図面 (/)

技術 入力ガス流中の不純物の濃度レベルを測定する装置およびその方法、入力ガス流中の酸素の濃度レベルを測定する装置およびその方法

出願人 ザ・トラスティーズ・オブ・プリンストン・ユニバーシティ
発明者 ケビン・ケイ・レーマンチェン・ユウェン-ビン・ヤン
出願日 2003年7月28日 (16年6ヶ月経過) 出願番号 2004-569669
公開日 2006年9月7日 (13年5ヶ月経過) 公開番号 2006-520458
状態 不明
技術分野
  • -
主要キーワード 処理制御器 動作パラメタ 事前変換 工業処理 部分体積 所望ガス 水分トラップ 空胴内
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2006年9月7日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (2)

課題・解決手段

入力ガス流内不純物定量化する装置および方法は、不純物を、出力ガス流内の検出可能な種類に変換する触媒を用い、その後、検知器によりその検出可能な種類の濃度が測定される。これにより、ガス流内の不純物の分析に、高レベル感度を達成する。

概要

背景

多くの工業処理では、流動するガス流および液体における追跡種の濃度は、高速度に、および高精度で測定され、および分析されなければならない。多くの場合、汚染物質の濃度が、最終生産物品質に決定的な意味を持つので、こうした測定、分析が必要である。N2、O2、H2、Ar、Heなどのガスは、集積回路の製造に使われており、例えば、これらのガスが10億分の1(ppb)レベルで存在しても、演算回路を破損しその歩留まりを減少させることになる。したがって、半導体産業で用いられる高純度ガスメーカーにとり、こうした不純物を比較的高い感度モニターできることは重要である。他の産業アプリケーションにおいても、様々な不純物が検出されなければならない。これらの分析アプリケーションの多くでは、分光技術が、不純物のできるだけリアルタイムな定量を実行し、その測定が高感度であり迅速であるので好まれている。

分析技術としての吸収タイプ分光法は、高感度、マイクロセカンドオーダー応答時間、中毒からの免疫を提供し、および研究対象の種類以外の分子種からの干渉を制限する。吸収分光法は、様々な分子種を検出し、あるいは同定することが出来る。したがって、吸収分光法は、重要な追跡種を検出する一般的な方法を提供している。気相では、その種類が、吸収強度を1組の鋭いスペクトル線に集中させるので、この方法の感度および選択性が最適である。干渉する種類の大部分との差別化のために、細長いスペクトル線が使用可能である。

分光法は、高純度ガス内のガス状汚染物に対する100万分の1(ppm)レベルの検出を得る。場合によれば、ppbレベルの検出感度が達成可能である。従って、いくつかの分光方法が、以下を含む、ガス内の量的汚染監視といったアプリケーションに適用されている:従来の長経路長セル光音響分光法周波数変調分光法、および空胴内レーザ吸収分光法の吸収測定装置。これらの方法には、その使用を困難にし、産業アプリケーションを非実用的にするいくつかの特徴があり、これは、レーマン(Lehmann)に対して発行された特許文献1において議論されている。したがって、これらは、主に実験室での調査に制限されてきた。

近年、空洞リングダウン分光法(CRDS)として知られる分光技術は、科学、産業用処理制御、および大気中の微量ガス検出に対するアプリケーションにおいて、重要な分光技術となっている。CRDSは、従来方法の感度が不十分な低吸収レジームにおける、優れた光吸収測定技術として注目されている。CRDSは、高フィネス光学共振器(high-finess optical resonator)内の光子平均寿命を、観察可能吸収感度として利用している。

通常、この共振器は、安定した光学共振器を形成するよう適切に構成された、名目上同等で狭帯域の1組の超高反射率誘電体鏡から形成されている。鏡を通して共振器にレーザパルス注入され、光子の往復走行時間、共振器の長さ、吸収断面積ならびに種類の数密度、および共振器の固有損失回折損失が取るにたらないときに、主に周波数依存鏡の反射率から生じる)の原因となるファクターに依存する平均寿命を示す。したがって、光吸収の測定は、従来のパワー比率の測定から、減衰時間の測定に変えられることになる。CRDSの最終的感度は、共振器の固有の損失の大きさによって決定されるが、これは、超低損失光学素子の製造を可能にする、スーパーポリッシングなどの技術で、損失を最小にすることができる。

ベースのCRDSシステムへの種々の新規アプローチは、レーマン(Lehmann)他に対して発行された特許文献2、特許文献3、特許文献4、特許文献5に提供されており、参照により本明細書に組み込まれる。これらのアプローチは、2つの反射要素、あるいはプリズム状の要素により形成された、近共焦点(near-confocal)共振器の使用を教示している。

リング‐ダウン空洞分光学法は、他の分光方法と比べると、実装がより簡単で、さらにより安価であり、ある材料を検出する非常に高レベルの感度を有しているが、非常に低濃度で存在しているとき、これはある種類に対しては、まだ十分な感度を提供していないこともある。
米国特許第5,528,040号明細書
米国特許第5,973,864号明細書
米国特許第6,097,555号明細書
米国特許第6,172,823 Bl号公報
米国特許第6,172,824 Bl号公報

概要

入力ガス流内の不純物を定量化する装置および方法は、不純物を、出力ガス流内の検出可能な種類に変換する触媒を用い、その後、検知器によりその検出可能な種類の濃度が測定される。これにより、ガス流内の不純物の分析に、高レベルな感度を達成する。

目的

本発明は、ガス流内の不純物の分析に、高レベルな感度を達成する装置および方法を提供する

効果

実績

技術文献被引用数
- 件
牽制数
- 件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

該当するデータがありません

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

入力ガス流内不純物濃度レベルを測定する装置であって、実質的に全ての不純物を、出力ガス流内の検出可能な種類へ変換するよう選択されている、触媒を含む触媒コンバータと、触媒コンバータへ結合され、出力ガス流中の検出可能な種類の濃度レベルを測定するよう適合された検知器とを含む装置。

請求項2

不純物が酸素である、請求項1に記載の装置。

請求項3

不純物がオゾンである、請求項1に記載の装置。

請求項4

水素と触媒とが接触するよう適合され、さらに、触媒コンバータへ結合された水素源をさらに含む、請求項1に記載の装置。

請求項5

水素源が水素発生器を含む、請求項4に記載の装置。

請求項6

水素源が触媒上に事前吸着された水素を含む、請求項4に記載の装置。

請求項7

触媒がニッケルを含む、請求項1に記載の装置。

請求項8

ニッケルが、ニッケルウールおよびニッケルガーゼの少なくとも1つを含む、請求項7に記載の装置。

請求項9

触媒コンバータが触媒を収容するチャンバを含み、そのチャンバが、本質的に不活性材料から成る内部表面を有する、請求項1に記載の装置。

請求項10

不活性材料が銅を含む、請求項9に記載の装置。

請求項11

検知器が、電磁放射の吸収を測定するよう適合されている、請求項1に記載の装置。

請求項12

電磁放射が赤外線を含む、請求項11に記載の装置。

請求項13

検知器が、フーリエ変換赤外分光計を含む、請求項11に記載の装置。

請求項14

検知器が、空洞リングダウン分光計を含む、請求項1に記載の装置。

請求項15

検知器が、蛍光分光計を含む、請求項1に記載の装置。

請求項16

検知器が、電気化学セルを含む、請求項1に記載の装置。

請求項17

入力ガス流内の酸素の濃度レベルを測定する装置であって、触媒を収容するチャンバを含む触媒コンバータであって、本質的に不活性な材料から成る内部表面を有し、触媒は、実質的に全ての酸素を出力ガス流内の水に変換するよう選択されているチャンバと、触媒コンバータへ結合され、水素と触媒との接触を提供するよう適合された水素源と、触媒コンバータと結合されて、出力ガス流内の水の濃度のレベルを測定するように適合させられる検知器とを含む装置。

請求項18

触媒がニッケルを含み、不活性材料が銅を含み、さらに、検知器が空洞リング‐ダウン分光計を含む、請求項17に記載の装置。

請求項19

触媒を含む触媒コンバータを用いて、入力ガス流内の不純物の濃度レベルを決定する方法であって、入力ガス流を触媒コンバータへ入力するステップと、出力ガス流内の不純物を検出可能な種類に変換するステップと、出力ガス流内の検出可能な種類の存在を検出するステップとを含む方法。

請求項20

入力ガス流における、検出可能な種類のバックグラウンドレベルの存在を検出するステップを、入力ステップの前に、あるいは入力ステップと実質的に同時の何れかにさらに含む、請求項19に記載の方法。

請求項21

検出ステップが、検出可能な種類の濃度レベルを測定するステップをさらに含む、請求項19に記載の方法。

請求項22

不純物が酸素である、請求項19に記載の方法。

請求項23

不純物がオゾンである、請求項19に記載の方法。

請求項24

水素源を提供するステップと、水素と触媒との接触を提供するよう水素源を構成するステップとをさらに含む、請求項19に記載の方法。

請求項25

水素源を提供するステップが、水素発生器を提供することを含む、請求項24に記載の方法。

請求項26

水素源を提供するステップが、触媒上へ水素を事前吸着することを含む、請求24に記載の方法。

請求項27

触媒がニッケルを含む、請求項19に記載の方法。

請求項28

ニッケルが、ニッケルウールおよびニッケルガーゼの少なくとも1つを含む、請求項27に記載の方法。

請求項29

触媒コンバータが、本質的に不活性材料から成る内部表面を有するチャンバ、そのチャンバに収容された触媒を含む、請求項19に記載の方法。

請求項30

不活性材料が銅を含む、請求項29に記載の方法。

請求項31

検出ステップが、電磁放射の吸収を測定するステップをさらに含む、請求項19に記載の方法。

請求項32

検出ステップが、赤外線の吸収を測定するステップをさらに含む、請求項19に記載の方法。

請求項33

検知器が、フーリエ変換赤外分光計を含む、請求項19に記載の方法。

請求項34

上記検出ステップが、検出可能な種類を検出するよう、空洞リング‐ダウン分光計を適合させるステップと、検出可能な種類の濃度レベルを測定するステップとをさらに含む、請求項19に記載の方法。

請求項35

上記検出ステップが、検出可能な種類を検出するよう、電気化学セルを適合させるステップと、検出可能な種類の濃度レベルを測定するステップとをさらに含む、請求項19に記載の方法。

請求項36

触媒を収容したチャンバを含み、そのチャンバが本質的に不活性材料からなる内部表面を有している触媒コンバータを用いるために、入力ガス流内の酸素濃度を測定する方法であって、入力ガス流を触媒コンバータへ入力するステップと、水素を触媒コンバータに入力するステップと、実質的に全ての酸素を出力ガス流内の水に変換するステップと、出力ガス流内の水の濃度レベルを測定するステップとを含む方法。

請求項37

触媒がニッケルを含み、不活性材料が銅を含み、および決定ステップが、電磁放射の吸収を測定するよう、空洞リング‐ダウン分光計を適合させるステップを含む、請求項36に記載の方法。

請求項38

入力ガス流内の不純物濃度を測定する装置であって、実質的に全ての不純物を、出力ガス流内の検出可能な種類へ変換する触媒を含む触媒コンバータと、触媒コンバータに入力ガス流を入力する入力手段と、出力ガス流内の検出可能な種類の存在を検出する検出手段とを含む装置。

請求項39

検出手段が、検出可能な種類の濃度レベルを測定する手段をさらに含む、請求項38に記載の装置。

請求項40

不純物が酸素である、請求項38に記載の装置。

請求項41

不純物がオゾンである、請求項38に記載の装置。

請求項42

水素と触媒との接触を提供する手段をさらに含む、請求項38に記載の装置。

請求項43

接触を提供する手段が、水素発生器を含む、請求項42に記載の装置。

請求項44

接触を提供する手段が、触媒上に事前吸着された水素を含む、請求項42に記載の装置。

請求項45

触媒がニッケルを含む、請求項38に記載の装置。

請求項46

ニッケルが、ニッケルウールおよびニッケルガーゼの少なくとも1つを含む、請求項45に記載の装置。

請求項47

触媒コンバータが、配送前の損失がなく、実質的に不純物の全てを触媒に配送する手段を含む、請求項38に記載の装置。

請求項48

配送手段が、本質的に不活性材料から成る内部表面を有するチャンバを含み、触媒がチャンバ内に収容されている、請求項47に記載の装置。

請求項49

不活性材料が銅を含む、請求項47に記載の装置。

請求項50

検出手段が、電磁放射の吸収を測定する手段を含む、請求項38に記載の装置。

請求項51

検出手段が赤外線の吸収を測定する手段を含む、請求項38に記載の装置。

請求項52

測定手段が空洞リング‐ダウン分光計を含む、請求項51に記載の装置。

請求項53

測定手段が電気化学セルを含む、請求項51に記載の装置。

請求項54

測定手段がフーリエ変換赤外分光計を含む、請求項38に記載の装置。

技術分野

0001

本発明は、ガスサンプル内不純物分析に関する。さらに言えば、本発明は、ガスサンプル内の不純物検出の感度を増加させるために、触媒を用いることに関する。

背景技術

0002

多くの工業処理では、流動するガス流および液体における追跡種の濃度は、高速度に、および高精度で測定され、および分析されなければならない。多くの場合、汚染物質の濃度が、最終生産物品質に決定的な意味を持つので、こうした測定、分析が必要である。N2、O2、H2、Ar、Heなどのガスは、集積回路の製造に使われており、例えば、これらのガスが10億分の1(ppb)レベルで存在しても、演算回路を破損しその歩留まりを減少させることになる。したがって、半導体産業で用いられる高純度ガスメーカーにとり、こうした不純物を比較的高い感度でモニターできることは重要である。他の産業アプリケーションにおいても、様々な不純物が検出されなければならない。これらの分析アプリケーションの多くでは、分光技術が、不純物のできるだけリアルタイムな定量を実行し、その測定が高感度であり迅速であるので好まれている。

0003

分析技術としての吸収タイプ分光法は、高感度、マイクロセカンドオーダー応答時間、中毒からの免疫を提供し、および研究対象の種類以外の分子種からの干渉を制限する。吸収分光法は、様々な分子種を検出し、あるいは同定することが出来る。したがって、吸収分光法は、重要な追跡種を検出する一般的な方法を提供している。気相では、その種類が、吸収強度を1組の鋭いスペクトル線に集中させるので、この方法の感度および選択性が最適である。干渉する種類の大部分との差別化のために、細長いスペクトル線が使用可能である。

0004

分光法は、高純度ガス内のガス状汚染物に対する100万分の1(ppm)レベルの検出を得る。場合によれば、ppbレベルの検出感度が達成可能である。従って、いくつかの分光方法が、以下を含む、ガス内の量的汚染監視といったアプリケーションに適用されている:従来の長経路長セル光音響分光法周波数変調分光法、および空胴内レーザ吸収分光法の吸収測定装置。これらの方法には、その使用を困難にし、産業アプリケーションを非実用的にするいくつかの特徴があり、これは、レーマン(Lehmann)に対して発行された特許文献1において議論されている。したがって、これらは、主に実験室での調査に制限されてきた。

0005

近年、空洞リングダウン分光法(CRDS)として知られる分光技術は、科学、産業用処理制御、および大気中の微量ガス検出に対するアプリケーションにおいて、重要な分光技術となっている。CRDSは、従来方法の感度が不十分な低吸収レジームにおける、優れた光吸収測定技術として注目されている。CRDSは、高フィネス光学共振器(high-finess optical resonator)内の光子平均寿命を、観察可能吸収感度として利用している。

0006

通常、この共振器は、安定した光学共振器を形成するよう適切に構成された、名目上同等で狭帯域の1組の超高反射率誘電体鏡から形成されている。鏡を通して共振器にレーザパルス注入され、光子の往復走行時間、共振器の長さ、吸収断面積ならびに種類の数密度、および共振器の固有損失回折損失が取るにたらないときに、主に周波数依存鏡の反射率から生じる)の原因となるファクターに依存する平均寿命を示す。したがって、光吸収の測定は、従来のパワー比率の測定から、減衰時間の測定に変えられることになる。CRDSの最終的感度は、共振器の固有の損失の大きさによって決定されるが、これは、超低損失光学素子の製造を可能にする、スーパーポリッシングなどの技術で、損失を最小にすることができる。

0007

ベースのCRDSシステムへの種々の新規アプローチは、レーマン(Lehmann)他に対して発行された特許文献2、特許文献3、特許文献4、特許文献5に提供されており、参照により本明細書に組み込まれる。これらのアプローチは、2つの反射要素、あるいはプリズム状の要素により形成された、近共焦点(near-confocal)共振器の使用を教示している。

0008

リング‐ダウン空洞分光学法は、他の分光方法と比べると、実装がより簡単で、さらにより安価であり、ある材料を検出する非常に高レベルの感度を有しているが、非常に低濃度で存在しているとき、これはある種類に対しては、まだ十分な感度を提供していないこともある。
米国特許第5,528,040号明細書
米国特許第5,973,864号明細書
米国特許第6,097,555号明細書
米国特許第6,172,823 Bl号公報
米国特許第6,172,824 Bl号公報

発明が解決しようとする課題

0009

したがって、非常に低濃度のガスサンプルに存在するある種類の簡便な定量を可能にする分析技術の必要性は続くことになる。

課題を解決するための手段

0010

従来技術の短所に鑑みて、本発明は、ガス流内の不純物の分析に、高レベルな感度を達成する装置および方法を提供する。

0011

1つの態様では、本発明は、入力ガス流内の不純物の濃度レベルを測定する装置である。本装置触媒コンバータを含んでおり、この触媒コンバータは、実質的に全ての不純物を、出力ガス流内の検出可能な種類へ変換するよう選択された触媒、および、触媒コンバータへ結合され、出力ガス流内の検出可能な種類の濃度レベルを測定するよう適合された検知器を含んでいる。

0012

他の態様では、本発明は、触媒を含む触媒コンバータの使用により、入力ガス流内の不純物の濃度レベルを測定する方法である。本方法は、入力ガス流を触媒コンバータに入力するステップ;不純物を出力ガス流内の検出可能な種類に変換するステップ;および、出力ガス内流の検出可能な種類の存在を検出するステップを含んでいる。

0013

さらに他の態様では、本発明は、入力ガス流内の不純物の濃度レベルを測定する装置である。本装置は、実質的に全ての不純物を、出力ガス流内の検出可能な種類へ変換する触媒を含む触媒コンバータ、および触媒コンバータ内へ入力ガス流を入力する入力手段;および、出力ガス流内の検出可能な種類の存在を検出する検出手段を含んでいる。

発明を実施するための最良の形態

0014

2001年12月12日に出願された米国特許出願第10/017,367号;2002年5月29日に出願された米国特許出願第10/157,400号;米国特許第5,528,040号明細書;米国特許第5,973,864号明細書;米国特許第6,097,555号明細書;米国特許第6,172,823 Bl号公報;および、米国特許第6,172,824 Bl号公報の全ての開示は、参照により明白に本明細書に組み込まれる。

0015

次に、本発明を図を参照して説明するが、これは制限よりも、むしろ説明を意図するものであり、これにより、本発明の説明が容易になされることが含まれている。図は、正しい縮尺となっておらず、設計図を意図したものではない。

0016

本発明は、ガス流内の低レベル不純物濃度を、質的に測定する装置および方法を提供する。概して、この装置および方法は、触媒を用いて不純物を検出可能な種類に変換するコンバータを通して、ガス流を通過させ、その後、コネクタバルブレギュレータ、およびチューブ、あるいはパイプなど、典型的なガス取り扱い装置によりコンバータへ取り付けられた適当な検知器により、その濃度を測定することに関連している。この技術は、様々な不純物の濃度測定適応可能であり、さらに、検知器のタイプの選択と同様に、不純物のタイプと濃度は、コンバータのタイプおよび構造の選択における2つの決定ファクターとなっている。

0017

ここで図1を参照すると、ここでは、酸素濃度測定装置10を入力ガス流12に提供する、本発明の典型的実施例が示されている。こうした入力ガス流は、例えば、半導体処理で使用可能である。酸素を検出可能なガスの非制限例は、例えば、窒素ヘリウムアルゴン、および水素を含んでいるが、他のものが使用されてもよい。

0018

装置10は、触媒を収容したチャンバ(図示せず)を含む、触媒コンバータ14を含んでいる。チャンバは、チャンバ自体が入力ガス流内の酸素量を変化させないならば、ガスの取り扱いに適したいかなる材料で構成されていてもよい。酸素に使用される条件下では、チャンバ全体が不活性材料から構成されていてもよい。また、入力ガス流内に存在する、他の構成要素が不活性であってもよい。代替的に、このチャンバは、内部にこうした材料が単に裏打ちされているだけでもよい。こうした材料の非制限例は、石英と銅を含んでいる。1つの典型的実施例では、チャンバは、本質的に銅で構成されている。

0019

チャンバのサイズおよび寸法は、本質的には酸素の全てが確実に水へ変換されるよう、入力ガス内の酸素と触媒の間に十分な接触時間がある(後述)ならば、本発明の実行に重要ではない。1つの典型的実施例では、チャンバは銅のチューブである。通常、このチューブの内径はおよそ1mm〜およそ20mmであり、さらに、通常、チューブの長さはおよそ2cm〜およそ100cmである。1つの典型的実施例では、内径はおよそ3/16インチ(およそ4.8mm)であり、さらに、長さはおよそ20インチである。

0020

チャンバは、入力ガス流内の実質的に全ての酸素を水へ変換するよう選択された触媒を含んでおり、続いて水が適切な検知器により検出されることになる。本発明に従って、水素と組み合わせることにより、事実上、入力ガス流内の酸素から水への変換を提供する触媒が使用可能である。触媒の物理的構成は、例えばビーズファイバー不規則微粒子、はスパン構造、あるいは、チャンバ内に封入された場合に、以下に述べるように、触媒コンバータ14へ十分なガスを流すことが可能になる、他の形状およびサイズを含む、本質的にいかなる粒径あるいは形状も網羅可能である。適当な触媒の非制限例は、ニッケル、特に、ニッケルウールあるいはニッケルガーゼを含んでいる。およそ0.038mmの直径を有する典型的ニッケルウールは、マサチューセッツチェスフォードのエグゼターアナリティカル(Exeter Analytical)社製のものが利用可能である。適当なニッケルガーゼ(100メッシュワイヤ直径0.114mm)は、マサチューセッツ州ワードヒルアルファエサル(AlfaAesar)製のものが利用可能である。酸素を水へ変換する他の適当な触媒材料は、触媒技術の熟練者には既知であるが、非制限例をあげると、プラチナおよびパラジウムを含んでいてもよい。チャンバは、酸素から水への変換を実質的に妨げないなら、さらに水が出力ガス流内でチャンバを出る際に水の正確な分析を妨げないなら、触媒に加えて他の材料を含んでいてもよい。

0021

水素源16は、水素と触媒が接触するよう適合された方法で触媒コンバータ14と結合され、それにより、水への変換のために、酸素が接触する触媒の動的表面を提供する。代替的に、1つの典型的実施例では、水素源は触媒自体であり、事前吸着した水素を含んでいる。事前吸着した水素を伴う、こうした触媒/水素源の例は、ミズーリ州セントルイスシグマアルドリッチ(Sigma−Aldrich)社製のRaney(登録商標事前水素添加ニッケルである。こうした結合した触媒/水素源は、単独で、あるいは追加水ガス源と結合して使用されてもよい。通常、水媒体中で商業的に利用可能なRaney(登録商標)事前水素添加ニッケルの場合は、触媒が酸素分析に使用される前に、例えば、真空乾燥、および/または、乾燥窒素あるいは水素ガス流をニッケル上へ通すことにより、脱水が実行されていなければならない。

0022

水素源16は、本質的に純粋水素、あるいは、例えば窒素、ヘリウム、もしくはアルゴンなどの希釈ガスと水素の混合物であってもよいが、タンク(図示せず)を含んでいてもよい。代替的に、本発明の他の典型的実施例では、水素源16は水素発生器である。こうした水素発生器は、当技術分野で既知であり、テキサスアービングのマセソントライガス(Matheson Tri-Gas)、およびペンシルベニアプラムテッドビルスコットスペシャルティガスイズ(Scott Specialty Gases)などの会社から商業的に利用可能である。こうした水素発生器は、通常、非常に低い酸素含有量を有する、非常に純粋な水素源を提供するので、本発明に従う使用に特に適している。

0023

水素源16からの水素あるいは水素混合物は、通常、入力ガス流12がコンバータに入るポイント付近で触媒コンバータ14へと供給され、ガス取り扱い技術分野で既知の標準計量装置を用いて(以下で説明する量で)計量される。図1に示したように、レギュレータ18は簡便な水素圧力を提供するよう使用可能であり、質量流量コントローラ20は単位時間あたりの所望ガス量の計量に使用可能である。図1は、レギュレータ18および質量流量コントローラ20の使用を示しているが、これらのうちいずれかあるいは両方が不在であってもよく、あるいは、代替流量制御装置が使用されていてもよい。一般に、十分に純粋な水素のいかなる源も使用可能である。

0024

水素純度の必要レベルは、入力ガス流内の酸素レベルに応じて、さらに、測定に要求される正確さおよび精度レベルに応じて、変化する。水素は、実質的に触媒活性に影響し得る程度の量の、触媒被毒材料を含んでいてはならない。こうした触媒被毒材料は、触媒技術の熟練者には周知であり、例えば硫化水素を含んでいる。水素は、入力ガス流内の酸素測定への干渉を最小にするよう、含有している酸素は、可能な限り少量でなければならない。通常、最大およそ2.5ppmの酸素含有量を有する入力ガス流の分析に対して、水素源によりガス流に与えられる酸素含有量は、およそ0.1ppbより低いことが好ましい。したがって、例えば、触媒コンバータ14に入る時点で、0.5%レベルの水素がガス流内に存在しているなら、水素源は、およそ0.1ppb/0.5%=20ppbより少ない酸素を含んでいることが好ましい。ある種の状況では、測定感度の減少をもたらすことになるかもしれないが、より高いレベルであってもよい。

0025

加えて、測定感度および精度は、入力ガス流内に既に存在している水(もし存在しているなら)の量により影響を受け、高レベルとなると感度の低下が生じる。したがって、ガスサンプル自体内の水は、例えば酸素トラッピングなど、簡便ないかなる手段(こうした手段が測定を妨げないなら)によって取り除かれてもよい。こうした水の除去手段は、カリフォルニアサンディエゴのアエロクス(Aeronex)製のモデルSS‐70KF‐N‐4R清浄器など、商業的に利用可能な水分トラップ(図示せず)を含んでいてもよい。また同じ理由で、キャリアガスあるいは水素源により偶然に導入され得る水は、測定感度および精度を減少させるので、最小にすべきである。一般に、固有の上方酸素検出限界L(100万分の1、あるいは他の単位)を有する検知器の、実際の上方の検出限界L(A)は、方程式L(A)=L−(B/2)により与えられる。ここで、Bは出力ガス流内の水のバックグラウンドレベルである。バックグラウンド水レベルBは、測定を二度(一度は酸素から水への触媒変換があり、一度は変換がない)実行することにより、簡便に測定可能である。

0026

図1に示した、本発明の1つの典型的実施例では、装置10は、チェックバルブ22、および、任意に第2チェックバルブ23を含んでいてもよく、これらの両方がガスの逆流を防いでいる。こうした配置により、測定されるべき酸素を含む入力ガス流12は、触媒による変換を受けることなく検知器26へ方向付けることができ、その結果、触媒コンバータ14と同様にバックグラウンド水の測定が可能となる。その後、触媒コンバータ14からの出力ガス流は、経路28に沿って検知器26へ流れることになる。この配置により、事前および事後の水変換レベルが決定され、その結果、バックグラウンドレベルが計算される。事前変換レベルは、事後変換レベルの、前に、後に、あるいは同時に決定されてもよい。加えて、要素22、23はチェックバルブであってもよいが、フロースイッチなどの単方向フロー制御が、チェックバルブ22、23のいずれかあるいは両方と置き換られていてもよく、そして、処理制御器(図示せず)の制御の下にあってもよいと考えられる。

0027

本発明の他の代替的実施例では、入力ガス12が、経路24、28に分けられるようにバルブ22、23が動作可能であるので、検知器が同時測定を実行するよう適合されている場合、同時に検知器26により水レベル測定が実行される。図1は、チェックバルブ22、23を使う実施例を示しているが、他のガス取り扱い構成が、バックグラウンド水、および酸素から水への変換に由来する水の、両方の測定の提供に使用可能である。さらに他の典型的実施例では、バックグラウンド水の測定手段がなく、触媒コンバータ14からの出力ガス流だけが検知器26へ供給される。こうした配置は、例えば、入力ガス流12内の水のバックグラウンドレベルが無視可能であることが判明していたり、あるいは濃度レベルが既知であるアプリケーションに適しているだろう。

0028

検知器26は、触媒コンバータ14と結合されて、出力ガス流内の水の濃度レベルを決定するよう適合されている。検知器26は、ガス流内の低濃度の水測定に適するいかなるタイプであってもよく、さらに、例えば電気化学セルを含んでいてもよい。こうした電気化学セルの適切な例は、トレーサー(Tracer)、アクボルト(Aquavolt)、およびアキュポイント(Accupoint)という名前販売されている、ペンシルベニア州ウォリントンのミーコ(Meeco)社製のものが利用可能である。選択された正確な電気化学セル検知器に応じて、出力ガス流における水分の含有量が、1ppbと同程度にまで低く、さらに、20ppmと同程度にまで高い、下方検出限界で測定可能である。

0029

検知器26は、例えば赤外線放射などの、電磁波の吸収を測定するよう適合されていてもよい。本明細書に使用されるように、「赤外線」という用語は、スペクトルの、近赤外線中赤外線、および遠赤外線領域のいずれか、あるいは全てにおける放射を意味している。例えば、フーリエ変換分光計が使用可能である;こうした分光計は、分析技術で周知であり、さらに、様々な構成およびモデルで商業的に広く利用可能である。1つの典型的実施例では、検知器26は、空洞リング‐ダウン分光器(CRDS)を含んでいる。こうした検知器は、例えば、レーマン(Lehmann)に対して発行された米国特許第5,528,040号明細書、および、全てレーマン(Lehmann)他に対して発行された米国特許第5,973,864号明細書、ならびに米国特許第6,097,555号明細書、米国特許第6,172,823 Bl号公報、ならびに米国特許第6,172,824 Bl号公報において説明されている。また、適当なものは、ペンシルバニア州ウォーリントンのタイガーオプティクス(Tiger Optics L.L.C.)から商業的に利用可能であるようなCRDS分光計であり、その適当な例はMTO−1000という名で販売されている。CRDS検知器の使用により、非常に高い感度を得ることが可能となる。本発明によるなら、例えば、およそ200ppt(1兆分の1)〜2.5ppm(100万分の1)の間の酸素レベルを定量化可能である。また、入力ガス流12が、例えば、窒素、ヘリウム、アルゴン、あるいは水素などのキャリアガスで第1希釈されているなら、CRDS検知器を用いることに、より高レベルの酸素濃度が測定可能となる。

0030

本発明によるならば、入力ガス流12の酸素含有量の測定装置10へは、本質的に入力ガス流内の全ての酸素を確実に水へ変換するために、動作中に十分な水素を提供するべきである。一般に、入力ガス流12に供給される水素の量は、酸素に対して過剰となっていなければならない。確実に変換を終了するには、水素対酸素の部分体積比は、およそ500:1以上の範囲であろう。標準的な比率は、およそ2000:1であろう。例えば、およそ0.5%の水素含有量は、酸素レベルがおよそ2.5ppmと予想されるアプリケーションで使用可能である。

0031

実質的に、さらに大きな水素対酸素の比率が使用可能であり、さらに、事実上、不活性なキャリアガスが存在しない純粋水素が使用可能である。こうした多量の水素の使用は、主に、水素に伴ういかなる不純物の入力の増加を回避し、さらに、装置から未反応水素を放出させることによる潜在的な燃焼性の危険を回避し、さらに水素消耗に起因する不要なコストを回避する要望により、制限されてもよい。通常、およそ2.5ppmまでの酸素レベルの測定に対しては、反応前の入力ガス流12の水素含有量は、およそ0.25%〜およそ4%であり、通常はおよそ0.5%である。

0032

装置10が酸素から水への十分迅速で完全な変換を提供するために、さらに、水が検知器に達する前に(したがって測定されない前に)凝固してしまうのを防ぐために、触媒コンバータ14内へ、および出力ガス流を検知器26に運ぶいかなる接続部品内へも高温が供給されてもよい。通常、ニッケル触媒が使用されているなら、触媒コンバータ14の温度はおよそ200℃〜およそ500℃の範囲、最も標準的にはおよそ200℃〜およそ250℃の範囲に維持される。好ましくは、およそ200℃の温度が使用される。およそ200℃からかなり低い温度では、酸素から水への変換が不完全となる傾向があり、また、およそ500℃より高い温度では、少なくとも若干の場合に、変換が抑制され、酸素とニッケルの合成と同じく、酸素濃度が不当に低くなってしまうことになる。触媒コンバータ14の加熱は、オーブンなど、簡便ないかなる手段(図示せず)により、あるいは電気抵抗テープの使用により達成可能である。

0033

また、触媒コンバータと検知器を接続する接続部分30も、凝固による水の損失を防ぐために、通常、およそ60℃〜およそ100℃の範囲で、最も一般的には、およそ80℃に加熱されていてもよい。この加熱は、例えば電気加熱テープ32の使用を含む、いかなる簡便な手段によっても達成可能である。こうした接続部分30は、例えば電気研磨されたステンレススチールを含んでいてもよい。こうした材料に対して、およそ100℃より高い温度は、ステンレススチールと水素の相互作用により、湿気を生成してしまうこともあり、そのため、通常は回避されることになろう。代替的に、接続部品は銅で製造されていたり、あるいは銅で裏打ちされていてもよい。また、例えば、加熱テープを用いる加熱は、触媒コンバータ14の上流において、入って来るガス流を予熱するために提供されてもよい。

0034

酸素から水への本質的に完全な変換が起こるよう、入力ガスは十分な時間だけ触媒コンバータ14内に滞在しなければならない。したがって、触媒コンバータ14を通る入力ガス流12の流速は、速すぎてはいけない。SCCM(1分あたりの標準立方センチメートル)による適当な流速は、チャンバの内径ならびに長さ、およびチャンバ内の空きスペース(気相スペース)の体積百分率、および触媒の表面積ならびに触媒活性に依存する。また、他のファクターも原因となろう。通常、空間速度が、触媒体積に対する体積流速の比率と定義される場合は、触媒コンバータ14を通る入力ガス流12の空間速度は、およそ5〜およそ220秒−1が適切である。適切な流速は、熟練した当業者が最小の実験で容易に明察可能であるが、例えば、およそ5〜およそ220秒−1の空間速度、触媒としてのおよそ1.5グラムのニッケルウール(およそ0.038mmの直径)で梱包され、およそ200℃で作動する、外径1/4インチ(内径およそ3/16インチ)、長さおよそ10〜およそ20インチの銅のチューブに対しては、およそ50〜およそ2000SCCMであればよい。

0035

本発明の他の実施例では、上述した酸素測定用の装置および方法は、オゾン、あるいは酸素とオゾンの混合物の分析に適合させることができる。この装置に対しては、上で概説した酸素測定のためのものと、本質的に同じ構成、条件、および動作パラメタで使用されてもよい。

0036

本発明は、本明細書の特定の実施例を参照して説明されているが、本発明を示された詳細に制限することは意図していない。むしろ、「特許請求の範囲」と同等物の意図ならびに範囲内の詳細で、さらに本発明から逸脱することなく様々な変更をなすことが可能であろう。

図面の簡単な説明

0037

本発明に従う典型的装置の概略図である。

符号の説明

0038

10酸素濃度測定装置、12入力ガス流、14触媒コンバータ、16水素源、18レギュレータ、20質量流量コントローラ、22チェックバルブ、23 第2チェックバルブ、26検知器。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

該当するデータがありません

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

該当するデータがありません

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

この 技術と関連性が強い技術

該当するデータがありません

この 技術と関連性が強い法人

該当するデータがありません

この 技術と関連性が強い人物

該当するデータがありません

この 技術と関連する社会課題

該当するデータがありません

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ