記長さ計算ステップは、前記複数の測定対象物ごとに測定対象物の長さを計算する長さ測定方法。

請求項19

測定対象物を支持する支持手段と、物体の表面の3次元形状を測定する3次元形状測定装置と、記憶装置を備えるとともにコンピュータプログラムを実行するコンピュータ部とを備えた測定対象物の長さを測定する長さ測定装置に適用されるコンピュータプログラムであって、前記コンピュータ部に、前記3次元形状測定装置の座標系内における所定の第1測定基準位置と、同3次元形状測定装置により測定される測定対象物の端部の反対側の端部における端面の位置を特定するための所定の第2測定基準位置との測定対象物の前記軸線に沿った距離を基準距離として前記記憶装置に記憶させ、前記支持手段に支持される測定対象物における長さ測定の対象となる端面間の軸線と直交する平面を基準面として定義させ、前記3次元形状測定装置の測定対象空間内に前記支持手段に支持された測定対象物における長さ測定の対象となる端面を含む端部を少なくとも配置した状態で、前記3次元形状測定装置に前記支持手段に支持された測定対象物に向けて光を照射させて同測定対象物からの反射光を用いて前記長さ測定の対象となる端面を含む端部を少なくとも含む測定対象物の表面の3次元形状を測定させ、同測定対象物の3次元表面形状を表す3次元形状データ群を生成させ、前記生成された3次元形状データ群を用いて、前記測定対象物における長さ測定の対象となる端面を定義させ、前記定義させた端面内の一点を含み、かつ前記基準面に平行な測定用平面を定義させ、前記定義させた測定用平面と前記記憶装置に記憶させた基準距離とを用いて、測定対象物の長さを計算させるようにした長さ測定用コンピュータプログラム。

請求項20

請求項19に記載の長さ測定用コンピュータプログラムにおいて、前記第1測定基準位置は、前記3次元形状測定装置の座標系における座標原点であり、前記第2測定基準位置は、前記3次元形状測定装置により測定される測定対象物の端部とは反対側の端部を特定の位置に位置決めする位置である長さ測定用コンピュータプログラム。

請求項21

測定対象物を支持する支持手段と、物体の表面の3次元形状を測定する2つの3次元形状測定装置と、記憶装置を備えるとともにコンピュータプログラムを実行するコンピュータ部とを備えた測定対象物の長さを測定する長さ測定装置に適用されるコンピュータプログラムであって、前記コンピュータ部に、前記2つの3次元形状測定装置のうち、一方の3次元形状測定装置の座標系内における所定の第1測定基準位置と、他方の3次元形状測定装置の座標系内における所定の第2測定基準位置との測定対象物の前記軸線に沿った距離を基準距離として前記記憶装置に記憶させ、前記支持手段に支持される測定対象物における長さ測定の対象となる端面間の軸線と直交する平面を基準面定義させ、前記2つの3次元形状測定装置の各測定対象空間内にそれぞれ前記支持手段に支持された測定対象物における長さの測定の対象となる2つの端面をそれぞれ含む各端部を少なくとも配置した状態で、前記2つの3次元形状測定装置に前記支持手段に支持された測定対象物に向けてそれぞれ光を照射させて同測定対象物からの各反射光を用いて前記長さ測定の対象となる2つの端面をそれぞれ含む各端部を少なくとも含む測定対象物の表面の3次元形状をそれぞれ測定させ、同測定対象物の各3次元表面形状を表す3次元形状データ群をそれぞれ生成させ、前記それぞれ生成された各3次元形状データ群を用いて、前記測定対象物における長さ測定の対象となる2つの端面をそれぞれ定義させ、前記それぞれ定義させた各端面内の一点を含み、かつ前記基準面に平行な測定用平面をそれぞれ定義させ、前記一方の3次元形状測定装置に対応する測定用平面と前記第1測定基準位置との距離を第1距離として計算させるとともに、前記他方の3次元形状測定装置に対応する測定用平面と前記第2測定基準位置との距離を第2距離として計算させて、前記記憶装置に記憶された基準距離から前記第1距離および第2距離を減算させることにより測定対象物の長さを計算させるようにした長さ測定用コンピュータプログラム。

請求項22

請求項21に記載の長さ測定用コンピュータプログラムにおいて、前記第1測定基準位置は、前記一方の3次元形状測定装置の座標系における座標原点であり、前記第2測定基準位置は、前記他方の3次元形状測定装置の座標系における座標原点である長さ測定用コンピュータプログラム。

請求項23

請求項19ないし請求項22のうちのいずれか1つに記載の長さ測定用コンピュータプログラムにおいて、前記測定用平面を定義するために用いた各端面内の一点は、同端面における中心点、同端面における重心点、同端面に面する3次元形状測定装置に対して最も近い点および同端面に面する3次元形状測定装置に対して最も遠い点のうちのいずれか1つである長さ測定用コンピュータプログラム。

請求項24

請求項19ないし請求項22のうちのいずれか1つに記載の長さ測定用コンピュータプログラムにおいて、前記コンピュータ部に、さらに、前記3次元形状データ群のうち測定対象物の端部における外周面の表面形状を表す3次元データを用いて、同測定対象物における中心軸を計算させ、前記定義させた端面と前記計算させた中心軸との交点を前記測定対象物の端面における中心点として計算させ、前記計算させた端面の中心点を含むとともに前記基準面に平行な平面を測定用平面として定義させるようにした長さ測定用コンピュータプログラム。

請求項25

請求項19ないし請求項24のうちのいずれか1つに記載の長さ測定用コンピュータプログラムにおいて、前記コンピュータ部に、さらに、前記定義させた端面の前記基準面に対する角度が所定の範囲内であるとき、測定対象物の長さ測定が可能であると判定させ、測定対象物の長さ測定が可能と判定されたとき、同測定対象物の長さを計算するようにした長さ測定用コンピュータプログラム。

請求項26

測定対象物を支持する支持手段と、物体の表面の3次元形状を測定する3次元形状測定装置と、記憶装置を備えるとともにコンピュータプログラムを実行するコンピュータ部とを備えた測定対象物の長さを測定する長さ測定装置に適用されるコンピュータプログラムであって、前記コンピュータ部に、前記3次元形状測定装置の座標系内における所定の第1測定基準位置と、同3次元形状測定装置により測定される測定対象物の端部の反対側の端部における端面の位置を特定するための所定の第2測定基準位置との測定対象物の前記軸線に沿った距離を基準距離として前記記憶装置に記憶させ、前記支持手段に支持される測定対象物における長さ測定の対象となる端面間の軸線と直交する平面を基準面として定義させ、前記3次元形状測定装置の測定対象空間内に前記支持手段に支持された測定対象物における長さ測定の対象となる端面を含む端部を少なくとも配置した状態で、前記3次元形状測定装置に前記支持手段に支持された測定対象物に向けて光を照射させて同測定対象物からの反射光を用いて前記長さ測定の対象となる端面を含む端部を少なくとも含む測定対象物の表面の3次元形状を測定させ、同測定対象物の3次元表面形状を表す3次元形状データ群を生成させ、前記生成された3次元形状データ群を用いて、前記測定対象物における長さ測定の対象となる端面を定義させ、前記定義させた端面内の一点を含み、かつ前記基準面に平行な測定用平面を定義させ、前記3次元形状データ群のうち測定対象物における端部の表面形状を表す3次元データを用いて、同測定対象物における端部の曲がりの有無を判定させ、測定対象物における端部の曲がりが有りと判定されたとき、前記定義させた測定用平面を、前記測定対象物における端部が直線状である場合における測定用平面に補正させ、前記定義させた測定用平面または前記補正させた測定用平面と前記記憶装置に記憶させた基準距離とを用いて、測定対象物の長さを計算するようにした長さ測定用コンピュータプログラム。

請求項27

請求項19ないし請求項26のうちのいずれか1つに記載の長さ測定コンピュータプログラムにおいて、前記コンピュータ部に、さらに、前記支持手段に支持された複数の測定対象物に対応して生成される3次元形状データ群を、同複数の測定対象ごとに分類させ、前記複数の測定対象物ごとに前記長さ測定の対象となる端面を定義させ、前記複数の測定対象物ごとに前記測定用平面を定義させ、前記複数の測定対象物ごとに測定対象物の長さを計算させるようにした長さ測定コンピュータプログラム。

技術分野

0001

本発明は、測定対象物の長さを画像処理によって測定する長さ測定装置、長さ測定方法および長さ測定用コンピュータプログラムに関する。

背景技術

0002

一般に、圧延加工などにより柱状または管状に成形された長尺材は、切断加工により所定の長さに切断されて製品となる。この場合、切断された長尺状の製品の長さを測定して同製品の長さが所定の長さ、すなわち製品仕様規格内であるか否かが検査される。このような製品の長さの検査における長さ測定装置として、例えば下記特許文献1に示されているようなCCD(charge-coupled-device)を用いた装置が知られている。
特開平6−18228号公報

0003

特許文献1に記載の長さ測定装置においては、圧延機により圧延された後、所定の長さに切断された長尺状の製品の先端部を材料揃えストッパーに当接させて位置決めし、位置決めされた製品の先端部および後端部の上方にそれぞれ配置されたCCDカメラによって同製品の先端部および後端部を撮像している。この場合、各CCDカメラには、それぞれ製品の先端部および後端部を照らす照明が併設されており、各CCDカメラは、製品の先端部および後端部からの各反射光受光して、光量に応じた電気信号を各画素ごとに画像処理装置に出力する。画像処理装置は、各CCDカメラから各画素ごとに出力された電気信号に基づいて製品の先端部および後端部の形状を表す2次元形状データを生成し同製品の先端部および後端部の各端部を検出して製品の長さを測定している。

0004

しかしながら、このようなCCDカメラを用いた長さ測定装置においては、測定対象物(製品)の先端部および後端部における各端部を正確に検出するために、CCDカメラの受光面が測定対象物の各端部における各端面に対して直交するようにCCDカメラを配置しなければならない。このため、CCDカメラの配置位置が狭い範囲に限定される。このCCDカメラの配置作業は煩雑な作業であるとともに、定期的にCCDカメラの配置位置を校正する作業も必要であるという問題がある。また、画像処理装置によって生成される測定対象物の各端部の形状を表す画像データは測定対象物の外周を表す2次元画像データであるため、測定対象物の各端部の形状が曲がっている、または同各端部における端面が測定対象物の軸方向に対して傾いている場合には、CCDカメラの受光面に対する測定対象物の向きによって異なる端面形状の画像データが検出され、精度よく測定対象物の長さを測定することができないという問題があった。

0005

本発明は上記問題に対処するためなされたもので、その目的は、測定対象物における各端部を撮像する撮像装置厳格に位置決めして配置する必要がないとともに、測定対象物における各端部の形状が曲がっている、または同各端部における端面が測定対象物の軸方向に対して傾いている場合であっても撮像装置に対する同端面の向きに関わらず測定対象物の長さを精度よく測定することができる長さ測定装置、長さ測定方法および長さ測定用コンピュータプログラムを提供することにある。

0006

上記目的を達成するため、本発明の特徴は、測定対象物の長さを測定する長さ測定装置において、測定対象物を支持する支持手段と、測定対象物に向けて光を照射して同測定対象物からの反射光を用いて、同測定対象物における長さ測定の対象となる端面を含む端部を少なくとも含む測定対象物の表面の3次元形状を測定する3次元形状測定装置と、支持手段に支持される測定対象物における長さ測定の対象となる端面間の軸線と直交する平面を基準面として定義する基準面定義手段と、3次元形状測定装置の座標系内における所定の第1測定基準位置と、同3次元形状測定装置により測定される測定対象物の端部の反対側の端部における端面の位置を特定するための所定の第2測定基準位置との測定対象物の前記軸線に沿った距離を基準距離として記憶する記憶手段と、3次元形状測定装置によって測定された前記測定対象物の3次元表面形状を表す3次元形状データ群を生成する3次元形状データ群生成手段と、前記生成された3次元形状データ群を用いて、測定対象物における長さ測定の対象となる端面を定義する端面定義手段と、端面定義手段により定義された端面内の一点を含み、かつ基準面に平行な測定用平面を定義する測定用平面定義手段と、測定用平面定義手段により定義された測定用平面と記憶装置に記憶された基準距離とを用いて、測定対象物の長さを計算する長さ計算手段とを備えたことにある。

0007

この場合、前記第1測定基準位置は、3次元形状測定装置の座標系における座標原点であり、第2測定基準位置は、3次元形状測定装置により測定される測定対象物の端部とは反対側の端部を特定の位置に位置決めする位置にするとよい。ここで、前記特定の位置とは、例えば、ワークの一端に当接して同ワークを特定の位置に位置決めした場合における同一端の位置である。また、前記第1測定基準位置および第2測定基準位置に代えて、3次元形状測定装置を測定対象物の測定対象となる端面ごとに用意、すなわち、2つの3次元形状測定装置を用意し、第1測定基準位置を一方の3次元形状測定装置の座標系における座標原点とし、第2測定基準位置を他方の3次元形状測定装置の座標系における座標原点としてもよい。

0008

この場合、長さ測定装置における2つの3次元形状測定装置は、測定対象物に向けてそれぞれ光を照射して同測定対象物からの各反射光を用いて同測定対象物における長さ測定の対象となる2つの端面をそれぞれ含む各端部をそれぞれ少なくとも含む測定対象物の表面の3次元形状をそれぞれ測定し、前記基準面定義手段は、支持手段に支持される測定対象物における長さ測定の対象となる端面間の軸線と直交する平面を基準面として定義し、前記記憶手段は、2つの3次元形状測定装置のうち、一方の3次元形状測定装置の座標系内における所定の第1測定基準位置と、他方の3次元形状測定装置の座標系内における所定の第2測定基準位置との測定対象物の前記軸線に沿った距離を基準距離として記憶し、前記3次元形状データ群生成手段は、前記2つの3次元形状測定装置によってそれぞれ測定された測定対象物の3次元表面形状を表す3次元形状データ群をそれぞれ生成し、前記端面定義手段は、それぞれ生成された各3次元形状データ群を用いて、前記測定対象物における長さ測定の対象となる2つの端面をそれぞれ定義し、前記測定用平面定義手段は、端面定義手段により定義された各端面内の一点を含み、かつ基準面に平行な測定用平面をそれぞれ定義し、前記長さ計算手段は、前記一方の3次元形状測定装置に対応する測定用平面と第1測定基準位置との距離を第1距離として計算するとともに、前記他方の3次元形状測定装置に対応する測定用平面と第2測定基準位置との距離を第2距離として計算して、記憶装置に記憶された基準距離から前記第1距離および第2距離を減算することにより測定対象物の長さを計算するようにするとよい。

0009

また、第1測定基準位置および第2測定基準位置が前記のいずれの場合も端面定義手段により定義された各端面において前記測定用平面に含まれる一点を、同端面における中心点、同端面における重心点、同端面に面する3次元形状測定装置に対して最も近い点および同端面に面する3次元形状測定装置に対して最も遠い点のうちのいずれか1つにすればよい。

0010

このように構成した本発明の特徴によれば、記憶装置に予め測定対象物における測定対象となる端面間の軸線に沿って第1測定基準位置と第2測定基準位置との距離を基準距離として記憶している。ここで、第1測定基準位置は3次元形状測定装置の座標系内に存在し、同第1測定基準位置と同3次元形状測定装置により測定される測定対象物の端面の位置とが特定される。また、第2測定基準位置は、測定対象物における測定対象となるもう一方の端面の位置を特定する位置である。そして、前記軸線に直交する基準面と平行な測定用平面を測定対象となる端面に定義し、同測定用平面と基準距離とを用いて測定対象物の長さを計算している。これによれば、測定対象となる端面に対して測定用平面が定義できれば、すなわち、測定対象となる端面を含む測定対象物の端部の表面形状を表す3次元形状データが取得できれば、常に測定対象物の軸線に沿って同測定対象物の長さが測定することができ、3次元形状測定装置の配置位置は限定されない。また、測定用平面は3次元データによって定義されるため、測定対象となる端面の形状および3次元形状測定装置に対する同端面の向きに寄らず一定の平面を定義することができる。これにより、精度の高い測定対象物の長さ測定が可能となる。

0011

また、上記長さ測定装置において、さらに、前記測定用平面定義手段は、3次元形状データ群のうち測定対象物の端部における外周面の表面形状を表す3次元データを用いて、同測定対象物における中心軸を計算する中心軸計算手段と、端面定義手段により定義された端面と中心軸計算手段により計算された中心軸との交点を前記測定対象物の端面における中心点として計算する端面中心計算手段とを備え、端面中心計算手段にて計算された端面の中心点を含むとともに前記基準面に平行な平面を測定用平面として定義するようにしたことにある。これによれば、測定対象である端面が中心軸に対して完全に垂直でない場合や端面が若干曲がっている場合であっても、同端面と測定対象物の中心軸との交点に基づいて測定用平面が定義されるため、同端面における正確な中心点に基づいて測定用平面を定義することができる。

0012

また、本発明の他の特徴は、上記長さ測定装置において、さらに、前記端面定義手段により定義された端面の前記基準面に対する角度が所定の範囲内であるとき、測定対象物の長さ測定が可能であると判定する長さ測定可否判定手段を有し、長さ計算手段は、長さ測定可否判定手段により測定対象物の長さ測定が可能と判定されたとき、同測定対象物の長さを計算するようにしたことにある。これによれば、測定対象である端面が測定対象物の軸線に対して垂直から所定の範囲内の角度でずれている場合のみ、同測定対象物の長さ測定を行うことができ、測定した測定対象物間の長さ比較をより正確に行うことができる。

0013

また、本発明の他の特徴は、上記長さ測定装置において、さらに、3次元形状データ群のうち測定対象物における端部の表面形状を表す3次元データを用いて、同測定対象物における端部の曲がりの有無を判定する曲がり判定手段と、曲がり判定手段により測定対象物における端部の曲がりが有りと判定されたとき、前記測定用平面定義手段にて定義された測定用平面を、前記測定対象物における端部が直線状である場合における測定用平面に補正する測定用平面補正手段とを備え、前記長さ計算手段は、測定用平面定義手段により定義された測定用平面または前記測定用平面補正手段により補正した測定用平面と前記記憶装置に記憶された基準距離とを用いて、測定対象物の長さを計算するようにしたことにある。これによれば、測定対象物における端部が曲がっている場合であっても、同端部の曲がりがなく直線状に形成されている場合における測定対象物の長さを測定することができる。すなわち、同端部が曲がり変形した場合であっても測定対象物本来の長さを測定することができる。

0014

また、本発明の他の特徴は、上記長さ測定装置において、さらに、前記支持手段に支持された複数の測定対象物に対応して生成される3次元形状データ群を、同複数の測定対象ごとに分類する3次元形状データ分類手段を有し、端面定義手段は、前記複数の測定対象物ごとに長さ測定の対象となる端面を定義し、測定用平面定義手段は、前記複数の測定対象物ごとに測定用平面を定義し、長さ計算手段は、前記複数の測定対象物ごとに測定対象物の長さを測定するようにしたことにある。これによれば、複数の測定対象物を支持手段に支持させて、同時に複数の測定対象物の長さ測定を行うことができる。これにより、測定対象物の長さ測定を効率的に行うことができる。

0015

また、本発明は装置の発明として実施できるばかりでなく、方法の発明およびコンピュータプログラムの発明としても実施できるものである。

発明を実施するための最良の形態

0016

以下、本発明に係る長さ測定装置の一実施形態について図面を参照しながら説明する。図1は、本発明の実施形態に係る長さ測定装置の基本構成を示す概略図である。

0017

この長さ測定装置は、丸棒状の測定対象物(以下、「ワーク」という)WKの両端部側をそれぞれ支持する四角柱状の2つの支持台10を備えている。この支持台10は、本発明に係る支持手段に対応する。2つの支持台10は、互いに同一の形状に形成されており、詳しくは図2に示すように、四角柱状に形成された本体部10aの上面に、同本体部10aの長手方向に沿って等間隔に3つの支持部10bが形成されている。これら3つの支持部10bは、それぞれ本体部10aの長手方向に直交する方向にV溝状に形成されており、支持台10上に載置されるワークWKを安定的に支持する。これら2つの支持台10は、後述する3次元形状測定装置20A,20Bの測定対象空間内に互いに平行に配置され、1つのワークWKを2つの支持台10にて水平状態に支持する。なお、本実施形態においては、同時に3つのワークWKの長さ測定を行うことができるように、3つの支持部10bを支持台10上に設けるようにしたが、この支持部10bの数は、同時に測定するワークWKの数に応じて適宜変更するようにすればよい。

0018

これらの支持台10の各斜め上方には、支持台10に向けて異なる位置、具体的には、支持台10上に載置されるワークWKの2つの各端面Sa,Sbに向けてそれぞれ配置された3次元形状測定装置20A,20Bが設けられている。これらの3次元形状測定装置20A,20Bは、光を用いて支持台10上に載置されるワークWKの端面Sa,Sbを含む各端部の3次元形状を測定するもので、同測定結果を表す3次元表面形状測定情報を出力するとともに、同ワークWK表面からの反射光の光量を測定して同測定結果を表す反射光量測定情報を出力する。これらの3次元形状測定装置20A,20Bとしては、光を用いて物体の3次元表面形状を測定して同測定した3次元表面形状を表す信号を出力するとともに、同物体表面からの反射光量を表す信号を出力するものであれば、いかなる3次元形状測定装置をも利用できる。なお、反射光量に代えて物体の反射率または色を識別するものでもよい。本実施形態においては、レーザ光を用いて3角測量法に従って物体の3次元表面形状を測定するとともに、同物体表面からの反射光量を測定するものを簡単に紹介しておく。

0019

この3次元形状測定装置においては、レーザ光源から物体に向けて出射されるレーザ光の進行方向にほぼ垂直な仮想平面を想定するとともに、同仮想平面上にて互いに直交するX軸方向およびY軸方向に沿って分割した多数の微小エリアを想定する。そして、3次元形状測定装置は、前記多数の微小エリアにレーザ光を順次照射し、物体からの反射光によって前記微小エリアが規定する物体表面までの距離をZ軸方向距離として順次検出して、物体の表面を微小エリアずつに分割した各分割エリア位置を表すX,Y,Z座標に関する情報を得て、同3次元形状測定装置に面した物体表面の形状を測定するものである。また、この3次元形状測定装置は、前記物体表面の形状を測定すると同時に、物体からの反射光を前記微小エリアごとに検出して、前記微小エリアごとの反射光の光量を測定するものである。

0020

したがって、この3次元形状測定装置は、出射レーザ光の向きをX軸方向に変化させるX軸方向走査器と、出射レーザ光の向きをY軸方向に変化させるY軸方向走査器と、物体表面にて反射された反射レーザ光を受光して物体表面までの距離および同物体表面からの反射光量を検出する光検出器とを備えている。X軸方向走査器およびY軸方向走査器としては、レーザ光源からの出射レーザ光の光路をX軸方向およびY軸方向に独立に変化させ得る機構であればよく、例えば、レーザ光源自体をX軸方向およびY軸方向の軸線回り電動モータによって回転させたり、出射レーザ光の光路に設けられてその方向を変更するガルバノミラーをX軸方向およびY軸方向の軸線回りに電動モータによって回転させる機構を利用できる。光検出器としては、前記出射レーザ光の光路に追従して回転し、物体表面にて反射された反射レーザ光を集光する結像レンズおよび同集光したレーザ光を受光するCCDなどの複数の受光素子を一列に配置させたラインセンサからなり、ラインセンサによる反射レーザ光の受光位置によって物体表面までの距離を検出するとともに、同反射レーザ光の受光幅によって、同物体表面からの反射光の光量を検出する。

0021

したがって、このような3次元形状測定装置は、物体の表面を微小エリアずつに分割した各分割エリア位置を表すX,Y,Z座標に関する情報として、X軸方向走査器による出射レーザ光の基準方向に対するX軸方向への傾きθx、Y軸方向走査器による出射レーザ光の基準方向に対するY軸方向への傾きθy、光検出器による物体表面までの距離Lz、および同光検出器による物体表面からの反射光量Lzsとが、前記仮想したX軸方向およびY軸方向に沿って分割した多数の微小エリアごとに出力される。より具体的には、X軸およびY軸方向への傾きθx,θyは、電動モータの基準位置からの回転角である。また、物体表面までの距離Lzは、ラインセンサにおける反射レーザ光の受光位置であり、物体表面からの反射光量Lzsは、ラインセンサにおける反射レーザ光の受光幅である。なお、3次元形状測定装置は、後述するコントローラ31からの指令により、前記X軸方向およびY軸方向に沿って分割した多数のエリアごとの出力以外に、物体表面からの反射光量Lzsが急激に変化したとき、前記X軸方向への傾きθx、Y軸方向への傾きθy、物体表面までの距離Lzおよび物体表面からの反射光量Lzsが出力されるようになっている。

0022

これらの3次元形状測定装置20A,20Bには、コントローラ31および3次元画像データ処理装置32がそれぞれ接続されている。コントローラ31は、キーボードからなる入力装置33からの指示に従って、3次元形状測定装置20A,20Bの作動を制御する。また、コントローラ31は、入力装置33からの指示に従って3次元画像データ処理装置32の作動を制御するとともに、同入力装置33にて入力されたデータを3次元画像データ処理装置32に供給する。

0023

3次元画像データ処理装置32は、コンピュータ装置によって構成されて図3図5図6図8図12図13図16および図18の各プログラムの実行により、3次元形状測定装置20A,20Bからの3次元画像に関する情報、具体的には、X軸方向への傾きθx、Y軸方向への傾きθy、物体表面までの距離Lzを入力して、測定対象空間内に位置する物体の3次元画像データを生成し、同生成した3次元画像データを用いてワークWKの長さを計算する。また、3次元画像データ処理装置32は、物体表面からの反射光量Lzsを入力して、測定対象空間内に位置する物体表面の前記微小エリアごとの反射光量を算出する。

0024

この3次元画像データ処理装置32には、表示装置34が接続されている。表示装置34は、液晶ディスプレイプラズマディスプレイまたはCRTディスプレイなどからなり、3次元画像データ処理装置32によって実行される各プログラムの実行過程および同各プログラムの実行により計算されるワークWKの長さを表示する。

0025

次に、上記のように構成した長さ測定装置の作動について説明する。作業者は、入力装置33を操作してワークWKの長さ測定を指示する。このワークWKの長さ測定の指示は、コントローラ31を介して3次元画像データ処理装置32に伝達され、3次元画像データ処理装置32は、図3に示すワーク長測定プログラムの実行をステップS100にて開始して、ステップS102にて、基準距離L0を計算する。基準距離L0は、図4に示すように、ワークWKの長さを計算するための基準となる長さであり、支持台10上にセットされる基準物体40を測定することにより計算される。基準物体40は、断面形状が真円状に形成された丸棒体であり、基準物体40の両端の各端面40a,40bが同基準物体40の軸線に対して直交した形状となっている。この基準物体40の長さL40は、事前に作業者により認識されており、3次元画像データ処理装置32の記憶装置に予め記憶されている。また、基準物体40の2つの端面40a,40bにレーザ光を照射した際における同端面40a,40bからそれぞれ反射される反射光の光量も事前に作業者により認識されており、3次元画像データ処理装置32の記憶装置に反射光量データとして予め記憶されている。

0026

作業者は、基準物体40を支持台10の各支持部10b上に載置、具体的には、基準物体40の各端部を2つの各支持台10における各支持部10b上に載置して3次元形状測定装置20A,20Bの各測定対象空間内に基準物体40を配置する。この場合、基準物体40の端面40aは3次元形状測定装置20Aに面するとともに、同基準物体40の端面40bは3次元形状測定装置20Bに面した状態で配置される。なお、基準物体40は、支持台10における3つの支持部10bのうち、いずれの支持部10b上に載置してもよいが、2つの支持台10の間において互いに対応する支持部10bに載置する。すなわち、基準物体40は、支持台10の長手方向に直交した状態で載置される。

0027

一方、3次元画像データ処理装置32は、図5に示す基準距離計算サブプログラムの実行をステップ200にて開始して、ステップS202にて、3次元形状測定装置20A,20Bによる測定情報の入力を待つ。3次元形状測定装置20A,20Bは、コントローラ31によって制御され、測定対象空間内に配置された基準物体40(基準物体40の周辺に存在する物体、例えば支持台10などを含む)の3次元表面形状の測定を開始するとともに、基準物体40の表面形状を表す情報および基準物体40の表面からの反射光の光量を表す情報を3次元画像データ処理装置32にそれぞれ出力する。すなわち、基準物体40の表面を微小エリアずつに分割した各分割エリア位置を表すX,Y,Z座標に関する情報(具体的には、傾きθx,θyおよび距離Lz)および基準物体40の物体表面からの反射光の光量に関する情報(具体的には、反射光量Lzs)をそれぞれ出力する。したがって、3次元画像データ処理装置32は、ステップS202にて、3次元形状測定装置20A,20Bから出力された前記X,Y,Z座標に関する情報および基準物体40の物体表面からの反射光の光量に関する情報を入力する。

0028

次に、3次元画像データ処理装置32は、ステップS204にて、前記入力した3次元形状測定装置20A,20BからのX,Y,Z座標に関する情報および基準物体40の物体表面からの反射光の光量に関する情報に基づいて、測定対象空間内に存在する基準物体40の3次元表面形状を表す3次元形状データ群を3次元形状測定装置20A,20Bごとにそれぞれ計算する。すなわち、3次元形状測定装置20A,20Bによって規定される2種類の各座標系A,Bでの基準物体40の表面を微小エリアずつに分割した各分割エリア位置をそれぞれ3次元で表現する3次元座標データと、この3次元座標データに前記微小エリアずつに分割した各分割エリア位置ごとの反射光の光量を表す反射光量データを対応させた多数のデータセット集合を計算し、2組の3次元形状データ群Da,Dbを得る。この2組の3次元形状データ群Da,Dbは各座標系A,Bにおける各座標値X,Y,Zおよび各反射光量Qで表される。具体的には、3次元形状データ群Da,Dbを構成する各データセットは、(xa,ya,za,qa),(xb,yb,zb,qb)でそれぞれ表される。

0029

次に、3次元画像データ処理装置32は、ステップS206にて、各座標系A,Bに対応した3次元形状データ群Da,Dbのそれぞれに対して、3次元形状測定装置20A,20Bにそれぞれ面した基準物体40の端面40a,40bをそれぞれ表す2つのサブ3次元形状データ群を抽出する。具体的には、3次元画像データ処理装置32に予め記憶されている基準物体40の端面40a,40bに関する反射光量データと一致するまたは所定の判別値内にある前記3次元形状データ群Da,Dbを構成するデータセット中の反射光量Q(qa,qb)ごとに、各座標値(xa,ya,za),(xb,yb,zb)を分類する。この場合、3次元形状測定装置20A,20Bにそれぞれ面した基準物体40の端面40aまたは40bに対応して、2組のサブ3次元形状データ群Dak,Dbkがそれぞれ生成される。

0030

次に、3次元画像データ処理装置32は、ステップS208にて、基準物体40の各端面40a,40bをそれぞれ含む平面Psa,Psbを定義する。具体的には、前記2組のサブ3次元形状データ群Dak,Dbkにおける各座標値(xa,ya,za),(xb,yb,zb)を下記式1に示す平面の式に代入する。なお、各座標値(xa,ya,za),(xb,yb,zb)は、下記式1におけるx,y,zにそれぞれ対応する。
a・x+b・y+c・z+1=0 …式1

0031

すなわち、各サブ3次元形状データ群ごとに同サブ3次元形状データ群を構成する点群(xi,yi,zi)(i=1〜n)を上記式1の左辺に代入して、その値の2乗和が最小となるa,b,cを最小2乗法を用いて計算し、同サブ3次元形状データ群が表す基準物体40の2つの端面40a,40bをそれぞれ含む平面Psa,Psbの式をそれぞれ求める。そして、3次元画像データ処理装置32は、計算した平面Psa,Psbに対してそれぞれ所定の範囲内に属する3次元形状データ群Da,Db、すなわち、3次元形状測定装置20A,20Bによって測定されたすべての3次元座標データを構成する各座標値(xa,ya,za),(xb,yb,zb)を計算した平面Psa,Psbの式の左辺に代入し、値が「0」から所定の範囲にあるデータを上記式1に代入して、前記と同様に最小2乗法を用いて平面を再度計算し、同計算した平面を新たな平面Psa,Psbとする。これにより、前記ステップS208における端面40a,40bを表すサブ3次元形状データ群Dak,Dbkの抽出処理から漏れた端面40a,40bを表す3次元形状データ群Da,Dbをも用いて、より精度よく端面40a,40bを含む平面Psa,Psbを定義することができる。

0032

次に、3次元画像データ処理装置32は、ステップS210にて、基準距離L0を計算する。具体的には、前記ステップS208にてそれぞれ定義された平面Psa,Psbから、同平面Psa,Psbにそれぞれ面する3次元形状測定装置20A,20Bの各座標系A,Bの原点Oa,Obまでの距離La,Lbを計算し、記憶装置に予め記憶されている基準物体40の長さL40に同計算した距離La,Lbを加算して基準距離L0を計算する。この場合、距離Laは、3次元形状測定装置20Aに関する座標系Aにおける原点Oaを通り平面Psaに直交する直線の長さである。また、距離Lbは、3次元形状測定装置20Bに関する座標系Bにおける原点Obを通り平面Psbに直交する直線の長さである。この基準距離L0は、平面Psa,Psbに直交する直線、すなわち支持台10上に配置されるワークWKの軸線と垂直な平面において3次元形状測定装置20A,20Bの各座標系A,Bの原点Oa,Obを含む平面間の距離である。なお、3次元形状測定装置20A,20Bの各座標系A,Bの原点Oa,Obは、本発明に係る第1測定基準位置および第2測定基準位置にそれぞれ対応する。次に、3次元画像データ処理装置32は、同計算した基準距離L0を記憶装置に記憶した後、ステップS212にて、基準距離計算サブプログラムの実行を終了して、ワーク長測定プログラムにおけるステップS104に戻る。なお、以前に計算された基準距離L0が変更されない場合には、このステップS102による基準距離の計算処理スキップしてもよい。

0033

次に、3次元画像データ処理装置32は、図3に示すステップS104にて、基準面Pka,Pkbを定義する。具体的には、3次元画像データ処理装置32は、図6に示す基準面定義サブプログラムの実行をステップS300にて開始して、ステップS302にて、基準面設定治具50に関する情報の入力を待つ。この基準面設定治具50に関する情報の入力に際して作業者は、図7に示すように、支持台10上に載置された基準物体40における一方の端部上(図4において右側)および支持台10上に基準面設定治具50をセットする。

0034

基準面設定治具50は、基準面Pka,Pkbを定義するための治具であり、直方体状に形成された本体部50aの下面中央部に、支持台10の支持部10bと同様のV溝状の溝部50bを有するとともに、同本体部50aの両端部における上面から下面に貫通する基準孔50c,50dをそれぞれ有して形成されている。溝部50bは、本体部50aの長手方向に直交する方向に形成されており、丸棒状の基準物体40上において支持台10の長手方向に基準面設定治具50を位置決めする。また、基準孔50c,50dは、真円状に形成されており互いの孔中心を結ぶ直線が溝部50bと直交、すなわち基準物体40の軸線と直交するように設けられているとともに、基準孔50cと基準孔50dとが互いに異なる孔径、具体的には、基準孔50cが基準孔50dより大きな孔径に形成されている。このように基準孔50cと基準孔50dとを異なる孔径としたのは、基準面Pka,Pkbを定義した際、同各基準面Pka,Pkb内における方向を設定し易くするためである。したがって、基準面Pka,Pkb内における方向を設定する必要のない場合には、基準孔50cおよび基準孔50dの各孔径を同一としてもよい。

0035

そして、作業者は、入力装置33を操作して基準面設定治具50に関する情報を入力する。基準面設定治具50に関する情報とは、本実施形態においては、基準面設定治具50における基準孔50c,50dの各孔径、基準面設定治具50にレーザ光を照射した際における本体部50aの上面から反射される反射光の光量および基準面設定治具50をセットした基準物体40における一方の端部(図4において右側)を指定するデータである。この基準面設定治具50に関する入力情報は、コントローラ31を介して3次元画像データ処理装置32に供給される。なお、以前に入力された基準孔50c,50dの各孔径および本体部50aの上面からの反射光の光量が変更されない場合には、同孔径および反射光量の入力を省略してもよい。

0036

このステップS302の処理後、3次元画像データ処理装置32は、ステップS304にて、3次元形状測定装置20Aまたは20Bによる測定情報の入力を待つ。この場合、3次元画像データ処理装置32は、前記ステップS302にて入力された基準面設定治具50をセットした基準物体40における一方の端部(図4において右側)に対応する3次元形状測定装置20A,20B、すなわち、3次元形状測定装置20Aによる測定をコントローラ31に指示し、さらに、3次元形状測定装置20Aが物体表面からの反射光量が急激に変化したときにもデータの出力を行う測定をコントローラ31に指示する。これにより、コントローラ31は、同指示された3次元形状測定装置20Aの作動を制御して基準面設定治具50(基準物体40および支持台10を含む)の3次元立体形状の測定を開始し、基準面設定治具50の表面形状を表す情報および基準面設定治具50の表面からの反射光の光量を表す情報が3次元画像データ処理装置32に入力される。すなわち、基準面設定治具50の表面を微小エリアずつに分割した各分割エリア位置を表すX,Y,Z座標に関する情報、物体表面からの反射光量が急激に変化したときの位置を表すX,Y,Z座標に関する情報および基準面設定治具50の物体表面からの反射光の光量に関する情報からなる3次元形状データ群Daが入力される。この3次元形状データ群Daを構成するデータセットは、(xa,ya,za,qa)で表される。また、物体表面からの反射光量が急激に変化したときの3次元形状データ群Daは、それ以外の3次元形状データ群Daから識別されている。

0037

次に、3次元画像データ処理装置32は、ステップS306にて、前記入力した3次元形状データ群Daから、基準面設定治具50の上面を表すサブ3次元形状データ群を抽出する。具体的には、ステップS302にて3次元画像データ処理装置32に入力された基準面設定治具50の上面に関する反射光量データと一致するまたは所定の判別値内にある前記3次元形状データ群Daを構成するデータセット中の反射光量Q(qa)ごとに、各座標値(xa,ya,za)を分類する。これにより、基準面設定治具50の上面を表すサブ3次元形状データ群Dasが抽出される。

0038

次に、3次元画像データ処理装置32は、ステップS308にて、基準面設定治具50の上面を含む平面Psを定義する。具体的には、サブ3次元形状データ群Dasにおける各座標値(xa,ya,za)を前記式1に代入する。すなわち、サブ3次元形状データ群を構成する点群(xi,yi,zi)(i=1〜n)を前記式1の左辺に代入して、その値の2乗和が最小となるa,b,cを最小2乗法を用いて計算し、同サブ3次元形状データ群が表す基準面設定治具50の上面を含む平面Psの式を求める。そして、3次元画像データ処理装置32は、計算した平面Psに対して所定の範囲内に属する3次元形状データ群Daを構成する各座標値(xa,ya,za)を計算した平面Psの式の左辺に代入し、値が「0」から所定の範囲内にあるデータを前記式1に代入して、前記と同様に最小2乗法を用いて平面を再度計算し、同計算した平面を新たな平面Psとする。これにより、前記ステップS306における基準面設定治具50の上面を表すサブ3次元形状データ群の抽出処理から漏れた同基準面設定治具50の上面を表す3次元形状データ群Daを用いて、より精度よく基準面設定治具50の上面を含む平面Psを定義することができる。

0039

次に、3次元画像データ処理装置32は、ステップS310にて、基準孔50c,50dの中心座標を計算する。具体的には、図8に示す基準孔中心計算サブプログラムの実行をステップS400にて開始する。3次元画像データ処理装置32は、ステップS402にて、前記ステップ302にて入力された基準孔50c,50dの孔径を用いて、単位ブロックおよび探索ブロックサイズ設定処理を実行する。単位ブロックは、基準孔50c,50dの存在位置を特定するために探索ブロックを移動させる最小のブロックであり、本実施形態では正方形に形成されているが、長方形などの他の形状でもよい。また、単位ブロックのサイズは、基準孔50c,50dの開口部の一部が存在することを確認可能である程度に小さく設定される。本実施形態においては、大径の基準孔50cを縦横8個ずつの単位ブロック内において包含するためのサイズに設定される。

0040

探索ブロックは、基準孔50c,50dをその内部に包含する位置を特定するために利用されるもので、本実施形態では正方形に形成されるが、長方形などの他の形状でもよい。また、この探索ブロックのサイズは、基準孔50c,50dのすべてを包含できるとともに、なるべく小さく設定される。すなわち、基準孔50cは、基準孔50dよりも大きいため、探索ブロックのサイズは基準孔50cのすべてを包含できるサイズに設定される。具体的には、単位ブロックの縦横8個ずつの大きさを探索ブロックのサイズとする。ただし、この基準孔50c,50dを包含できるとは、基準孔50c,50dの一部でも含む単位ブロックのすべてを含むことを意味する。なお、本実施形態においては、ステップS302において、単位ブロックおよび探索ブロックのサイズを設定するようにしたが、基準孔50c,50dの変更がなければ予め設定されている単位ブロックおよび探索ブロックのサイズをそのまま利用すればよいので、このステップS402の処理は不要である。

0041

次に、3次元画像データ処理装置32は、ステップS404にて探索領域ブロック化処理を実行する。この探索領域のブロック化処理は、ステップS308にて定義した平面Ps内で基準孔50c,50dの含まれる可能性のある領域を単位ブロックで分割する処理である。具体的には、3次元形状データ群Daの中から物体表面からの反射光量が急激に変化したときの3次元形状データ群Daを抽出し、平面Ps内において同抽出された3次元形状データ群Daが存在する領域を単位ブロックで平面的に分割する。すなわち、基準面設定治具50の上面における周縁部および基準孔50c,50dの開口部をそれぞれ表す3次元形状データ群Daのみを抽出し、同抽出された3次元形状データ群Daが存在する範囲で平面Psを単位ブロックで分割する。分割は、平面Psと平行に単位ブロックを並べていく方法で行う。図9は、抽出された3次元形状データ群Daが存在する平面Ps内の領域に対して本処理を実行した結果を示す概念図である。図9は、基準面設定治具50を上方から見た状態を示しており同図における破線は基準面設定治具50の上面における周縁部および基準孔50c,50dの開口部を示し、二点鎖線は平面Psを示している。

0042

次に、3次元画像データ処理装置32は、ステップS406にて、前記ステップS404の処理によって分割した各単位ブロックごとに3次元形状データ群Daが存在するか否かを調べる。そして、3次元形状データ群Daが存在する単位ブロックを抽出する。図10は、図9に示す探索領域に対して本処理を実行した結果を示す概念図である。図10中、ハッチングを施した単位ブロックが抽出された単位ブロックを示している。

0043

次に、3次元画像データ処理装置32は、ステップS408にて、基準孔50c,50bを含む探索ブロック位置の検出を行う。この探索ブロック位置の検出処理においては、前記ステップS404の処理により単位ブロックに分割した領域(探索領域)にて、前記ステップS402の処理により設定した探索ブロックを単位ブロックを単位としてX軸およびY軸に順次移動させる。そして、各移動ごとに移動後の探索ブロック内に含まれるとともに前記ステップS406の処理によって抽出された単位ブロックの個数および配置の仕方を計算する。前記単位ブロックの数が所定の範囲内であり配置の仕方が円状であれば、該当する探索ブロック位置であるとして同位置が検出される。図11の(A)〜(D)は、この探索ブロックの移動の状態を示す概念図である。この場合、基準孔50c,50dの孔径はそれぞれ特定されているため、探索ブロック内に含まれる3次元形状データ群Daが存在する単位ブロックの数は特定される。この探索ブロック位置の検出処理は探索領域の全域に亘って実行され、基準孔50c,50bを含む探索ブロックの位置がそれぞれ検出される。

0044

次に、3次元画像データ処理装置32は、ステップS410にて、基準孔50c,50dの孔中心を計算するための仮の座標系を設定する。具体的には、前記ステップS408の処理によって検出した位置の探索ブロック内に含まれる3次元形状データ群Daにおける各座標値(xa,ya,za)を前記式1に代入する。すなわち、3次元形状データ群を構成する点群(xi,yi,zi)(i=1〜n)を前記式1の左辺に代入して、最小2乗法を用いてa,b,cを計算し、同3次元形状データ群によって表される平面Pを計算する。この場合、前記ステップS408の処理によって検出した位置の探索ブロック内に含まれる3次元形状データ群Daにおける各座標値(xa,ya,za)は基準孔50c,50dの開口部を表しており、同計算された平面Pは基準面設定治具の上面に開口した基準孔50c,50dの開口部に平行な平面である。そして、3次元画像データ処理装置32は、同計算された平面Pの法線ベクトルγと同法ベクトルγに垂直で互いに直交するベクトルα,βを座標軸の方向とする座標系を仮の座標系として設定する。

0045

次に、3次元画像データ処理装置32は、ステップS412にて、前記ステップS408の処理によって検出した位置の探索ブロック内に含まれる3次元形状データ群Daにおける各座標値(xa,ya,za)、すなわち基準孔50c,50dの開口部を表す各座標値を前記ステップS410にて設定された仮の座標系による座標値座標変換する。これにより、3次元形状測定装置20Aに関する座標系Aによって表された基準孔50c,50dの開口部を表す各座標値(xa,ya,za)が、基準孔50c,50dの開口部と平行な平面P上に2つの座標軸がある座標系の座標値に座標変換され、各座標値の中で平面Pに垂直な座標軸における座標値が1つの値に統一される。次に、3次元画像データ処理装置32は、ステップS414にて、基準孔50c,50dの中心座標を計算する。具体的には、前記ステップS412にて座標変換された各座標値の中で1つの値に統一された座標値以外の2つの座標値(xa,ya)を、基準孔50c,50dごとに下記式2に示す2次元における円の式に代入し、その値の2乗和が最小となるa,bを最小2乗法を用いて計算する。この場合、a,bは円の中心座標(a,b)を示す。これにより、基準孔50c,50dの各中心座標Cc,Cdがそれぞれ計算される。なお、下記式2においてrは円の半径である。
(x−a)2+(y−b)2=r2 …式2

0046

次に、3次元画像データ処理装置32は、ステップS416にて、前記ステップS414にて計算した基準孔50c,50dの各中心座標Cc,Cdの座標値を3次元形状測定装置20Aに関する座標系Aの座標値に座標変換する。具体的には、前記ステップS412による座標変換の逆変換を行い仮の座標系によって表された各中心座標Cc,Cdの座標値を3次元形状測定装置20Aに関する座標系Aの座標値に座標変換する。そして、3次元形状測定装置32は、ステップS418にて、基準孔中心計算サブプログラムの実行を終了して基準面定義サブプログラムにおけるステップS312に戻る。

0047

次に、3次元画像データ処理装置32は、ステップS312にて、基準面Pkaを定義する。基準面Pka,Pkbは、基準孔50c,50dの各中心座標Cc,Cdを通り平面Psに垂直な平面である。具体的には、前記基準孔中心計算サブプログラムの実行により計算された基準孔50c,50dの各中心座標Cc,Cdをそれぞれ平面の式である前記式1に代入した2つの式と、平面Psの法線ベクトルと基準面Pkaの法線ベクトルとの内積が「0」となる関係式との3つの式の連立方程式解くことにより、平面の式におけるa,b,cを計算する。これにより、基準孔50c,50dの各中心座標Cc,Cdを通り平面Psに垂直な平面である基準面Pkaが計算される。

0048

次に、3次元画像データ処理装置32は、ステップS314にて、基準面Pka,Pkbの定義処理を終了するか否かを判定する。この判定処理において、基準面Pka,Pkbが共に定義されていれば「Yes」と判定されてステップS316に進み、同ステップ316にて基準面定義サブプログラムの実行を終了して、ワーク長測定プログラムにおけるステップS106に戻る。一方、同判定処理において基準面Pka,Pkbが共に定義されていなければ、すなわち基準面Pkbが定義されていなければ「No」と判定されてステップS302に戻る。この場合、3次元画像データ処理装置32は、基準面Pkaの定義と同様にして基準面Pkbを定義する。具体的には、作業者は、基準面設定治具50を基準物体40における他方の端部上(図4において左側)および支持台10上にセットした後、入力装置33を介して基準面設定治具50に関する情報を入力する。以後の処理過程は、前記と同様であるので説明を省略する。これにより、図4に示すように基準面Pkaに加えて基準面Pkbも定義される。なお、以前に定義された基準面が変更されない場合には、このステップS104による基準面の定義処理をスキップしてもよい。

0049

また、本実施形態においては、基準物体40における2つの端部上に基準面設定治具50を載せ換えて基準面Pka,Pkbを定義するようにしたが、これに代えて、基準面設定治具50を2つ用意し、基準物体40における2つの各端部上に同時に基準面設定治具50をそれぞれセットする。そして、3次元形状測定装置20A,20Bによりそれぞれ対応する基準面設定治具50を同時に測定して、基準面Pka,Pkbを定義する各処理を平行して実行するようにしてもよい。

0050

次に、3次元画像データ処理装置32は、ステップS106にて、測定対象空間情報を取得する。この測定対象空間情報を取得する処理に際して作業者は、3次元画像データ処理装置32からの指示に基づいて、基準物体40および基準面設定治具50を支持台10上から取り除く。そして、3次元画像データ処理装置32は、図12に示す測定対象空間情報取得サブプログラムの実行をステップS500にて開始して、ステップS502にて、3次元形状測定装置20A,20Bの測定対象空間内に存在する物体の3次元表面形状を表す測定情報の入力を待つ。一方、3次元形状測定装置20A,20Bは、コントローラ31によって制御され、測定対象空間内に存在する物体、具体的には、支持台10および支持台10の周辺に存在する物体の3次元表面形状の測定を開始する。そして、3次元形状測定装置20A,20Bが測定対象空間内に存在する物体の測定を終了すると、測定結果を表す情報を3次元画像データ処理装置32に出力する。

0051

次に、3次元画像データ処理装置32は、ステップS502にて、前述したステップS202の処理と同様にして3次元形状測定装置20A,20Bからの測定情報をそれぞれ入力する。なお、この場合、3次元形状測定装置20A,20Bからは、測定対象空間内に存在する物体(支持台10など)の表面からの反射光の光量を表す情報も出力されるが、同情報は測定対象空間情報の取得には不要であるので3次元画像データ処理装置32は同情報の入力を無視する。そして、ステップS504にて、前述したステップS204の処理と同様にして、3次元形状測定装置20A,20Bごとに、各測定情報に基づいて測定対象空間に存在する物体に関する2組の3次元形状データ群Da,Dbを得る。この2組の3次元形状データ群Da,Dbもそれぞれ座標系A,BによるX,Y,Z座標値で表されたもので、3次元形状データ群Da,Db構成する各データセットは、(xa,ya,za),(xb,yb,zb)で表される。

0052

次に、3次元画像データ処理装置32は、ステップS506にて、前記ステップS504にて計算した2組の3次元形状データ群Da,Dbを測定対象空間情報Ma,Mbとしてそれぞれ記憶する。そして、3次元画像データ処理装置32は、ステップS508にて、測定対象空間情報取得サブプログラムの実行を終了して、ワーク長測定プログラムにおけるステップS108に戻る。なお、以前に取得された測定対象空間情報Ma,Mbが変更されない場合には、このステップS106による測定対象空間情報の取得処理をスキップしてもよい。

0053

次に、3次元画像データ処理装置32は、ステップS108にて、ワーク測定を実行する。このワークの測定処理に際して作業者は、3次元画像データ処理装置32からの指示に基づいて、支持台10上に3つのワークWKをそれぞれセットする。そして、3次元画像データ処理装置32は、図13に示すワーク測定サブプログラムの実行をステップS600にて開始して、ステップS602にて、ワークWKの3次元表面形状を表す測定情報の入力を待つ。一方、3次元形状測定装置20A,20Bは、コントローラ31によって制御され、ワークWKの3次元表面形状の測定を開始する。そして、3次元形状測定装置20A,20BがワークWKの測定を終了すると、測定結果を表す情報を3次元画像データ処理装置32に出力する。この場合、測定結果を表す情報には、ワークWKのほかに支持台10などワークWKの周辺に存在する他の物体の表面形状を表す測定情報も含まれている。

0054

3次元画像データ処理装置32は、ステップS602にて、前述したステップS202およびステップS502の処理と同様にして3次元形状測定装置20A,20Bからの測定情報を入力する。なお、この場合、3次元形状測定装置20A,20Bからは、ワークWKの表面からの反射光の光量を表す情報も出力されるが、同情報はワークWKの長さ測定には不要であるので3次元画像データ処理装置32は同情報の入力を無視する。そして、ステップS604にて、前述したステップS204およびステップS504の処理と同様にして、3次元形状測定装置20A,20Bごとに、各測定情報に基づいてワークWKに関する2組の3次元形状データ群Da,Dbを得る。この2組の3次元形状データ群Da,Dbもそれぞれ座標系A,BによるX,Y,Z座標値で表されたもので、3次元形状データ群Da,Dbを構成する各データセットは、(xa,ya,za),(xb,yb,zb)で表される。

0055

次に、3次元画像データ処理装置32は、ステップS606にて、各座標系A,Bに対応した3次元形状データ群Da,Dbのそれぞれに対して、3次元形状測定装置20A,20Bにそれぞれ面したワークWKの表面形状をそれぞれ表す2つのサブ3次元形状データ群を抽出する。具体的には、前記ステップS604にて取得した3次元形状データ群Da,Dbを構成する各座標値(xa,ya,za),(xb,yb,zb)から前記測定対象空間情報取得プログラムの実行により3次元画像データ処理装置32に記憶された測定対象空間情報Ma,Mbを構成する各座標値(xa,ya,za),(xb,yb,zb)に所定範囲内で近い座標値があるものを除く。これにより、3次元形状測定装置20A,20Bにそれぞれ面したワークWKの表面形状を表す2組のサブ3次元形状データ群Daw,Dbwがそれぞれ抽出される。このサブ3次元形状データ群Daw,Dbwが、本発明に係る3次元形状データ群に相当する。

0056

次に、3次元画像データ処理装置32は、ステップS608にて、前記ステップS606にて抽出した2組のサブ3次元形状データ群Daw,Dbwを3つのワークWKに対応させてそれぞれ3つに分類する。具体的には、作業者は、3次元形状測定装置20A,20Bの各座標系A,B内においてそれぞれ3つの領域を設定し、同設定した各領域を3次元画像データ処理装置32の記憶装置に予め記憶しておく。この3つの領域は、支持台10上にセットされる3つのワークWKの位置にそれぞれ対応しており、各領域にはそれぞれ1つのワークWKのサブ3次元形状データ群が含まれる。そして、3次元画像データ処理装置32は、この予め設定された各領域ごとにサブ3次元形状データ群Daw,Dbwを分類し6組のサブ3次元形状データ群Daw1,Dbw1,Daw2,Dbw2,Daw3,Dbw3として記憶する。この場合、サブ3次元形状データ群Daw1とDbw1、Daw2とDbw2およびDaw3とDbw3とは、それぞれ同一のワークWKにおける各端部を表す3次元形状データである。

0057

次に、3次元画像データ処理装置32は、ステップS610にて、3つのワークWKの各端面Sa,Sbをそれぞれ表す2つの平面Pwa,PwbをワークWKごとに定義する。ここで3次元形状測定装置20Aによって測定された1つのワークWKの表面形状を表すサブ3次元形状データ群Dawを点群として図に表すと図14に示すように表される。この場合、3次元形状測定装置20Aに最も近い3次元データは、矢印Aで示した付近の3次元データ、すなわちワークWKの端面Saにおける外周部上端を定義する3次元データである。したがって、3次元画像データ処理装置32は、各サブ3次元形状データ群Daw1,Dbw1,Daw2,Dbw2,Daw3,Dbw3のうち最も3次元形状測定装置20A,20Bに近い座標値(3次元形状測定装置20Aにおいては図14中、矢印Aで示した付近の座標値)および同座標値から図示下側に存在する座標値を所定数だけ抽出し、同抽出した各座標値を前記式1に示される平面の式に代入して最小2乗法により仮の平面を定義する。そして、3次元画像データ処理装置32は、同定義された仮の平面に対して所定の範囲に属する各サブ3次元形状データ群Daw1,Dbw1,Daw2,Dbw2,Daw3,Dbw3の各座標値をそれぞれ抽出し、同抽出された各座標値を再度前記式1に代入して最小2乗法により平面をそれぞれ定義する。これにより、3次元形状測定装置20A,20Bにそれぞれ面する各ワークWKの各端面Sa,Sbをそれぞれ含む平面Pwa1,Pwb1,Pwa2,Pwb2,Pwa3,Pwb3がそれぞれ定義される。図15は、1つのワークWKにおける端面Sa,Sbに対して、それぞれ同端面Sa,Sbを表す平面Pwa,Pwbが定義された状態を示している。

0058

次に、3次元画像データ処理装置32は、ステップS612にて、ワークWKの長さ測定が可能か否かを判定する。具体的には、前記基準面定義サブプログラムにより定義された基準面Pka,Pkbに対する前記ステップS610にて定義された平面Pwa1,Pwb1,Pwa2,Pwb2,Pwa3,Pwb3の傾きをそれぞれ計算し、同計算された各傾きが所定の範囲内であるか否かをワークWKごとに判定する。すなわち、3つの各ワークWKの各端面Sa,Sbに対応する平面Pwa1とPwb1、Pwa2とPwb2およびPwa3とPwb3の各平面のセットごとに基準面Pka,Pkbに対する傾きを計算してワークWKの長さ測定が可能か否かをワークWKごとに判定する。より具体的には、基準面Pkaに対して平面Pwa1,Pwa2,Pwa3の各角度を計算するとともに、基準面Pkbに対して平面Pwb1,Pwb2,Pwb3の各角度を計算する。この判定処理において、基準面Pka,Pkbに対する各平面のセット、具体的にはPwa1とPwb1、Pwa2とPwb2およびPwa3とPwb3とがともに所定の範囲内の傾きである場合には、ワークWKの長さ測定が可能であるとして「Yes」と判定してステップS614に進む。すなわち、ワークWKの各端面Sa,Sbがともに基準面Pka,Pkbに対して略平行である場合にはワークWKの長さ測定が可能であると判定される。この場合、少なくとも1つのワークWKの長さ測定が可能であれば、同判定処理において「Yes」と判定される。

0059

一方、各平面のセット(平面Pwa1とPwb1、Pwa2とPwb2およびPwa3とPwb3)において、各セット内におけるどちらか一方の平面の基準面Pka,Pkbに対する傾きが所定の範囲外である場合、すなわち、ワークWKの各端面Sa,Sbのうち少なくとも一方の端面が基準面Pka,Pkbに対して傾斜、具体的には同端面のうち少なくとも一方の端面がワークWKの側面に対して垂直でないことによりワークWKの長手方向に対して直交していない、またはワークWKの端部が曲がっていることにより同端部における端面がワークWKの長手方向に対して直交していない場合には、ワークWKの長さ測定が不可能である。したがって、この判定処理において、すべてのワークWKの長さ測定が不可能である場合には、「No」と判定してステップS616に進み、ステップS616にてワークWKの長さ測定が不可能である旨を表示装置34に表示させる。

0060

次に、3次元画像データ処理装置32は、ステップS614にて、前記ステップS612にてワークWKの長さ測定が可能と判定されたワークWKに対して同ワークWKの中心軸を定義する。このワークWKの中心軸の定義は、図16に示すワークの中心軸定義サブプログラムを実行することにより行われる。3次元画像データ処理装置32は、ワークの中心軸定義サブプログラムをステップS700にて開始して、ステップS702にて、基準面Pka,Pkbに平行な平面Pka’,Pkb’をそれぞれ定義する。具体的には、図15に示すように基準面Pka,Pkbに対して互いに他方の基準面Pkb,Pka側に所定の距離だけ離れた位置に、基準面Pka,Pkbと平行な平面Pka’,Pkb’をそれぞれ定義する。

0061

次に、3次元画像データ処理装置32は、ステップS704にて、基準面Pka,Pkbおよび平面Pka’,Pkb’ごとに仮の座標系をそれぞれ設定する。具体的には、前記基準孔中心計算プログラムにおけるステップS410と同様に、基準面Pka,Pkbおよび平面Pka’,Pkb’に対して所定の範囲内に存在するサブ3次元形状データ群Daw,Dbwを前記式1に示す平面の式に代入して最小2乗法により基準面Pka,Pkbおよび平面Pka’,Pkb’にそれぞれ対応する4つの平面を計算する。この場合、計算される4つの平面は、ワークWKの長手方向に対して直交する。そして、計算された各平面の法線ベクトルγと同法線ベクトルγに垂直で互いに直交するベクトルα,βを座標軸の方向とする座標系を仮の座標系としてそれぞれ設定する。

0062

次に、3次元形状測定装置32は、ステップS706にて、前記ステップS412と同様に、基準面Pka,Pkbおよび平面Pka’,Pkb’に対して所定の範囲内に存在するサブ3次元形状データ群Daw,Dbwの各座標値をそれぞれ対応する前記各仮の座標系による座標値に座標変換する。これにより、3次元形状測定装置20A,20Bに関する各座標系A,Bによって表されたサブ3次元形状データ群Daw,Dbwの各座標値が、ワークWKの軸方向に直交する平面上に2つの座標軸がある座標系の座標値に座標変換され、同各座標値の中で同平面に垂直な座標軸(ワークWKの軸方向)における座標値が1つの値に統一される。次に、3次元画像データ処理装置32は、ステップS708にて、ワークWKの中心軸上の座標値を計算する。具体的には、前記ステップS414と同様に、各仮の座標系による座標値に座標変換された各座標値を前記式2に示す2次元における円の式に代入し、最小2乗法を用いて同円の中心座標Ca,Cb,Ca’,Cb’を計算する。これにより、各仮の座標系ごとにワークWKの中心軸上の座標値が計算される。

0063

次に、3次元画像データ処理装置32は、ステップS710にて、前記ステップS708にて計算した中心座標Ca,Cb,Ca’,Cb’の座標値を3次元形状測定装置20A,20Bに関する各座標系A,Bの座標値に座標変換する。具体的には、前記ステップS706による座標変換の逆変換を行い、各仮の座標系によって表された各中心座標Ca,Cb,Ca’,Cb’の座標値を3次元形状測定装置20A,20Bに関する各座標系A,Bの座標値に座標変換する。次に、3次元画像データ処理装置32は、ステップS712にて、ワークWKの中心軸を定義する。具体的には、基準面Pkaおよび平面Pka’に対応してそれぞれ計算された中心座標Ca,Ca’を通る直線CLaを計算するとともに、基準面Pkbおよび平面Pkb’に対応してそれぞれ計算された中心座標Cb,Cb’を通る直線CLbを計算する。これにより、3次元形状測定装置20A,20Bにそれぞれ面する各ワークWK(ワークWKの長さ測定可能なワークWK)に対してそれぞれ中心軸CLa,CLbが定義される。そして、3次元画像データ処理装置32は、ステップS714にて、ワークの中心軸定義サブプログラムの実行を終了してワーク長測定プログラムにおけるステップS618に戻る。

0064

次に、3次元画像データ処理装置32は、ステップS618にて、ワークWKの各端面Sa,Sbの各中心座標を計算する。具体的には、多数の座標値から重心座標を計算する場合のように、X座標Y座標,Z座標ごとに各座標値を足し合わせ、それぞれの合計値を足し合わせた座標値の数で除算する。これにより、ワークWKの端面Sa,Sbにおける各中心座標Cwa,Cwbがそれぞれ計算される。

0065

次に、3次元画像データ処理装置32は、ステップS620にて、ワークWKの2つの各端部の曲がりを検出する。具体的には、前記ステップS610にて定義された平面Pwaと前記ステップS614におけるワークの中心軸定義サブプログラムの実行により定義された中心軸CLaとの交点および平面Pwbと中心軸CLbとの交点をそれぞれ計算する。そして、同計算された各交点の各座標値と前記ステップS618にて計算された中心座標Cwa,Cwbの各座標値との差が所定の範囲内である場合には、ワークWKの端部が曲がっていないとして「No」と判定してステップS622に進む。一方、前記計算された各交点の各座標値と中心座標Cwa,Cwbの各座標値との差が所定の範囲外である場合には、ワークWKの端部が曲がっているとして「Yes」と判定してステップS624に進む。

0066

この判定処理を具定例を挙げて説明すると、図17(A),(B)に示すように、ワークWKの端部の形状が曲がっていない場合、すなわち図17(A)に示すようにワークWKの端部SaがワークWKの中心軸CLaに対して直交している場合、および図17(B)に示すようにワークWKの端部が曲がっていない状態で端部SaがワークWKの中心軸CLaに対して直交していない場合には、ワークWKの端面Saの中心座標Cwaと、同ワークWKの中心軸CLaと平面Pwaとの交点とは略同一座標値となる。一方、図17(C)に示すように、ワークWKの端部Saの形状が下方に曲がっている場合には、ワークWKの端面Saの中心位置がワークWKの中心軸CLaからずれるため、ワークWKの端面Saの中心座標Cwaと、同ワークWKの中心軸CLaと平面Pwaとの交点とは同一座標値とはならず異なる値となる。したがって、ワークWKの端部Sa,Sbが曲がっている場合には、同判定処理において「Yes」と判定されてステップS624に進み、ワークWKの端部Sa,Sbが曲がっていない場合には、同判定処理において「No」と判定されてステップS622に進む。なお、図17(B),(C)においては、端面Saの傾斜している状態を誇張して示している。

0067

ステップS622においては、ワークWKの2つの各端部が曲がっていない場合におけるワークWKの長さ測定用の平面Pma,Pmbをそれぞれ定義する。具体的には、前記ステップ620にて計算された平面Pwaと中心軸CLaとの交点を含み基準面Pkaに平行な平面を測定用平面Pmaとして定義するとともに、平面Pwbと中心軸CLbとの交点を含み基準面Pkbに平行な平面を測定用平面Pmbとして定義する。すなわち、測定用平面Pma,Pmbは、ワークWKの2つの各端面Sa,Sbの各中心点を含み互いに平行な平面である。この測定用平面Pma,Pmbは、それぞれ平面Pwa,Pwbと略同一の平面であるが、平面Pwa,PwbがワークWKの各端面Sa,Sbに対して平行であるのに対し、測定用平面Pma,Pmbは基準面Pka,Pkbに対して平行でありワークWKの各端面Sa,Sbの傾きに因らず定義することができる。したがって、ワークWKの端部Sa,SbがワークWKの中心軸に対して直交している場合(曲がっていない場合)には、平面Pwa,Pwbを測定用平面Pma,Pmbとしてもよい。

0068

ステップS624においては、前記ステップS618にて計算されたワークWKの各端面Sa,Sbの各中心座標Cwa,Cwbの各座標値を補正する。この中心座標Cwa,Cwbの補正処理は、ワークWKの2つの各端部のうち前記ステップS620にて曲がりが検出された端部における中心座標Cwa,Cwbを、同端部の曲がりがない場合(同端部が直線状である場合)における同端部の端面Sa,Sbの中心座標に補正する処理である。このステップ624における補正処理において3次元画像データ処理装置32は、図18に示す中心座標補正サブプログラムをステップS800にて開始して、ステップS802にて、曲がり測定用平面Pmcを定義する。なお、この中心座標補正サブプログラムの処理においては、図19(A)(B)に示すように、ワークWKの端面Saにおける端部が曲がっている場合を例として説明する。また、同図中のワークWKの端部は、曲がった状態を誇張して示している。また、図19(B)においては、図を分かりやすくするため、支持台10を省略している。

0069

まず、3次元画像データ処理装置32は、前記ステップ620の判定処理にて曲がりが検出された端部における端面Saに対応する基準面Pkaから同端面Sa側に所定の間隔で同基準面Pkaに平行な平面Pka’を定義する。次に、3次元画像データ処理装置32は、図19(B)に示すように、平面Pka’内において直交する2つの軸を中心として各軸ごとに所定の角度範囲内において所定の角度ずつ同平面Pka’を傾ける。そして、各所定の角度ごとに、傾けられた平面Pka’に対して所定の範囲内に存在するサブ3次元形状データ群Dawを抽出し、同抽出されたサブ3次元形状データ群Dawの各座標値を前記式2に示す円の式に代入して、最小2乗法により円Cを定義する。そして、同円Cから前記抽出されたサブ3次元形状データ群Dawの各座標値との距離を計算し、同各座標値ごとの距離における標準偏差を計算する。

0070

具体的には、円Cの定義の仕方は、前記ステップS614におけるワークWKの中心軸を計算する処理と同様である。すなわち、前記基準孔中心計算プログラムにおけるステップS410と同様に、曲がり測定用平面Pmcn(n=1)において平面の法線ベクトルγと同法線ベクトルγに垂直で互いに直交するベクトルα,βを座標軸の方向とする座標系を仮の座標系としてそれぞれ設定する。次に、3次元画像データ処理装置32は、前記ステップS412と同様に、曲がり測定用平面Pmcn(n=1)に対して所定の範囲内に存在するサブ3次元形状データ群Dawの各座標値を前記各仮の座標系による座標値に座標変換する。これにより、3次元形状測定装置20Aに関する座標系Aによって表されたサブ3次元形状データ群Dawの各座標値が、曲がり測定用平面Pmc1上に2つの座標軸がある座標系の座標値に座標変換され、同各座標値の中で同曲がり測定用平面Pmcn(n=1)に垂直な座標軸(ワークWKの中心軸方向)における座標値が1つの値に統一される。そして、3次元画像データ処理装置32は、前記ステップS414と同様に、仮の座標系の座標値に座標変換された各座標値を前記式2に示す2次元における円の式に代入し、最小2乗法を用いて同円の中心座標Ccおよび半径rを計算した後、サブ3次元形状データ群Dawの各座標値から中心座標Ccまでの距離を計算し、同距離から半径rの値を減算する。この減算した値が円から各座標値までの距離に相当し、すべての座標値おける同距離の標準偏差を計算する。

0071

この標準偏差を計算する処理を、前記所定の角度範囲内において所定の角度ずつ実行し、計算された標準偏差が最小となる角度における平面Pka’を曲がり測定用平面Pmcn(n=1)とする。すなわち、平面Pka’に対して所定の範囲内に存在するサブ3次元形状データ群Dawは、同平面Pka’の傾けられる角度に応じて楕円状または円状に抽出される。そして、楕円状または円状に抽出されたサブ3次元形状データ群Dawに基づいて円Cが計算され標準偏差が計算される。この場合、計算された円Cに対する抽出されたサブ3次元形状データ群Dawの各座標値の差が小さいほど計算される標準偏差は小さくなる。換言すれば、サブ3次元形状データ群Dawが円状に抽出されるほど円Cとの差、すなわち標準偏差が小さくなる。そして、標準偏差が最小となる平面Pka’、すなわち曲がり測定用平面Pmcは、曲がりが検出された端部におけるワークWKの中心軸に直交する平面となる。なお、図19(A)(B)において曲がり測定用平面Pmcn(n=1)は、平面Pka’と略同一平面となる。

0072

次に、3次元画像データ処理装置32は、ステップS804にて、曲がり測定用平面Pmc内におけるワークWKの中心座標Ccを計算する。中心座標Ccは、ステップS802にて仮の座標系の座標値として計算されているため、先の座標変換とは逆の座標変換により対応する3次元形状測定装置20Aに関する座標系Aによる座標値に座標変換する。これにより、曲がり測定用平面Pmcn(n=1)内におけるワークWKの中心座標Ccが計算される。

0073

次に、3次元画像データ処理装置32は、ステップS806にて、ワークWKの中心座標Ccの計算を終了するか否かを判定する。具体的には、前記ステップS804にて計算したワークWKの中心座標Ccが曲がりが検出された端部における端面の中心座標Cwaと一致または所定の判別値内であるか否かを判定し、中心座標Ccが中心座標Cwaと一致または所定の判別値内でなければ「No」と判定してステップS802に戻り、再度ワークWKの中心座標Ccを計算する。この場合、ステップS802にて定義される平面Pka’’は、前回定義された平面Pka’
より端面Sa側に所定の間隔で移動した位置で定義される。また、図19(A)に示すように、平面Pka’’がワークWKの端部における曲がった部分に定義される場合には、曲がり測定用平面Pmcn(n=2)は、同端部におけるワークWKの中心軸に直交する平面となる。一方、同判定処理において、中心座標Ccが中心座標Cwaと一致または所定の判別値内であれば「Yes」と判定してステップS808に進む。これにより、曲がりが検出された端部に対応する基準面Pkaと端面Saとの間のワークWKの中心軸上の座標値が中心座標Cci(i=1〜n)として計算される。なお、図19(A)において、平面Pka’と平面Pka’’との間隔は誇張して示している。

0074

次に、3次元画像データ処理装置32は、ステップS808にて、曲がりが検出された端部における中心軸に対応する円Cを定義する。具体的には、図20に示すように、前記ステップS802〜S806の各処理により計算されたワークWKの中心軸の座標値である中心座標Cci(i=1〜n)を前記式1に示される平面の式にそれぞれ代入して、最小2乗法により曲がりが検出された端部における中心軸を含む平面Pを定義する。そして、前記ステップS804と同様に、平面Pの法線ベクトルγと同法線ベクトルに垂直で互いに直交するベクトルα,βを座標軸の方向とする座標系を仮の座標系としてそれぞれ設定する。次に、3次元画像データ処理装置32は、前記ステップS312と同様に、中心座標Cci(i=1〜n)の各座標値を仮の座標系による座標値に座標変換する。これにより、3次元形状測定装置20Aに関する各座標系Aによって表された中心座標Cci(i=1〜n)の各座標値が平面P上に2つの座標軸がある座標系の座標値に座標変換され、各座標値の中で平面Pに垂直な座標軸上の座標値が1つの値に統一される。

0075

そして、3次元画像データ処理装置32は、仮の座標系の座標値に座標変換された各座標値を前記式2に示す2次元における円の式に代入し、最小2乗法を用いて同円の中心座標Cをおよび半径rを計算した後、前記ステップS416と同様に仮の座標系の座標値によって表された中心座標Cを対応する3次元形状測定装置20Aに関する座標系Aによって表された座標値に座標変換する。これにより、曲がりが検出された端部における中心軸に対応する円Cが定義される。

0076

次に、3次元画像データ処理装置32は、ステップS810にて、端面Saの中心座標Cwaを補正する。具体的には、曲がりが検出された端部に対応する中心軸CLaと前記円Cとの交点P0(または接点)を特定する。この交点P0は、曲がりが検出された端部における中心軸の曲がり始めを表す。次に、特定された交点P0と曲がりが検出された端部における端面Saの中心座標Cwa(換言すれば、円Cと端面Saの交点P1)とを結ぶ直線の長さLst(弦の長さ)を計算し、同長さLstと円Cの半径rとから交点P0と中心座標Cwa(換言すれば、円Cと端面Saの交点P1)とを結ぶ円Cの円周上の長さ(弧の長さ)Larcする。そして、中心軸CLa上における交点P0の座標値に中心軸CLa方向に長さLarc(弧の長さ)を加算した座標値を新たな中心座標Cwa’とする。なお、ワークWKの端面Sbにおける端部が曲がっている場合においても同様に中心座標Cwbが中心座標Cwb’に補正される。これにより、曲がりが検出された端部において、同端部の曲がりがない場合(同端部が直線状である場合)における同端部の端面Saの中心座標Cwa’,Cwb’が計算される。そして、3次元画像データ処理装置32は、ステップS812にて、中心座標補正サブプログラムの実行を終了して、ワーク測定サブプログラムにおけるステップS622に戻る。ステップS622においては、この中心座標補正サブプログラムの実行によって補正された中心座標Cwa’,Cwb’に基づいて測定用平面Pma,Pmbがそれぞれ定義される。

0077

次に、3次元画像データ処理装置32は、ステップS626にて、ワークWKの長さを計算する。具体的には、図21に示すように、測定用平面Pma,Pmbと同測定用平面Pma,Pmbに対応する3次元形状測定装置20A,20Bに関する各座標系A,Bにおける原点Oa,Obとの距離La,Lbをそれぞれ計算する。この場合、距離Laは、3次元形状測定装置20Aの座標系Aにおける原点Oaを通り測定用平面Pmaに直交する直線の長さである。また、距離Lbは、3次元形状測定装置20Bの座標系Bにおける原点Obを通り測定用平面Pmbに直交する直線の長さである。そして、3次元画像データ処理装置32は、ステップS102における基準距離計算サブプログラムにより計算された基準距離L0(3次元形状測定装置20Aと3次元形状測定装置20Bとの距離)から同距離La,Lbを減算することによりワークWKの長さLを計算する。

0078

そして、3次元画像データ処理装置32は、ステップS628にて、前記計算したワークWKの長さLを表示装置34に表示させる。この場合、3つのワークWKのうち長さ測定が不可能であるワークWKについては、同ワークWKの長さ測定が不可能である旨を表示装置34に表示させる。なお、ステップS614にて、ワークWKの長さ測定が不可能と判定された場合には、前記したように同ステップS616にてワークWKの長さ測定が不可能である旨を表示装置34に表示させた後、ステップS630に進む。次に、3次元画像データ処理装置32は、ステップS630にて、ワークWKの長さ測定を終了するか否かを判定する。具体的には、3次元画像データ処理装置32は、ワークWKの長さ測定を終了するか否かを表示装置34を介して作業者に問い合わせて作業者からの指示を待つ。この場合、作業者は、他に測定すべきワークWKが存在する場合には、支持台10上にセットされているワークWKを取り除くとともに新たなワークWKを支持台10上にセットした後、その旨を入力装置33を介して指示する。一方、作業者は、他に測定すべきワークWKが存在しない場合には、支持台10上にセットされているワークWKを取り除いた後、その旨を入力装置33を介して指示する。

0079

3次元形状測定装置32は、作業者からワークWKの長さ測定を続行する旨の指示を受けた場合には、前記判定処理において「No」と判定してステップS602に戻り、改めてワークWKの測定処理を実行する。また、3次元形状測定装置32は、作業者からワークWKの長さ測定を終了する旨の指示を受けた場合には、前記判定処理において「Yes」と判定してステップS632にてワーク測定サブプログラムの実行を終了して、ワーク長測定プログラムにおけるステップS110に戻り、同ステップS110にてワーク長測定プログラムの実行を終了する。

0080

上記作動説明からも理解できるように、上記実施形態によれば、3次元画像データ処理装置32に予めワークWKにおける測定対象となる端面Sa,Sb間の軸線に沿って3次元形状測定装置20Aの座標原点Oaと3次元形状測定装置20Bの座標原点Obとの距離を基準距離L0として記憶している。そして、前記軸線に直交する基準面Pka,Pkbと平行な測定用平面Pma,Pmbを測定対象となる端面Sa,Sbに定義し、同測定用平面Pma,pmbと基準距離L0とを用いて測定対象物の長さLを計算している。これによれば、測定対象となる端面Sa,Sbに対して測定用平面Pma,Pmbが定義できれば、すなわち、測定対象となる端面Sa,Sbを含むワークWKの端部の表面形状を表す3次元形状データ群が取得できれば、常にワークWKの軸線に沿って同ワークWKの長さを測定することができ、3次元形状測定装置20A,20Bの配置位置は限定されない。また、測定用平面Pma,Pmbは3次元データによって定義されるため、測定対象となる端面Sa,Sbの形状および3次元形状測定装置20A,20Bに対する同端面Sa,Sbの向きに寄らず一定の平面を定義することができる。これにより、精度の高いワークWKの長さ測定が可能となる。

0081

また、測定用平面Pma,Pmbは、端面Sa,Sbを表す平面Pka,PkbとワークWKの中心軸CLa,CLbとの交点に基づいて定義されるため、端面Sa,Sbが中心軸に対して完全に垂直でない場合や端部が若干曲がっている場合であっても、端面Sa,Sbにおける正確な中心点に基づいて測定用平面Pma,Pmbを定義することができる。また、ワーク測定サブプログラムにおけるステップS612において、端面Sa,Sbの傾きに応じてワークWKの長さ測定を実行するか否かを判定し、同端面Sa,SbがワークWKの軸線に対して所定量以上傾いている場合には、ワークWKの長さ測定を実行しない。これにより、端面Sa,SbがワークWKの軸線に対して垂直から所定の範囲内の角度でずれている場合のみ、同ワークWKの長さ測定を行うことができ、測定したワークWKの長さ比較をより正確に行うことができる。

0082

さらに、本発明の実施にあたっては、上記実施形態に限定されるものではなく、本発明の目的を逸脱しない限りにおいて種々の変更が可能である。

0083

上記実施形態においては、ワークWKの各端部に対応させてそれぞれ基準面Pka,Pkbを定義するようにしたが、ワークWKの長さが短い場合など、3次元形状測定装置20A,20Bの測定対象空間が重なる場合は、同ワークWKの両端部に対応する1つの基準面Pkを定義するようにしてもよい。この場合、3次元形状測定装置20A,20Bの両測定対象空間内に基準面設定治具50を配置(例えば、基準物体40の中央部)する。これによれば、基準面Pkを設定する作業が1回で済み、基準面Pkの設定作業を効率的にできる。また、1つの基準面Pkに基づいて基準距離L0の計算や各種平面の設定を行うことができるので、ワークWKの長さ測定をより精度良く行うことができる。

0084

また、上記実施形態においては、基準面設定治具50を用いて基準面Pka,Pkbを定義するように構成したが、これに限定されるものではない。例えば、基準物体40における端面40a,40bは、同基準物体40の軸線に対して直交しているため、同端面40a,40bを表す3次元形状データ群を用いて基準面Pka,Pkbを定義することもできる。これによれば、基準面設定治具50が不要になるため基準面設定作業を効率的に行うことができる。なお、この場合、端面40a,40bは面積が小さいため、比較的半径が小さなワークWKの長さ測定において有効である。

0085

また、上記実施形態においては、3次元形状測定装置20A,20Bの各座標系A,B内においてそれぞれ3つの領域を予め設定し、同設定した領域内に存在するサブ3次元形状データ群Daw,Dbwを抽出して、3つのワークWKに対応するサブ3次元形状データ群Daw,Dbwをそれぞれ分類したが、これに限定されるものではない。例えば、ステップS506にて抽出したワークWKの表面形状を表すサブ3次元形状データ群Daw,Dbwのうち、3次元形状測定装置20A,20Bに最も近い座標値(図14中、矢印Aで示した付近の3次元データ)および同座標値から図示下側に存在する座標値を所定数だけ抽出し、同抽出した各座標値を前記式1に示される平面の式にそれぞれ代入して最小2乗法により仮の平面を定義する。そして、同定義した各仮の平面に対して所定の範囲に属する各サブ3次元形状データ群Daw,Dbwの各座標値をそれぞれ抽出し、同抽出された各座標値を再度前記式1に代入して最小2乗法により平面をそれぞれ定義する。これにより、3次元形状測定装置20A,20Bにそれぞれ面するワークWKのうち最も3次元形状測定装置20A,20Bに近いワークWKの端面Saを含む平面Pa,Pbがそれぞれ定義される。この平面Pa,Pbは、ワークWKの軸線方向に直交する平面である。

0086

次に、3次元画像データ処理装置32は、3次元形状測定装置20A,20Bにおける測定対象空間を前記基準孔中心計算サブプログラムにおける単位ブロックと同様の単位ブロックによって分割する。基本的には、ワークWKに関するサブ3次元形状データ群Daw,Dbwに基づき、測定対象空間内のうちサブ3次元形状データ群Daw,Dbwが存在する空間を単位ブロックで立体的に分割する。分割は、前記平面Pa,Pbに沿って単位ブロックを並べていく方法で行う。この場合、単位ブロックの大きさは、ワークWKの一部が存在することを確認可能である程度に小さく設定され、例えば、ワークWKの端面Sa,Sbを縦横8個ずつの単位ブロック内において包含するためのサイズに設定する。

0087

そして、この縦横8個ずつの単位ブロックの集合を探索ブロックとして単位ブロックを単位として平面Pa,Pbに沿って移動させ、ワークWKの端面Sa,Sbを探索する。この場合、ワークWKの端面Sa,Sbの探索は、サブ3次元形状データ群Daw,Dbwが存在する単位ブロックを予め抽出しておき、探索ブロック内に存在する単位ブロック(サブ3次元形状データ群Daw,Dbwが存在する単位ブロック)の数および配置の仕方によりワークWKの端面Sa,Sbを検出する。そして、ワークWKの端面Sa、Sbが検出された場合には、平面Pa,Pbに直交する方向(ワークWKの軸線方向)に存在する単位ブロックにおけるサブ3次元形状データをすべて抽出する。これにより、3つのワークWKに関するサブ3次元形状データ群Daw,Dbwをそれぞれ分類することができる。これによっても、上記と同様の効果が期待できる。

0088

また、上記実施形態においては、測定用平面Pma,Pmbを定義するためのワークWKの各端面Sa,Sb上の点として、各平面Pwa,Pwbと各中心軸CLa,CLbとの各交点、すなわち、同各端面Sa,Sbの各中心点を用いてそれぞれ測定用平面Pma,Pmbを定義するようにしたが、これに限定されるものではない。例えば、各平面Pwa,Pwbと各中心軸CLa,CLbとの各交点に代えて、図13に示すワーク測定サブプログラムにおけるステップS618による各端面Sa,Sbの各中心座標Cwa,Cwbを用いて測定用平面Pma,Pmbをそれぞれ定義するようにしてもよい。この場合、各中心座標Cwa,Cwbは、各端面Sa,Sbをそれぞれ定義するサブ3次元形状データ群Daw,Dbwにより計算されており、同端面Sa,Sbにおける重心点とも言える点である。これによっても、上記と同様の効果が期待できる。

0089

また、ワークWKの長さ測定の対象となる軸線上において、最も長い長さを測定する場合には、各端面Sa,Sbをそれぞれ定義するサブ3次元形状データ群Daw,Dbwのうち3次元形状測定装置20A,20Bに最も近い座標値を用いて測定用平面Pma,Pmbをそれぞれ定義するようにしてもよい。これによれば、ワークWKの各端面Sa,Sbのうち、それぞれ最も外側に存在する端面Sa,Sb上の点に基づいてワークWKの長さ測定を行うことができる。また、これとは逆に、ワークWKの長さ測定の対象となる軸線上において、最も短い長さを測定する場合には、各端面Sa,Sbをそれぞれ定義するサブ3次元形状データ群Daw,Dbwのうち3次元形状測定装置20A,20Bに最も遠い座標値を用いて測定用平面Pma,Pmbをそれぞれ定義するようにしてもよい。これによれば、ワークWKの各端面Sa,Sbのうち、それぞれ最も内側に存在する端面Sa,Sb上の点に基づいてワークWKの長さ測定を行うことができる。これらによれば、端面Sa,Sbが軸線に対して傾斜している場合(図17(B),(C))、ワークWKの長さとして端面Sa,Sbにおけるどの位置に基づいて測定するかについて、必要に応じて測定用平面Pma,Pmbを定義する位置を設定でき、多様な長さ測定が可能となる。

0090

また、上記実施形態においては、前記中心座標補正サブプログラムのステップS810による中心座標Cwa,Cwbの補正において、曲がりが検出された端部における中心軸の曲がり始めである交点P0と端面Saの中心座標Cwaとの円周上の長さLarcを計算し、同長さLarcを中心軸CLa上における交点P0の座標値に加算して中心座標Cwaを補正したが、これに限定されるものではない。すなわち、曲がりが検出された端部において同端部の曲がりがない場合(同端部が直線状である場合)における同端部の端面Sa,Sbの中心座標Cwa’,Cwb’が計算されればよい。例えば、ワークWKの端面Saの中心座標Cwaを通り中心軸CLaに垂直な平面を定義し、同平面と中心軸CLaとの交点を中心座標Cwa’としてもよい。これによれば、上記実施形態における中心座標Cwa’に対する近似値を簡単に計算することができる。

0091

また、上記実施形態においては、前記ワーク長測定プログラムにおけるステップS612およびS620にてワークWKの端部における形状を判定するとともに、ステップS616およびS624にて同端部における端面が傾斜しているまたは同端部が曲がっている場合における各対応処理を実行しているが、測定対象であるワークWKの中に同端部における端面が傾斜しているまたは同端部が曲がっているワークWKが存在しない場合には、前記各処理は不要である。これにより、ワーク長測定プログラムの構成を簡単にすることができる。

0092

また、上記実施形態においては、2つの3次元形状測定装置20A,20Bを用いてワークWKの長さ測定を行うように構成したが、1つの3次元形状測定装置20を用いてワークWKの長さ測定を行うようにしてもよい。例えば、ワークWKの一端を特定の位置に位置決めする(例えば、ワークWKの一端を位置決めするストッパーを用意する)とともに、同ワークWKの他端の端面が3次元形状測定装置20に面するようにワークWKを配置する。この場合、ワークWKの一端が位置決めされる特定の位置と3次元形状測定装置20の座標系の原点とのワークWKの軸線方向上の距離、または同特定の位置と基準面定義プログラムにより定義される基準面との距離を基準距離として3次元形状測定装置20に予め記憶すればよい。これによっても、上記と同様の効果が期待できる。

0093

また、上記実施形態においては、3つのワークWKの長さ測定を同時に行うように構成したが、同時に測定するワークWKの数は必要に応じて適宜設定されるものであり、これに限定されるものではない。したがって、1つのワークWKの長さ測定を行うようにしてもよいし、4つ以上のワークWKの長さ測定を同時に行うように構成してもよい。これによっても、上記と同様の効果が期待できる。

0094

また、上記実施形態においては、測定対象である長尺状のワークWKとして丸棒体を用いたが、これに限定されるものではなく、他の断面形状、例えば三角および四角などの多角形状の断面形状を有する長尺材を測定対象としてもよい。これによっても、上記と同様の効果が期待できる。

0095

また、上記実施形態においては、直方体状に形成された本体部50aの下面中央部に、支持台10の支持部10bと同様のV溝状の溝部50bを有するとともに、同本体部50aの両端部における上面から下面に貫通する基準孔50c,50dをそれぞれ有して形成された基準面設定治具50を用いて基準面Pka,Pkbを定義したが、基準面設定治具50の形状は、ワークWKの軸線方向に直交する平面を基準面として定義できれば、これに限定されるものでない。例えば、本体部50aにおける3次元形状測定装置20A,20Bに面する側面を大きく形成してもよい。この場合、同側面を含む平面を計算し、同平面を基準面Pka,Pkbとして定義すればよい。これによっても、上記と同様の効果が期待できる。

0096

また、上記実施形態においては、支持台10上の載置したワークWKに対してワークWKの長さ測定を行う長さ測定装置に本発明を適用した例について説明した。しかし、これに代えて、本発明を、生産ライン検査ラインなどの各種ライン上を次々に移動するワークWKの長さを順次に測定するようにした長さ測定装置にも適用してもよい。この場合、ワークWKを支持する支持手段として例えば、ローラーの周面に螺旋状にV字溝を形成したローラーテーブルを用いるとよい。

図面の簡単な説明

0097

本発明の一実施形態に係る長さ測定装置の全体を示す概略図である。
図1の長さ測定装置に用いられる支持台の斜視図である。
図1の3次元画像データ処理装置によって実行されるワーク長測定プログラムのフローチャートである。
図1の長さ測定装置における3次元形状測定装置、支持台、基準物体および基準面設定治具の位置関係を示す説明図である。
図1の3次元画像データ処理装置によって実行される基準距離計算サブプログラムのフローチャートである。
図1の3次元画像データ処理装置によって実行される基準面定義サブプログラムのフローチャートである。
図1の長さ測定装置に用いられる基準面設定治具の配置状態を示す斜視図である。
図1の3次元画像データ処理装置によって実行される基準孔中心計算サブプログラムのフローチャートである。
探索領域を2次元的に示す概念図である。
図9に示す探索領域と抽出された単位ブロックとの関係を2次元的に示す概念図である。
(A)〜(D)は、探索領域内における探索ブロックの移動を2次元的に示す概念図である。
図1の3次元画像データ処理装置によって実行される測定対象空間情報取得サブプログラムのフローチャートである。
図1の3次元画像データ処理装置によって実行されるワーク測定サブプログラムのフローチャートである。
サブ3次元形状データ群の各座標値を点群としてワーク上に現した説明図である。
図1の長さ測定装置における支持台およびワークに対する基準面および端面を表す平面の位置関係を示す説明図である。
図1の3次元画像データ処理装置によって実行されるワークの中心軸定義サブプログラムのフローチャートである。
(A)〜(C)はワークの端面に定義される各種平面の位置関係を端面の形状に応じて示した説明図である。
図1の3次元画像データ処理装置によって実行される中心座標補正サブプログラムのフローチャートである。
(A),(B)は、曲がった形状のワーク端部に各種平面および座標値を計算する過程を説明するための説明図である。
曲がった形状のワーク端部における中心座標の補正過程を説明するための説明図である。
図1長尺状物体長さ測定装置における3次元形状測定装置およびワークに対する測定用平面の関係を示す説明図である。

符号の説明

0098

WK…ワーク、10…支持台、20A,20B…3次元形状測定装置、31…コントローラ、32…3次元画像データ処理装置、33…入力装置、34…表示装置、40…基準物体、50…基準面設定治具。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ