図面 (/)

この項目の情報は公開日時点(2007年3月22日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (17)

課題

画像ディスプレイ装置において、環境照明ならびに補助照明の両条件下で性能と明るさを向上する半透過反射体を提供する。

解決手段

一実施例において、半透過反射体は、一方の偏光反射し、他方を透過する反射偏光素子を含む。別の実施例において、半透過反射体が一方の偏光を拡散反射して他方を透過するように、半透過反射体は反射偏光素子と拡散素子とを含む。半透過反射体は、反射型ならびに半透過反射型の両方の液晶ディスプレイに有用である。

概要

背景

マイクロプロセッサ基礎とする工業技術における物理的小型化により、携帯型パーソナルコンピュータ電子手帳ワイヤレス電話ポケベルが生まれた。これら装置ならびに時計計算機等といった他の装置は、電池交換または充電間隔の有効作業時間を長くするために、一般にデータ表示画面消費電力が小さいことが求められる。

そのような装置には、ディスプレイとして一般的な液晶ディスプレイ(LCD)が多く使用されている。LCDは光源に基づいて分類される。反射型ディスプレイは前面からディスプレイに入る環境光によって照明される。光は、LCD装置後ろに位置する研磨アルミニウムまたはシルバー等の反射体反射面によって、反射面への入射光偏光方向を保持した状態で戻され、LCD装置を照光する。反射型ディスプレイは小消費電力というニーズに合っているものの、画面暗いために読むのが困難なことがしばしばある。また、ディスプレイを見るための環境光が不十分な状況というのは多々ある。従って、純粋な反射型ディスプレイの実用範囲は限られている。

画面を見るのに環境光の照度が不十分な状況で使用する場合は、バックライト装置などの補助照明を利用してディスプレイを照明する。一般的なバックライト装置は、光学キャビティおよびランプLED等の光を発生する構造体を備える。補助照明は周囲の照明条件と無関係にディスプレイを照明するが電池寿命をかなり消耗する。従って、例えば携帯型コンピュータの電池は、通常はバックライト連続使用2−4時間後に再充電しなくてはならない。

前述の反射型および透過型ディスプレイの欠点を克服しようとする試みにおいて、一部の電子ディスプレイは、可能な場合には環境光を使用して、必要時にのみバックライトを利用するように構成されている。この反射プラス透過という二元機能から「半透過反射型」という名称が生まれた。現在使用に供されている半透過反射型ディスプレイの問題の一つは、反射モード透過モード両性能ではなく、一方にしか優れていない点である。これは、バックライト装置は、これまで純粋反射型のディスプレイに使用されてきた背面反射体としての反射体ほどは有効でないという事実に由来する。また、ポケベルなど表示スクリーンが小さい装置の多くは、低環境光条件のため補足エレクトロルミネッセンスバックライトを備えた反射型LCDを使用している。LCDの裏には、一部が反射性で一部が透過性プラスチックフィルムが設けられている。しかしながら、この反射フィルムIは、わずか50−70%程度が反射性で、24−40%が透過性であるので、環境照明または補助照明条件の一方に対して効率がよくない。

従来のLCDに制限を課す別の特徴は、通常、LCDパネルの前面側と背面側の両側に使用されている2色性偏光子である。最も広く使用されている偏光子は、一方の偏光を強く吸収し(>99%)他方の偏光を弱く吸収する(5−20%)2色性染色配向高分子偏光子である。液晶ディスプレイでは、この種の偏光子シート2枚を液晶パネルと組み合わせて使用することにより、選択的に光を透過できるようにしてある。2色性偏光子による吸収は、反射型ディスプレイとバックライト付きディスプレイの両方の明るさおよびコントラストを著しく減ずる。

半透過反射型ディスプレイは、背面偏光子とバックライトの間に半透過反射フィルムを設けることによって作成される。半透過反射フィルムは、環境光の反射率バックライト照明の透過性の間に特定の兼ね合い提供するものである。一般に2枚の2色性偏光子と半透過反射体とによる吸光のため、概して半透過反射型ディスプレイは、純粋に反射型だけまたは透過型だけの場合ほど明るくない。
従って、当該技術においては、更に能率的で、消費電力が小さく、環境照明と補助照明の両条件下において更に読みやすいディスプレイを実現する、もっと明るくもっとコントラストの高い画像ディスプレイが望まれている。

概要

画像ディスプレイ装置において、環境照明ならびに補助照明の両条件下で性能と明るさを向上する半透過反射体を提供する。一実施例において、半透過反射体は、一方の偏光を反射し、他方を透過する反射偏光素子を含む。別の実施例において、半透過反射体が一方の偏光を拡散反射して他方を透過するように、半透過反射体は反射偏光素子と拡散素子とを含む。半透過反射体は、反射型ならびに半透過反射型の両方の液晶ディスプレイに有用である。なし

目的

半透過反射フィルムは、環境光の反射率とバックライト照明の透過性の間に特定の兼ね合い提供する

効果

実績

技術文献被引用数
1件
牽制数
1件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

通過する偏光偏光状態を選択的に変えるように提供される光モジュレータ、前記光モジュレータの観察者側から前記光モジュレータを通過する光を受光するように配置された反射偏光子であって、前記光モジュレータを通って戻ってくる第一の偏光状態を有する光を反射しそして第二の偏光状態を有する光を透過させる反射偏光子、及び、前記光モジュレータと前記反射偏光子との間に配置されたディフューザーであって、前記光モジュレータを通して戻って透過される前に、前記反射偏光子によって反射された第一の偏光状態を有する光を拡散し、前記反射された光の第一の偏光状態を実質的に維持するディフューザー、を含む、反射型ディスプレイ

請求項2

前側と後ろ側とを有する透過光モジュレータであって、該光モジュレータを通過する偏光の偏光状態を選択的に変えるように提供される透過光モジュレータ、前記光モジュレータの後ろ側に配置された補助光源、前記光源と前記光モジュレータとの間に配置された反射偏光子であって、第一の偏光状態を有する光を実質的に反射し、そして第二の偏光状態を有する光を実質的に透過させる反射偏光子、及び、前記光モジュレータと前記反射偏光子との間を透過する光を拡散するための、前記光モジュレータと前記反射偏光子との間に配置された透過ディフューザーであって、該ディフューザーを透過した光の偏光状態を実質的に維持するディフューザー、を含み、環境光が前記光モジュレータの前側に入射したとき、又は、光が前記補助光源によって発生されたときに、前記光モジュレータによって画像が形成される、半反射型ディスプレイ。

請求項3

通過する偏光の偏光状態を選択的に変えるように提供される光モジュレータであって、観察者側と後ろ側とを有する光モジュレータ、第一の偏光状態を有する光を反射しそして第二の偏光状態を有する光を透過させる、前記光モジュレータの後ろ側に配置された反射偏光子、及び、前記光モジュレータと前記反射偏光子との間に配置されたリア色偏光子であって、前記反射偏光子によって反射された光の少なくとも一部分を前記光モジュレータを通して戻して透過させることができるリア二色偏光子、を含み、前記反射偏光子とリア二色偏光子との間に配置された拡散素子であって、楕円ディフューザーを含む拡散素子をさらに含む、反射型ディスプレイ。

請求項4

観察者側と後ろ側とを有する透過光モジュレータであって、該光モジュレータを通過する偏光の偏光状態を選択的に変えるように提供される透過光モジュレータ、前記光モジュレータの後ろ側に配置された補助光源、前記光モジュレータと前記補助光源との間に配置された反射偏光子であって、第一の偏光状態を有する光を反射し、そして第二の偏光状態を有する光を透過させるように配置された反射偏光子、及び、前記補助光源と前記反射偏光子との間に配置された吸収体であって、該吸収体を通過する光の一部分を吸収し、そして該吸収体を通過する光の一部分を透過させる、吸収体、を含み、環境光が観察者側に入射したときに、前記光モジュレータによって画像が形成される、半反射型ディスプレイ。

請求項5

通過する偏光の偏光状態を選択的に変えるように提供される光モジュレータであって、観察者側と後ろ側とを有する光モジュレータ、第一の偏光状態を有する光を反射しそして第二の偏光状態を有する光を透過させる、前記光モジュレータの後ろ側に配置された反射偏光子、及び、前記光モジュレータと前記反射偏光子との間に配置されたリア二色偏光子であって、前記反射偏光子によって反射された光の少なくとも一部分を前記光モジュレータを通して戻して透過させることができるリア二色偏光子、を含む、反射型ディスプレイ。

背景技術

0001

マイクロプロセッサ基礎とする工業技術における物理的小型化により、携帯型パーソナルコンピュータ電子手帳ワイヤレス電話ポケベルが生まれた。これら装置ならびに時計計算機等といった他の装置は、電池交換または充電間隔の有効作業時間を長くするために、一般にデータ表示画面消費電力が小さいことが求められる。

0002

そのような装置には、ディスプレイとして一般的な液晶ディスプレイ(LCD)が多く使用されている。LCDは光源に基づいて分類される。反射型ディスプレイは前面からディスプレイに入る環境光によって照明される。光は、LCD装置後ろに位置する研磨アルミニウムまたはシルバー等の反射体反射面によって、反射面への入射光偏光方向を保持した状態で戻され、LCD装置を照光する。反射型ディスプレイは小消費電力というニーズに合っているものの、画面暗いために読むのが困難なことがしばしばある。また、ディスプレイを見るための環境光が不十分な状況というのは多々ある。従って、純粋な反射型ディスプレイの実用範囲は限られている。

0003

画面を見るのに環境光の照度が不十分な状況で使用する場合は、バックライト装置などの補助照明を利用してディスプレイを照明する。一般的なバックライト装置は、光学キャビティおよびランプLED等の光を発生する構造体を備える。補助照明は周囲の照明条件と無関係にディスプレイを照明するが電池寿命をかなり消耗する。従って、例えば携帯型コンピュータの電池は、通常はバックライト連続使用2−4時間後に再充電しなくてはならない。

0004

前述の反射型および透過型ディスプレイの欠点を克服しようとする試みにおいて、一部の電子ディスプレイは、可能な場合には環境光を使用して、必要時にのみバックライトを利用するように構成されている。この反射プラス透過という二元機能から「半透過反射型」という名称が生まれた。現在使用に供されている半透過反射型ディスプレイの問題の一つは、反射モード透過モード両性能ではなく、一方にしか優れていない点である。これは、バックライト装置は、これまで純粋反射型のディスプレイに使用されてきた背面反射体としての反射体ほどは有効でないという事実に由来する。また、ポケベルなど表示スクリーンが小さい装置の多くは、低環境光条件のため補足エレクトロルミネッセンスバックライトを備えた反射型LCDを使用している。LCDの裏には、一部が反射性で一部が透過性プラスチックフィルムが設けられている。しかしながら、この反射フィルムIは、わずか50−70%程度が反射性で、24−40%が透過性であるので、環境照明または補助照明条件の一方に対して効率がよくない。

0005

従来のLCDに制限を課す別の特徴は、通常、LCDパネルの前面側と背面側の両側に使用されている2色性偏光子である。最も広く使用されている偏光子は、一方の偏光を強く吸収し(>99%)他方の偏光を弱く吸収する(5−20%)2色性染色配向高分子偏光子である。液晶ディスプレイでは、この種の偏光子シート2枚を液晶パネルと組み合わせて使用することにより、選択的に光を透過できるようにしてある。2色性偏光子による吸収は、反射型ディスプレイとバックライト付きディスプレイの両方の明るさおよびコントラストを著しく減ずる。

0006

半透過反射型ディスプレイは、背面偏光子とバックライトの間に半透過反射フィルムを設けることによって作成される。半透過反射フィルムは、環境光の反射率バックライト照明の透過性の間に特定の兼ね合い提供するものである。一般に2枚の2色性偏光子と半透過反射体とによる吸光のため、概して半透過反射型ディスプレイは、純粋に反射型だけまたは透過型だけの場合ほど明るくない。
従って、当該技術においては、更に能率的で、消費電力が小さく、環境照明と補助照明の両条件下において更に読みやすいディスプレイを実現する、もっと明るくもっとコントラストの高い画像ディスプレイが望まれている。

0007

発明の概要
当該技術における前述の問題を克服し、また、本明細書を読んで理解していくうちに明らかとなる欠陥を正すために、画像ディスプレイ応用分野において環境照明と補助照明の両条件において能率と明るさを向上する半透過反射体を説明する。一実施例において、半透過反射体は一方の偏光を反射して他方を透過する。別の実施例において、半透過反射体は、半透過反射体が一方の偏光を乱反射し他方を透過するように、反射偏光素子拡散素子とを備える。半透過反射体は、反射型および半透過反射型液晶ディスプレイの両方に有用である。使用に際して、半透過反射体は、反射偏光側をバックライト側に向けた状態でバックライト(ライトパネル、エネクトルミネッセントパネル等)とLCDの間に載置される。このような構成において、半透過反射体は、環境光の効率的反射体としての役とバックライトの光の効率的透過体として役を果たすので、結果として低電力消費のニーズを満足しつつ表示輝度を増すことができる。

0008

発明の詳細な説明
図面中、一部の図の同様の数値一貫して同様の素子を指す。
図1に、本発明の半透過反射体13を示す。半透過反射体13は、拡散素子6と反射偏光素子8を備えている。好適な反射偏光素子は、1995年3月10日付けの「光学フィルム(OPTICAフィルム)」と題された、同時継続一般譲渡米国特許出願第08/402,041号明細書に記載されているように、2種類の材料の交互層から成る配向多重層スタックを基礎とするものである。

0009

再び図1を参照すると、拡散素子6は、実質的に反射偏光素子の反射率を上げることなく、または、透過偏光の偏光能率を下げることなく、反射偏光の反射偏光素子8による鏡面反射率を好適に低減する。つまり、拡散素子8は、反射偏光素子8によって反射もしくは透過された偏光をランダマイズしないという点において、偏光状態を好適に維持する。拡散素子は光前方散乱が高いこと、すなわち反射性が低いことが理想的である。これは、反射偏光素子の偏光の最大選択度を保つのに有利である。ほとんど拡散のない状態(鏡面反射)から多量の拡散がある状態(均等拡散)までの範囲の多様な拡散レベルを用途に応じて利用できる。この用途に適しているのは、ポリエチレンおよびポリプロピレンなどの半透明ケースポリマーを含む一部の拡散体である。研磨またはビードブラストされた表面を複製したパターンなど、無秩序および規則的な小レンズ配列、拡張2Dおよび3Dプリズム状構造ランダム構造、ならびにそれらを組み合わせたもの等の反射偏光素子に近い複製構造も適している。偏光保持拡散体コーティングならびに反射偏光素子エンボスパターンといった他の拡散体も良好に作用する。拡散素子6は、独立した光学素子として構成することもできるし、反射偏光素子の表面に直接に塗布または積層することもできる。一部のディスプレイは、光を非対称的に散乱する拡散体楕円拡散体によって優れた性能を提供する。また、拡散素子として拡散接着剤を使用することも可能である。この場合、拡散接着剤を使用してLCD等のシステム構成要素の背面に反射偏光素子を積層することも可能である。システム構成要素間のエアギャップをなくすことによって、表面反射を減らしてシステム性能を向上できる。
好適な反射偏光素子は、多層膜光学フィルムである。

0010

I.多層膜光学フィルム
明細書中に記載の半透過反射型ディスプレイは、多層膜光学フィルム特有の有益な特性を基礎とするものである。そのようなフィルムの長所、性質、製造方法については、前述の95年3月10日付けの「光学フィルム(OPTICAL フィルム)」と題された、同時継続一般譲渡米国特許出願第08/402,041号明細書に余すところなく説明されている。この多層膜光学フィルムは、例えば、高能率ミラーまたは偏光子に有用である。以下に、多層膜光学フィルムの特性と特徴を簡単に説明し、更に、本発明の多層膜光学フィルムを利用したバックライトシステムの説明に役立つ実施例について説明する。

0011

本発明と一緒に使用される多層膜光学フィルムは、入射光の吸収が比較的低いのと同時に、オフアクシス光線ならびに普通光線の反射率が高い。これらの特性により、通常、フィルムを純粋な反射または反射偏光フィルムとして使用するか否かが決まる。多層膜光学フィルム特有の特性ならびに長所により、周知バックライトシステムと比較して、吸収損失の低い高能率なバックライトシステムが得られる。

0012

図2A図2Bに記載の本発明の一例としての多層膜光学フィルムは、少なくとも2種類の材料2と4を交互に層にした多層膜スタック8を備える。少なくとも1種類の材料は、延伸工程が材料の屈折率(n)に影響を及ぼすような、応力誘起複屈折という特性を有する。両材料が同じ屈折率を有する、延伸工程前の多層膜スタックの一例を図2Aに示す。光線3は屈折率の変化を受けずにスタックを通過する。図2Bでは、同スタックを延伸されたため、材料2の屈折率が増加している。層と層の間の各境界における屈折率の差によって、光線5の一部が反射される。1軸配向から2軸配向までの範囲にわたって多層膜スタックを延伸することによって、フィルムにおいて、配向の異なる平面で偏光される入射光の反射性の相違が生じる。このように、多層膜スタックを反射偏光子またはミラーとして活用できる。本発明に従って製作される多層膜光学フィルムは、非常に大きなすなわちかつて存在したことのないブルースター角(いずれかの層境界において入射光の反射率がゼロになる角度)を示す。これとは対照的に、基地多層膜ポリマーフィルムは、比較的小さなブルースター角を示し、結果的に光の透過や望ましくないイリデセンスを招く。しかしながら、本発明による多層膜光学フィルムによれば、p-偏光に対する反射が、入射角に応じて徐々に減少するか、入射角とは無関係であるか、または、入射角の法線からの離れていくのに応じて増加する、ミラーならびに偏光子を製作できる。結果として、広範囲帯域幅にわたっておよび広範囲な角度にわたってs-およびp-偏光に対する反射が大きい多層膜スタックを実現できる。

0013

図2に多層膜スタックのうちの2層を記載し、各層の三次元屈折率を示す。各層の屈折率は、層102がn1x,n1y,n1z、層104がn2x,n2y,n2zである。1つのフィルム層における屈折率間の関係ならびにフィルムスタック内の各フィルム層の屈折率と別の層の屈折率との関係によって、任意の方位方向からの入射角度に対する多層膜スタックの挙動が決まる。米国特許出願第08/402,041号明細書に記載された原理ならびにデザインを応用することにより、広範囲な状況ならびに用途に対応する所望の光学的効果備えた多層膜スタックを生成できる。多層膜スタックの層の屈折率を操作ならびに調整することにより、所望の光学特性を得ることができる。

0014

再び図2Bを参照すると、多層膜スタック8は、数十層、数百層、または数千層を備えることが可能で、各層は、任意種類数の材料から形成されている。特定スタックの材料選択幅を決定する特性は、スタックに望まれる光学性能に依存する。スタックは、スタック内にある層の数と同じ種類数の材料を含むことができる。製造を簡単にするために、好適光学薄フィルムに含まれるのはわずか数種類の材料である。

0015

材料間、すなわち物理的特性は異なるが化学的には同一な材料間の境界は、境目がはっきりしたものにも徐々に変化するものにもできる。解析解法を利用する一部の単純なケースを除き、屈折率が次第に変化する後者タイプの層状媒体の解析は、通常、境目のはっきりした境界を有するとともに隣接層間に僅かな特性変化がある、より薄い、はるかに多くの均一層として処理される。

0016

好適な多層膜スタックは低屈折率高屈折率の一対のフィルム層を具備し、この低/高屈折率フィルム層対の複合光学的厚さはバンド波長中心の1/2であり、反射するように考案されている。そのようなフィルムは一般に4分の1波長スタックと呼ばれている。可視波長ならびに近赤外域波長に関わる多層膜光学フィルムの場合、4分の1波長スタックのデザインを採用すると、多層膜スタックの各層の平均厚は、0.5ミクロン以下になる。

0017

反射フィルム(例えば、ミラー)が望ましい上記用例においては、各偏光の所望平均透過率は一般に反射フィルムの使用目的によって異なる。多層膜ミラーフィルムを生成する方法の一つは、低/高屈折率ペアのうちの高屈折率層として複屈折材料を含む多層膜スタックを2軸方向に延伸することである。高能率反射フィルムの場合、可視スペクトル(400−700nm)における垂直入射時の各延伸方向の平均透過率は、望ましくは10%未満(反射率は90%以上)、更に望ましくは5%未満(反射率は95%以上)、それより更に望ましくは2%未満(反射率は98%以上)、それよりも更に望ましくは1%未満(反射率は99%以上)である。400−700nmで法線から60度のときの平均透過率は、望ましくは20%未満(反射率は80%以上)、更に望ましくは10%未満(反射率は90%以上)、更に望ましくは5%未満(反射率は95%以上)、それより更に望ましくは2%未満(反射率は98%以上)、それよりも更に望ましくは1%未満(反射率は99%以上)である。

0018

また、用途によっては非対称反射フィルムが望ましい場合がある。そのような場合、例えば、可視スペクトル(400−700nm)または可視スペクトルから近赤外域(例えば、400−850nm)の帯域幅において、一方の延伸方向の平均透過率は例えば50%未満で、他方の延伸方向の平均透過率は例えば20%であることが望ましい。

0019

多層膜光学フィルムは反射偏光子として作用するように構成することも可能である。多層膜反射偏光子を生成する方法の一つは、低/高屈折率対の高屈折率層として複屈折材料を含む多層膜スタックを1軸方向に延伸することである。こうして得られた反射偏光子は、(延伸方向の)一方の軸に平行な偏光面で広範囲な入射角について光に対する高反射率を備えていると共に、(非延伸方向の)他軸に平行な偏光面では広範囲な入射角について光に対する低反射率高透過率を同時に備えている。各フィルムの3種類の屈折率nx,ny,nzを制御することにより、所望の偏光子作用が得られる。

0020

多くの用途で、理想的な反射偏光子とは、あらゆる入射角度において、一方の軸(いわゆる、消光軸)方向の反射率が高く、他方の軸(いわゆる、透過軸)方向の反射率がゼロの偏光子である。偏光子の透過軸については、一般に、目的帯域幅ならびに目的入射角範囲において、透過軸方向の偏光の透過率が最大になることが望ましい。

0021

可視スペクトル(400−700nmの300nmの帯域幅)における透過軸方向の偏光子の垂直入射時の平均透過率は、好ましくは少なくとも50%、望ましくは少なくとも70%、更に望ましくは85%、それより望ましくは90%である。400−700nmにおいて偏光子を(p-偏光の透過軸方向に測定した)法線から60度で入射したときの平均透過率は、好ましくは少なくとも50%、望ましくは少なくとも70%、更に望ましくは80%、それより望ましくは90%である。

0022

可視スペクトル(400−700nmの300nmの帯域幅)における消光軸方向の偏光を垂直に入射した時の多層膜反射偏光子の平均透過率は、好ましくは50%未満、望ましくは30%未満、更に望ましくは15%未満、それより望ましくは5%未満である。400−700nmにおいて偏光子を(p-偏光の透過軸方向に測定した)法線から60度で入射したときの平均透過率は、好ましくは50%未満、望ましくは30%未満、更に望ましくは15%未満、それより望ましくは5%未満である。

0023

用途によっては、非垂直入射で、その偏光面が透過軸に平行な状態でp-偏光に対する反射率が高いことが望ましい場合がある。透過軸方向の偏光の平均反射率は、法線からの角度が少なくとも20度のときに20%以上でなくてはならない。

0024

また、本明細書では反射偏光フィルムと非対称反射フィルムについて別々に論じているが、複数枚のそのようなフィルムを設けて、実質的にあらゆる入射光を反射できることを理解されたい(但し、そのようにするためにフィルムは互いに適正に配向される)。この構造は、一般に本発明によるバックライトシステムにおいて多層膜光学フィルムを使用する場合に好ましい。

0025

透過軸方向にいくぶんか反射が生じる場合、非直角のときの偏光子の能率が下がることがある。透過軸方向の反射率が波長によって異なる場合、透過光に色を導入できる。色を測定する方法の一つは、目的の波長範囲における、選択角度での透過率の二乗平均(RMS)を求めることである。RMSカラー百分率は、次の式によって求めることができる。

0026

0027

反射偏光子は、特定用途に適した透過軸方向の所望RMSカラー百分率と、対象となっているバンド幅における消光軸方向の所望反射量を組み合わせることが好ましい。ハンド幅可視範囲(400−700nm、すなわちバンド幅300nm)である偏光子の場合、垂直入射時の消光軸方向の平均透過率好ましくは40%未満、更に好ましくは25%未満、望ましくは15%未満、更に望ましくは5%未満、更にまた望ましくは3%未満である。

0028

材料の選択と処理手順
前述の米国特許出願第08/402,041号明細書に記載されているデザイン設計要点により、当業者は、所望の屈折率関係を実現するように選択された条件で処理する時に広範囲の材料を使用して本発明による多層膜反射フィルムすなわち偏光子を作成できることを容易に察するであろう。所望屈折率関係は、(例えば有機質ポリマーの場合)フィルム形成中または形成後の延伸、(例えば液体結晶質材料の場合)押し出し、またはコーティングなどの種々の方法で実現できる。また、2種類の材料は、共押出可能などの同様なレオロジカル特性(例えば、溶融粘度)を有することが好ましい。

0029

全般的に、適切な組合せは、第1の材料として、結晶質または半結晶質材料、好ましくはポリマーを選択することによって得られる。次に、第2の材料は、結晶質、半結晶質、非結晶質にできる。第2の材料は第1の材料と反対の複屈折を備えることができる。あるいは、第2の材料は、複屈折無しにも、または第1の材料より小さい複屈折率にもできる。

0030

適切材料の特定例として、ポリエチレンナフタレート(PEN)およびその異性体(例えば、2,6−、1,4−、1,5−、2,7−、および2,3−PEN)、ポリアルキレンテレフタレート(例えば、ポリエチレンテレフタレートポリブリレンテレフタレート、およびポリ-1,4−シクロヘキサンテレフタレート)、ポリイミド(例えば、ポリアクリル酸イミド)、ポリエーテルイミドアタクチックポリスチレンポリカーボネートポリメタクリル酸(例えば、ポリメタクリル酸イソブチル、ポリメタクリル酸プロピル、ポリメタクリル酸エチル、およびポリメタクリル酸メチル)、ポリアクリル酸(例えば、ポリアクリル酸ブチルならびにポリアクリル酸メチル)、シンジオタクチックポリスチレン(sPS)、シンジオタクチックポリαメチルスチレン、シンジオタクチックポリジクロルスチレン、これらスチレンのコポリマーと混合物セルロース誘導体(例えば、エチルセルロースセルロースアセテートセルロースプロピオネートセルロースアセテートブチレートおよびセルロースニトレート)、ポリアルキレンポリマー(例えば、ポリエチレン、ポリプロピレン、ポリブチレンポリイソブチレンおよびポリ(4−メチル)ペンテン)、ふっ素化ポリマー(例えば、ペルフルオロアルコキシ樹脂ポリテトラフルオロエチレン、ふっ化エチレンプロピレンコポリマーポリふっ化ビニリデンおよびポリクロロトリフルオロエチレン)、塩化ポリマー(例えば、ポリ塩化ビニリデンおよびポリ塩化ビニル)、ポリスルホンポリエーテルスルホンポリアクリロニトリルポリアミドシリコン樹脂エポキシ樹脂ポリビニルアセテートポリエーテルアミドイオノマ樹脂、エラストマ(例えば、ポリブタジエンポリイソプレンおよびネオプレン)およびポリウレタンがある。また、コポリマー、例えばPENのコポリマー(例えば、(a)テレフタル酸またはそのエステル、(b)イソフタル酸またはそのエステル; (c)フタル酸またはそのエステル; (d)アルカングリコール; (e)シクロアルカングリコール(例えば、シクロヘキサンジメタンジオル); (f)アルカンジカルボキシル酸および/または(g)シクロアルカンジカルボキシル酸(例えば、シクロヘキサンジカルボキシル酸))による2,6−、1,4−、1,5−、2,7−および/または2,3−ナフタレンジカルボキシル酸またはそのエステルコポリマーと、(a)ナフタレンジカルボキシル酸またはそのエステル; (b)イソフタル酸またはそのエステル; (c)フタル酸またはそのエステル; (d)アルカングリコール; (e)シクロアルカングリコール(例えば、シクロヘキサンジメタンジオル); (f)アルカンジカルボキシル酸; および/または (g)シクロアルカンジカルボキシル酸(例えば、シクロヘキサンジカルボキシル酸)によるポリアルキレンテレフタレートのコポリマー(例えば、テレフタル酸またはそのエステルのコポリマー)と、スチレンコポリマー(例えば、スチレン−ブタジエンコポリマーおよびスチレン−アクリロニトリルコポリマー)と、4、4'−ビベンゾイル酸と、エチレングリコールも適している。また、個々の各層は、前述のポリマーならびにコポリマー2種類以上の混合物(例えば、sPSとアタクチックポリスチレンの混合物)を含むこともできる。前述のPENのコポリマー(coPEN)は、少なくとも1成分はナフタレンジカルボキシル酸を基剤とするポリマーであるとともに他成分はPETまたはcoPENなどの他のポリエステルまたはポリカーボネートであるようなペレットの混合物であってもよい。

0031

偏光子の場合において特に好適な層の組み合わせは、PEN/co−PEN、ポリエチレンテレフタレート(PET)/co−PEN、PEN/sPS、PET/sPS、PEN/Eastar、およびPET/Eastarを含む。ここで、「co−PEN」は、(前述の)ナフタレンジカルボキシル酸を基剤とするコポリマーまたは混合物のことであり、Easterはイーストマンケミカル(Eastman Chemical)社が販売しているポリシクロヘキサンテレフタレートを基剤とするコポリマーまたは混合物のことである。

0032

反射フィルムの場合において特に好適な層の組合せは、PET/Ecdel、PEN/Ecdel、PEN/sPS、PEN/THV、PEN/co−PET、およびPET/sPSを含む。ここで、「co−PET」は、(前述の)テレフタル酸を基剤とするコポリマーまたは混合物のことであり、Ecdelはイーストマンケミカル(Eastman Chemical)社が販売している熱可塑性ポリエステルのことであり、およびTHVはミネソタセントポールのミネソタマイニングアンドマニファクチャリング社(Minnesota Mining and Manufacturing Company)が販売するフルオロポリマーである。

0033

フィルム内の層の数は、フィルムの厚さ、フレキシビリティ経済性の理由により最少数の層を利用して所望の光学特性が得られるように選択される。偏光子の場合も反射フィルムの場合も、層の数は、好ましくは10,000層未満、更に好ましくは5,000層未満、更にそれより好ましくは2,000層未満である。

0034

前述のように種々の屈折率の所望の関係(ならびに多層膜フィルムの光学特性)を実現する能力は、多層膜フィルムを作成するときに利用される処理条件によって影響を受ける。延伸によって配向可能な有機質ポリマーの場合、一般にフィルムは個々のポリマーを共押出しして多層膜フィルムを形成した後に、選択温度でフィルムを延伸し、更に随意に選択温度でヒートセットすることによって作成される。あるいは、押出し工程と配向工程を同時に行うこともできる。偏光子の場合はフィルムは実質的に1方向に延伸され(1軸配向)、反射フィルムの場合はフィルムは実質的に2方向に延伸される(2軸配向)。フィルムは、延伸交差方向に自然減少(延伸比平方根と同等)するので、延伸交差方向の寸法が緩和される。これについては、単純に延伸交差方向の寸法の実質的変化を制限するように制約を加えることもできるし、延伸交差方向に積極的に延伸をかけることもできる。フィルムは、長さ配向装置(length orienter)でそうであるように機械方向に延伸をかけることもできるし、テンターを使用して幅方向に延伸をかけることもできる。予延伸時温度、延伸時温度、延伸比、ヒートセット温度、および交差延伸緩和処理は、所望の屈折率関係を有する多層膜フィルムが得られるように選択される。これら変数は、相互に依存している。従って、例えば、比較的低い延伸温度を組み合わせる場合には、比較的低い延伸比を採用できる。所望の多層膜フィルムを得るためにこれら変数の適切な組合せをどのように選択するかは、当業者には明らかであろう。しかしながら、一般に、延伸比は、延伸方向で1:2から1:10(更に望ましくは1:3から1:7)の範囲、延伸方向と垂直な方向で1:0.2から1:10(更に望ましくは1:0.3から1:7)の範囲であることが望ましい。

0035

複屈折ポリイミドのスピンコーティング(例えば、Boese他が著したJ. Polym. Sci.: Part B, 30:1321 (1992)に記載されている)、および結晶性有機化合物真空蒸着(例えばZang他が著したAppl. Phys. Letters, 59:823 (1991))などの技術を利用して適切な多層膜フィルムを作成できる。後者の技術は、結晶性有機化合物ならびに無機質材料の特定の組合せにも一部有用である。

0036

具体例としての多層膜反射ミラーフィルムならびに多層膜反射偏光子を以下の実施例の中で説明する。

0037

実施例1(PEN:THV500、449、ミラー)
1回の作業でキャストウェブ押出し加工し、その後に実験用フィルム延伸装置でフィルムを延伸することによって、449層の共押出フィルムを作成した。固有粘度0.53 dl/gのポリエチレンナフタレート(PEN)(60重量%のフェノール/40重量%のダイクロロベンゼン)を、1台の押出機によって56ポンド/時の押出速度で供給し、THV 500(ミネソタマイニングアンドマニファクチャリング社(Minnesota Mining and Manufacturing Company)が販売するフルオロポリマー)を別の1台の押出機によって11ポンド/時の押出速度で供給した。PENはスキン層上に接してあると共に、PENの50%が2枚のスキン層にあった。フィードブロック法を利用して57層を生成し、それを3台の多重積層装置にかけて、449層の押出品を作成した。キャストウェブは、厚さ20ミル、幅12インチである。パンタグラフを用いてフィルムの角部を把持して均一速度で同時に2軸方向に延伸する実験用延伸装置を使って後からこのウェブを2軸方向に延伸した。7.46cm2のウェブを約100℃のとき延伸機取付け、60秒で140℃まで加熱した。次に、サンプルが約3.5×3.5に延伸されるまで、(元の寸法を基準として)10%/秒の割合で延伸した。サンプルは、延伸直後に室温のエアでブローを行って室温まで冷却した。

0038

図3に、この多層膜フィルムの透過率を示す。曲線(a)は垂直入射時のレスポンスであり、曲線(b)はp-偏光の法線に対して60度のときのレスポンスである。

0039

実施例2(PEN:PMMA、601、ミラー)
共押出法により連続平膜作成ラインで601層の共押出フィルムを作成した。固有粘度0.57 dl/gのポリエチレンナフタレート(PEN)(60重量%のフェノール/40重量%のダイクロロベンゼン)を、押出機Aによって114ポンド/時の押出速度で供給したが、このとき、64ポンド/時でフィードブロックにいくようにし、残りをいかに説明するスキン層にいくようにした。また、PMMA(アメリカCIのCP—82)を押出機Bによってすべてフィードブロックにいくように61ポンド/時の押出速度で供給した。PENはスキン層上に接していた。押出機Aによって供給されたPENと同タイプのものを約30ポンド/時で調整する押出機Cを利用してフィードブロックが2枚の対称なスキン層を共押出しした後に、米国特許第3.801.429号に記載されているようなフィードブロックを用い、フィードブロック法を利用して151層を生成した。この押出品は2台の多重積層装置にかけられ、約601層の押出品を作成した。米国特許第3,565,985号明細書に、同様な式多重積層装置が記載されている。当該押出品は、押出機Aから総合速度50ポンド/時で供給されるPENのスキン層を共押出する別の装置にかけた。ウェブを、ウェブ温度約280°Fのときに延伸比約3.2で長さ方向に延伸した。次にフィルムを約38秒間で約310°Fまで予熱し、横方向に11%/秒の割合で延伸比4.5まで延伸した。その後、フィルムはリラクゼーションを待たずに440°Fにヒートセットした。こうして得られたフィルムの厚さは約3ミルであった。

0040

図4の曲線(a)に示すように、バンド内平均消光99%以上で、垂直入射時のハンド幅は約350nmである。吸光量は小さい値なので測定困難であるが、1%未満である。法線から50°の入射角ではs-偏光(曲線(b))およびp-偏光(曲線(c))の両方のとも同様な消光率を示したが、バンドや予想通り短波長のものに移行していた。s-偏光の赤色バンド端は、s-偏光の予想バンド幅が大きくなり、PEN層においてp-偏光によって見え屈折が低くなるため、p-偏光ほどは青色に移行しない。

0041

実施例3(PEN:PCTG、449、偏光子)
1回の作業でキャストウェブを押出し加工し、その後に実験用フィルム延伸装置でフィルムを延伸することによって、481層の共押出フィルムを作成した。フィードブロック法を利用して61層のフィードブロックを生成し、それを3台の(2×)多重積層装置にかけた。最後の多重積層装置とダイの間で厚いスキン層を加えた。固有粘度0.47 dl/gのポリエチレンナフタレート(PEN)(60重量%のフェノール/40重量%のダイクロロベンゼン)を、1台の押出機によって25.0ポンド/時の割合でフィードブロックに供給した。グリコール変性ジメチルクロヘキサンテレブタレート、(イーストマン社のPCTG)を別の1台の押出機によって25.0ポンド/時の押出速度で供給した。上記押出機の別のPEN流を、25.0ポンド/時の割合で多重積層装置後のスキン層に加えた。キャストウェブは、厚さ0.007インチ、幅12インチであった。パンタグラフを用いてフィルムの角部を把持して均一速度で1軸方向に延伸する実験用延伸装置を使って、このウェブを1軸方向に延伸した。延伸機には、幅約5.40cm(自由方向)で長さ7.45cmのウェブを取付けた。ウェブは約100℃のときにウェブに取付け、45秒で135℃まで加熱した。次に、サンプルが(グリッパ間の測定値を基準として)約6:1に延伸されるまで、(元の寸法を基準として)20%/秒の割合で延伸した。サンプルは、延伸直後に室温のエアでブローを行って室温まで冷却した。サンプル中央は、ファクター2.0の緩和が認められた。

0042

図5に、この多層膜フィルムの透過率を示すが、図中、曲線aは垂直入射時の非延伸方向の偏光の透過率であり、曲線bは入射角度60°のときの非延伸方向のp-偏光の透過率であり、曲線cは、垂直入射時の延伸方向の偏光の透過率である。400−700nmの曲線aの平均透過率は89.7%であり、400−700nmの曲線bの平均透過率は96.9%であり400−700nmの曲線cの平均透過率は4.0%であった。曲線aのRMSカラー百分率は1.05%、曲線bのRMSカラー百分率は1.44%であった。

0043

実施例4(PEN:coPEN、601、偏光子)
共押出法により連続平膜作成ラインで601層の共押出フィルムを作成した。固有粘度0.54 dl/gのポリエチレンナフタレート(PEN)(60重量%のフェノール/40重量%のダイクロロベンゼン)を押出機によって75ポンド/時の押出速度で供給し、coPENを別の押出機によって65ポンド/時の押出速度で供給した。coPENは、70モル%の2,6ナフタレンジカルボキシレートメチルエステルと、15%のジメチルイソフタレートと、15%のエチレングリコールのテレフタル酸ジメチルとのコポリマーである。フィードブロック法を利用して151層を生成した。フィードブロックは、最も薄い層と最も厚い層の厚さ比は1.22で上部から下部にかけて層の厚みが徐々に変化するフィルムスタックを生成するように構成した。光学スタックは、2台の多重積層装置にかけられて多重積層された。多重積層装置の公称増倍比は、各々、1.2と1.27である。次にフィルムは約40秒間で310°Fまで予熱し、横方向に6%/秒の割合で延伸比約5.0まで延伸した。こうして得られたフィルムの厚さは約2ミルであった。

0044

図6にこの多層膜フィルムの透過率を示す。曲線aは垂直入射時の非延伸方向の偏光の透過率であり、曲線bは入射角度60°のときのp-偏光の透過率であり、曲線cは垂直入射時の延伸方向の偏光の透過率である。垂直入射時においても60°の入射時においても、非延伸方向のp-偏光の透過率が非常に高い(80−100%)ことに注意されたい。また、曲線cで示される可視範囲(400−700nm)における延伸方向の偏光の反射率が非常に高いことにも注意されたい。500nmと650nmの間の反射率は99%近い。

0045

実施例5(PEN:sPS、481、偏光子)
イーストマンケミカル社から購入した60重量%のフェノールと40重量%のダイクロロベンゼンから成る固有粘度0.56 dl/gのポリエチレンナフタレート(PEN)と、シンジオタクチックポリスチレン(sPS)のホモポリマードウ社(Dow Corporation)からサンプリングにより、重量平均分子量=200,000ダルトン)とから、481層のフィルムを作成した。PENは外側層に接するとともに、26ポンド/時間で押出され、sPSは23ポンド/時間で押出された。フィードブロックを利用して、各層がほぼ同厚の61層のフィードブロックを生成した。フィードブロック後に、3台の(2×)多重積層装置を使った。フィードブロックに送られたものと同じPENを含む、厚さの等しいスキン層を、最後の多重積層装置の後に、総合速度22ポンド/時で追加した。幅12“のダイを通じて、ウェブを厚さ約0.011インチ(0.276mm)に押出した。押し出し温度は290℃であった。

0046

このウェブを環境条件で9日間保管した後、テンターによって1軸方向に延伸した。フィルムを25秒間で320°F(160℃)に予熱し、約28%/秒の速度で延伸比約6:1まで横方向に延伸した。延伸方向の緩和はさせなかった。仕上がったフィルムの厚さは約0.0018インチ(0.046mm)であった。

0047

図6Aに、この481層のPEN:sPS反射偏光子を光学性能を示す。曲線aは垂直入射時の非延伸方向の偏光の透過率であり、曲線bは入射角度60°のときのp-偏光の透過率であり、曲線cは、垂直入射時の延伸方向の偏光の透過率である。垂直入射時においても60°の入射時においても、p-偏光の透過率が非常に高い(80−100%)ことに注意されたい。400−700nmの曲線aの平均透過率は86.2%であり、400−700nmの曲線bの平均透過率は79.7%であった。曲線cの示す可視範囲(400−700nm)において延伸方向の偏光の反射率が非常に高いことにも注意されたい。曲線cにおいて、400nmと700nmの間のフィルムの平均透過率は1.6%である。曲線aのRMSカラー百分率は3.2%、曲線bのRMSカラー百分率は18.2%であった。

0048

実施例6(PEN:coPEN、603、偏光子)
共押出法により連続平膜作成ラインで601層の反射偏光子を作成した。固有粘度0.47 dl/gのポリエチレンナフタレート(PEN)(60重量%のフェノールプラス40重量%のダイクロロベンゼン)を1台の押出機で83ポンド(38kg)/時の押出速度で供給し、coPENを別の押出機によって75ポンド(34kg)/時の押出速度で供給した。coPENは、70モル%の2,6ナフタレンジカルボキシレートメチルエステルと、15モル%のジメチルイソフタレートと、モル15モル%のエチレングリコールのテレフタル酸ジメチルとのコポリマーである。フィードブロック法を利用して151層を生成した。フィードブロックは、最も薄い層と最も厚い層の厚さ比が1.22で上部から下部にかけて層の厚みが徐々に変化するフィルムスタックを生成するように構成した。この光学スタックは、2台の多重積層装置にかけられて多重積層された。多重積層装置の公称増倍比は、各々、1.2と1.27である。最後の多重積層装置とダイの間で、第3の押出機によって総合速度106ポンド(48kg)/時で供給される前述と同じcoPENから構成されるスキン層を追加した。次にフィルムは約30秒間で300°F(150℃)まで予熱し、横方向に初期速度20%/秒合で延伸比約6まで延伸した。こうして得られたフィルムの厚さは約0.035インチ(0.089mm)であった。

0049

図6Bに実施例6の偏光子の光学性能を示す。曲線aは垂直入射時の非延伸方向の偏光の透過率であり、曲線bは入射角度50°のときのp-偏光の透過率であり、曲線cは垂直入射時の延伸方向の偏光の透過率である。非延伸方向の偏光の透過率が非常に高いことに注意されたい。400−700nmの範囲で曲線aの平均透過率は87%である。また、曲線cで示される可視範囲(400−700nm)における延伸方向の偏光の反射率が非常に高いことにも注意されたい。400nmと700nmの間の曲線cの平均透過率は2.5%である。曲線bのRMSカラー百分率は5%である。

0050

II.半透過反射型ディスプレイ
以下のディスプレイ実施例の説明において、説明を簡単にするために、各システム構成要素は各独立部品として示す。しかしながら、システム構成要素の一部は互いに積層されたり、無反射コーティングのような別の構成要素を含む可能性があることを理解されたい。種々偏光子の整列配置方法は、図面上に矢印で示した。光線の偏光についても同様に図面中に矢印で示した。

0051

図7に、本発明の半透過反射体13を基礎とする反射型ディスプレイの第1の実施例を示す。ディスプレイは、LCDパネル11と、前面ならびに背面2色性偏光子10と12と、半透過反射体13とを備える。

0052

図7ディスプレイ構成において、半透過反射体13は、2色性偏光子12が透過した偏光の反射率を最大限にするように好適に整列配置される。つまり、2色性偏光子12の透過軸は、反射偏光素子8の光反射軸に対して整列配置される。従来のディスプレイの場合にそうであったように、2色性偏光子12の透過軸は、2色性偏光子10の消光軸に対して整列配置される。光線31と33は、いずれも2色性偏光子10が透過した偏光である。光線33について言うと、液晶パネル11は光線31の偏光状態に影響を及ぼさずに光線31を透過する状態となっている。次いで、光線33は2色性偏光子12に吸収される。2色性偏光子12が光線33を吸収することによりLCDが暗く見える。光線31について言うと、液晶パネルは、2色性偏光子12によって光線31が透過され、半透過反射体13によって拡散的に反射されて透過光線32を形成するように光線31の偏光を回転する状態となっている。(説明を簡明にするために、拡散反射光線32は1本だけしか記載していない。しかしながら、図1に関連して前述したように、実際には半透過反射体13によって多数の光線が拡散反射されることを理解されたい。)

0053

この拡散反射光線32を生成する光線31の反射がLCDを照らすことにより、バックグラウンド外観が拡散ホワイトすなわちニュートラルグレー(または、透過軸方向の偏光子の吸光率によっては、緑がかった色)を呈する。図7のディスプレイの全体効果は、拡散光のバックグラウンド上に暗い文字が表示されるというものである。

0054

図7に記載されている高反射偏光素子8を使用することにより、背面反射体に研磨アルミニウムを使用しているディスプレイと比較して、表示輝度が10%以上向上する。2軸配光によって作られる米国特許出願第08/402,041号明細書に記載の多層膜ミラーもこの用途に利用できる。

0055

図8に、反射型ディスプレイの代替実施例を示す。該ディスプレイは、前面2色性偏光子10と、LCDパネル11と、半透過反射体13と、吸光体33を備える。反射偏光素子8の透過軸は、図8各偏光子の横の矢印で示されているように、2色性偏光子10の透過軸に整列配置されていることが望ましい。

0056

液晶パネル11は光線43の偏光状態に影響を及ぼすことなく光線43を透過する。次いで、光線43は半透過反射体13によって透過されて、吸光体33に吸収される。これにより、LCD11内に暗画素が生じる。2色性偏光子10によって透過された光線41の配光はLCDによって回転が加えられ、半透過反射体13によって拡散反射されて反射光線42となる。反射光線42がディスプレイを透過することにより、拡散照明様相を呈する。図8のディスプレイの全体効果は、拡散光のバックグラウンド上に暗い文字が表示されるというものである。

0057

後部2色性偏光子12を取り除いたため、図8の光線42の反射強度図7の光線32の反射強度よりも大きい。後部2色性偏光子の除去により、システムにおける吸収損失が減り、従って、ディスプレイの明るさとコントラストが増す。後部2色性偏光子(図7の12)に関係する吸収損失は、5−20%/パスである 5 to 20%で、全体で10−40%の損失となる。従って、図8における後部2色性偏光子の除去により損失が大幅に減り、標準的な反射型ディスプレイと比較した場合、図8記載のディスプレイは著しく明るさを増す。図8記載のディスプレイは、標準的な反射型ディスプレイより20−50%明るく、図7記載のディスプレイよりも10−40%明るい

0058

図7および図8の反射型ディスプレイ以外にも、偏光保存拡散素子6と反射偏光素子8との組合せも半透過反射型ディスプレイの半透過反射フィルムに利用できる。図9Aと図9Bに、半透過反射型ディスプレイに半透過反射体13を使用したものを示す。この半透過反射型ディスプレイは、LCDパネル11と、前部および後部2色性偏光子10と12、半透過反射体13と、バックライト15とを備えている。

0059

図9Aにおいて、反射偏光素子8の高反射軸は、2色性偏光子12の透過軸に効果的に整列配置されている(すなわち、2色性偏光子12と反射偏光素子8とは、図9Aの各偏光子の横の矢印で示されているように「交差配置」される)。環境光条件において、図9Aのディスプレイは、図7に関連して前述されたように機能する。光線57は、後部2色性偏光子12に吸収され、光線58は半透過反射体13によって拡散反射されて反射光線59となる。バックライティング条件下において、光線60は半透過反射体13によって透過され、2色性偏光子12に吸収される。光線50は、まず半透過反射体13によって反射され、後部2色性偏光子12によって、リサイクルされて吸収される。しかしながら、反射偏光素子および2色性偏光子12両方の効率の悪さは、2色性偏光子12を介した透過に合わせて適切に偏光された光の一部が半透過反射体13によって透過されて、バックライティング時の視認性が提供されることを意味する。

0060

補助照明条件下での性能を向上するためには、図9Bの偏光子整列配置が望ましい。図9Bについて言うと、反射偏光素子8の透過軸は、2色性偏光子12の透過軸に整列配置されている。この場合、光線55の偏光状態が変えられ、2色性偏光子10によって光線55が透過される。LCD11は光線54の偏光に影響を及ぼさないので、光線54は2色性偏光子10によって吸収される。その全体効バックライティング時に拡散ホワイトのバックグラウンド上に暗い文字が出るというものである。しかしながら、この実施例ではバックライト15が図9Aの半透過反射体13の反射体ほど能率的でないために、環境視認性が低下する。

0061

図9Aと図9Bに記載の実施例の場合、反射偏光素子8は、0°(図9Bのように、反射偏光素子の透過軸を2色性偏光子12の透過軸に整列配置した状態)から90°(図9Aのように、反射偏光素子8の高反射軸を色性偏光子12の透過軸に整列配置した状態)までのいずれの角度にも配向できる。配向は、特定ディスプレイ装置の環境ならびに補助照明条件下における所望性能と、各条件下においてディスプレイを使用する相対時間量と、全体所望表示外観によって決定される。

0062

図8の反射型ディスプレイに関連して前述したように、図9Aと9Bに記載したような半透過反射型ディスプレイの明るさは、後部2色性偏光子12を半透過反射体13にかえることによって増すことができる。図10にそのような半透過反射型ディスプレイの一実施例を示す。

0063

環境照明条件下では、図10のディスプレイは、図8の反射型ディスプレイと同様に作用する。光線61はバックライトによって弱く反射されて反射光線65となり、結果として暗い外観を呈する。光線62は反射偏光素子によって強く反射されて反射光線64となり、結果として拡散照明の外観を呈する。

0064

バックライティング時、図10のディスプレイは、環境光条件下の同じディスプレイに対して画像を反転する。バックライティング時、光線67は前部2色性偏光子10に吸収され、光線66は前部2色性偏光子10によって透過される。バックライト光線68は、半透過反射体13によってリサイクルされるので、表示照明に利用される光が増加する。図10のディスプレイのバックライティング時の全体効果は、暗いバックグラウンド上に自照文字が出るというものである。更に、図10のディスプレイは、場合によっては従来の純粋に反射型または従来の純粋にバックライト型のディスプレイよりも明るい。

0065

このように、図10の半透過反射型ディスプレイの実施例の場合、ディスプレイのコントラストは、バックライト表示と環境表示とで反転される。すなわち、環境照明下で拡散ホワイトのバックグラウンドに対して暗い文字がディスプレイ上に表示されるとしても、バックライティング時には暗いバックグラウンドに対して文字が明るく表示される。この効果は、多くのディスプレイ装置に効果的かつ有用である。

0066

環境ならびにバックライト条件間反転画像表示が必要ない装置の場合、ディスプレイに制御機構を追加することにより、バックライト条件または環境条件の一方におけるディスプレイのコントラストを電子的に反転して所望の表示外観を得ることができる。

0067

光線68と69で示されるように、反射偏光素子8には光リサイクル効果がある。非透過偏光(光線68と69)は、従来の後部2色性偏光子に吸収されるのではなく、バックライト15に戻し反射され、そこでランダマイズされる。その後、この反射光の一部は好適偏光状態でバックライトシステムから再び出てきて、反射偏光素子8によって透過されるので、これによりバックライト条件下で照明に利用される光量が増加する。従って、ディスプレイの性能、明るさ、およびコントラストが向上する。

0068

図11に、図10のディスプレイを示すが、図11にはバックライト15と半透過反射体13の間に載置される吸光フィルムが更に含まれている。この実施例では、吸光フィルム16は好適相対照明(すなわち、低吸収)であり、(図10と比較して)バックライト条件下における表示外観にさほど影響を及ぼさず、環境照明条件下における視認性を最適化するために存在する。当該吸光フィルムは2色性偏光子であってもよい。吸光フィルム16は、バックライト15からの拡散反射光線74の一部を吸収することにより、バックライト15の実効吸収を増し、環境照明条件下での表示コントラストを高くする。環境照明条件下における全体効果は、暗いバックグラウンドに拡散照明された文字が出て、バックライティング時には拡散ホワイトのバックグラウンドに暗い文字が出るというものである。繰り返しになるが、画像反転が要らない場合は、制御電子機器を利用することにより、バックライティング条件または環境条件下のディスプレイのコントラストを反転して、所望の表示外観を得ることができる。

0069

図12に、好適バックライト表示用セットアップした半透過反射型ディスプレイを示す。2色性偏光子10の透過軸と半透過反射体13の反射偏光素子の高反射軸とは整列配置されている。光線81は、半透過反射体13から反射されて反射光線87となる。光線82は、バックライト15によって反射されて反射光線83となる。光線86は半透過反射体13によって反射され、光線85はディスプレイを介して透過され、光線84は前部2色性偏光子10に吸収される。このディスプレイ構成において、全体結果効果は、バックライティング時には拡散ホワイトのバックグラウンドに暗い文字が出て、環境光で見るときには暗いバックグラウンドに自照文字が出るというものである。

0070

図13に、半透過反射型ディスプレイの代替実施例を示す。この半透過反射型ディスプレイでは、半透過反射体は反射偏光素子8を備えるが拡散素子を備えないことを特徴とする。図13の光線は、図12の光線と同様の影響を受ける。図13に記載のように、2色性偏光子10の透過軸と反射偏光素子の高反射軸とが整列配置される場合には、その効果は、バックライティング時にはミラー状のバックグラウンドに暗い文字が出て、環境光では暗いバックグラウンドにミラー状の文字が出るというものとなる。2色性偏光子10と反射偏光素子とが整列配置される場合(不図示)、その効果は、環境光のときはミラー状のバックグラウンドに暗い文字が出て、バックライティング時には暗いバックグラウンドにミラー状の文字が出るというものとなる。前述のように、画像反転が要らない場合には、表示の今後ラストを電子的に反転する制御回路により、バックライト表示ならびに環境表示の両環境において一貫した外観を提供する。

0071

半透過反射体13が他のシステム構成要素に積層されないディスプレイの場合、反射偏光素子の片側または両側を無反射コーティングでコーティングすることが好ましい場合がある。この場合の無反射とは、半透過反射体13の透過軸のことを言う。反射型LCDでは光は各構成要素を2回ずつ横断し、表面反射による損失はディスプレイの性能に影響を及ぼす可能性がある。無反射処理が施された反射偏光子の具体例は前述の米国特許出願第08/402,041号明細書に記載されている。

0072

前述ディスプレイのいずれかの性能を向上するための別の方法は、構成要素を積層してエアギャップを無くすことである。例えば、図7−13に記載のディスプレイのいずれかの、いずれか好適実施例は、半透過反射体13の拡散素子6として拡散接着剤を含む。これにより、図7図9A、および図9Bの実施例において半透過反射体を後部2色性偏光子12に積層することができ、また、図7図10−13の実施例において半透過反射体をLCDの後ろに積層することができる。これにより、表面反射による損失が減少し、システムのスループットが増し、それ故、表示性能、明るさ、コントラストが向上する。例えば、反射偏光素子8の表面反射により光の12%が反射される場合、ディスプレイのコントラストは8:1が限界である。反射偏光素子をLCDパネルの下側に積層した場合には、反射偏光素子の下側での残留表面反射は6%で、限界コントラストは16:1である。反射偏光素子8の下側に無反射コーティングを施した場合には、残りの6%は1または2%まで減る。これに比例してコントラストは各々100:1または50:1にまで上がり、これは著しい向上である。この解析では、拡散体ならびにLCプレートとなど、他のすべての構成要素を積層することを前提にした。反射型ディスプレイの場合、黒色吸光体と反射偏光素子の裏とを積層することが可能であり、または、反射偏光素子の裏に吸光性黒色インク等の適切な吸光コーティングで被覆することも可能である。黒色吸光体の多くは表面が粗いので、黒色吸光体を反射偏光子に積層できないこともある。そのような場合、前述のように反射偏光素子の裏側に無反射コーティングを施すことが望ましい場合がある。

0073

実施形態
1.表示手段と、
表示手段の後ろに位置する半透過反射体であって、
拡散素子と、
2種類の材料から成る各層平均厚0.5ミクロン以下の多層膜を含む反射偏光素子であって、更にフィルム平面に垂直な入射光の平均透過率が少なくとも80%であって、フィルム平面に対する法線から60°の入射光の平均透過率が少なくとも80%である反射偏光素子とを具備する半透過反射体と、
半透過反射体の後ろに位置する吸光体と、
を具備する反射型ディスプレイ。
2.表示手段の前側に位置する2色性偏光子を更に備えたことを特徴とする、形態1に記載の反射型ディスプレイ。
3.反射偏光素子の透過軸と第1の2色性偏光子の透過軸とが有効に整列配置されることを特徴とする、形態2に記載の反射型ディスプレイ。
4.表示手段と半透過反射体の間に位置する第2の2色性偏光子を更に備えたことを特徴とする、形態3に記載の反射型ディスプレイ。
5.反射偏光素子の透過軸と第2の2色性偏光子の消光軸とが有効に整列配置されることを特徴とする、形態4に記載の反射型ディスプレイ。
6.反射偏光素子は、フィルム平面に垂直な入射光の平均反射率が少なくとも80%であって、フィルム平面に対する法線から60°の入射光の平均反射率が少なくとも80%であることを更に特徴とする、形態1に記載の反射型ディスプレイ。
7.反射偏光素子は、フィルム平面に垂直な入射光の平均反射率が少なくとも90%であって、フィルム平面に対する法線から60°の入射光の平均反射率が少なくとも90%であることを更に特徴とする、形態1に記載の反射型ディスプレイ。
8.反射偏光素子は、フィルム平面に垂直な入射光の平均反射率が少なくとも95%であって、フィルム平面に対する法線から60°の入射光の平均反射率が少なくとも95%であることを更に特徴とする、形態1に記載の反射型ディスプレイ。

図面の簡単な説明

0074

図1は、本発明の半透過反射体.のブロック図を示す。
図2Aは、好適な反射偏光素子を示す。
図2Bは、好適な反射偏光素子を示す。
図2Cは、好適な反射偏光素子を示す。
図3は、実施例1の多層膜光学フィルムの透過スペクトルを示す。
図4は、実施例2の多層膜光学フィルムの透過スペクトルを示す。
図5は、実施例3の多層膜光学フィルムの透過スペクトルを示す。
図6は、実施例4の多層膜光学フィルムの透過スペクトルを示す。
図6Aは、実施例5の多層膜光学フィルムの透過スペクトルを示す。
図6Bは、実施例6の多層膜光学フィルムの透過スペクトルを示す。
図7は、反射型ディスプレイの第1の実施例を示す。
図8は、反射型ディスプレイの代替実施例を示す。
図9A及び図9Bは、半透過反射型ディスプレイの第1の実施例を示す。
図10は、半透過反射型ディスプレイの代替実施例を示す。
図11は、半透過反射型ディスプレイの代替実施例を示す。
図12は、半透過反射型ディスプレイの代替実施例を示す。
図13は、半透過反射型ディスプレイの代替実施例を示す。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • サイ コーポレーションの「 自動偏光調節装置及び方法」が 公開されました。( 2021/09/30)

    【課題・解決手段】本発明は、自動偏光調節装置及び方法に関するもので、さらに詳細には、カメラに入射する光の透過偏光方向を電気で調節して、ユーザの希望する偏光イメージを生成する自動偏光調節装置及び方法を提... 詳細

  • 日東電工株式会社の「 位相差フィルムの製造方法」が 公開されました。( 2021/09/30)

    【課題】複屈折Δnが大きい樹脂フィルムを用いて、幅方向の面内位相差のばらつきが小さい斜め延伸位相差フィルムを不具合なく製造し得る方法を提供すること。【解決手段】本発明の位相差フィルムの製造方法は、未延... 詳細

  • 三星エスディアイ株式会社の「 光学フィルム用粘着剤、および光学フィルム用粘着剤層」が 公開されました。( 2021/09/30)

    【課題】加熱処理および光硬化処理の少なくとも一方を行って得られる粘着剤層が高い屈折率を有し、過酷な環境下(高温、高湿、ヒートショック等)における耐久性を有するとともに、透明性にも優れる粘着剤層を得る手... 詳細

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ