図面 (/)

技術 物体の表面形状の決定システム及び方法、並びに所定形状の表面を有する物体の製造方法

出願人 カール・ツァイス・エスエムティー・アーゲー
発明者 デアバント、ベルント
出願日 2006年3月13日 (13年4ヶ月経過) 出願番号 2006-067976
公開日 2006年9月21日 (12年10ヶ月経過) 公開番号 2006-250942
状態 未査定
技術分野 光学的手段による測長装置
主要キーワード 仕上げ磨き 有効断面 工場試験 磁気レオロジー フーリエ分光計 仕上げステップ 検出器チップ 表面マップ
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2006年9月21日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (12)

課題

物体表面形状を測定する方法を提供する。

解決手段

表面形状を決定するためのシステム及び方法は、測定光に分散を生じさせる色結像光学系を含む。物体の表面に異なる入射方向から入射する、異なる波長の測定光を生成し、検査される表面から出て、検出器により受け取られる測定光に含まれる色情報から、検査される表面の形状を決定する。

概要

背景

光学素子は、例えば、天文学において用いられる望遠鏡等の光学ステムや、リソグラフィ法において構造体(例えば、マスクレチクル上に形成された構造体)を放射線感応基板(例えば、レジスト)上に結像するために用いられる光学システムにおいて使用される、光学レンズ光学ミラー等の光学部品を含み得る。このような光学システムの成功は、実質的に、光学システムの設計者によって決定された目標とする形状となるように、光学面をいかに精度良く機械加工又は製造できるかによって決まる。このような製造においては、機械加工された光学面の形状を目標とする形状と比較し、機械加工された面と目標とする面との差を決定する必要がある。そして、光学面は、機械加工された面と目標とする面との差が、例えば、所定の閾値を超える部分において、さらに機械加工され得る。

光学面の測定には、干渉装置がよく用いられる。このような装置は、例えば、米国特許第4,732,483号明細書(特許文献1)、米国特許第4,340,306号明細書(特許文献2)、米国特許第5,473,434号明細書(特許文献3)、米国特許第5,777,741号明細書(特許文献4)、米国特許第5,488,477号明細書(特許文献5)に開示されている。これらの文献の全内容を本願に引用して援用する。

球面状の光学面を測定する従来の干渉計装置は、一般に、コヒーレント光源と、球面状の波面を有する測定光ビームを生成する干渉計光学系とを含む。測定光は、被検表面の位置において測定光の波面が検査中の表面の目標とする形状と同じ形状となるように被検表面に入射する。このような状況において、測定光ビームは、検査中の表面に垂直に入射し、その表面で反射して干渉計光学系へと戻る。その後、検査中の表面で反射した測定ビームの光が基準面で反射した光と重ね合わされ、その結果生じる干渉縞から、検査中の表面形状と目標とする形状とのずれが決定される。

球面状の光学面を検査するための球面状の波面は、従来の干渉計光学系により比較的高い精度で生成することができるが、光が検査中の非球面の各位置に実質的に垂直に入射するように非球面状の波面を有する測定光ビームを生成するために、より改良された光学系(補償板ヌルレンズ配置又はK−システムとも称される)が用いられる。ヌルレンズ配置又は補償板に関する背景情報は、例えば、ダニエルマラカラ(Daniel Malacara)のテキストブック「光学工場試験(Optical Shop Testing)」、第2版、ジョン ワイリアンドサンズ(John Wiley & Sons)株式会社、1992年、第12章(非特許文献1)から入手可能である。

特定種類の非球面を測定する用途のためには、その特定種類の非球面に垂直に入射する非球面状の波面を生成するための対応するヌルレンズ配置を設計及び製造する必要がある。これにより、様々な種類の非球面を検査する際の柔軟性が必然的に制限される。

米国特許第5,004,346号明細書(特許文献6)により、球面状の波面を生成する干渉計光学系を用いて非球面を検査する方法が知られている。球面状の波面は、検出される干渉縞の生成に非球面の一部のみが寄与するように、その一部においてのみ非球面に実質的に垂直に入射する。干渉計光学系と被検非球面との間の距離を変化させることにより、検出可能な干渉縞の生成に寄与する非球面の部分を変えることができる。従って、干渉計光学系から複数の距離を隔てた場所において非球面を球面状の波面で検査することにより、実質的に非球面の全表面積を検査し、複数の距離を隔てた場所で得られた測定値から、その表面形状を計算することができる。

このため、非球面と干渉計光学系との間の距離を正確に制御する必要がある。このような方法においては、干渉計光学系に対して非球面を移動させるアクチュエータに高い要件が求められる。
米国特許第4,732,483号明細書
米国特許第4,340,306号明細書
米国特許第5,473,434号明細書
米国特許第5,777,741号明細書
米国特許第5,488,477号明細書
ダニエルマラカラ(Daniel Malacara)のテキストブック「光学工場試験(Optical Shop Testing)」、第2版、ジョン ワイリーアンドサンズ(John Wiley & Sons)株式会社、1992年、第12章
米国特許第5,004,346号明細書

概要

物体の表面形状を測定する方法を提供する。表面形状を決定するためのシステム及び方法は、測定光に分散を生じさせる色結像光学系を含む。物体の表面に異なる入射方向から入射する、異なる波長の測定光を生成し、検査される表面から出て、検出器により受け取られる測定光に含まれる色情報から、検査される表面の形状を決定する。

目的

本発明の実施の形態は、物体の表面形状を決定する他の方法を提供し、さらにその物体を製造するための対応する方法を提供する。

効果

実績

技術文献被引用数
2件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

物体表面形状を決定する方法であって、複数の異なる波長測定光を生成するステップと、前記測定光が前記表面の複数の位置に、前記各位置における第1の波長の測定光の入射方向と第2の波長の測定光の入射方向との差が1分よりも大きい状態で入射するように、前記測定光を色照明光学系を通過させて前記物体の表面上に向けるステップと、前記物体の表面で反射した測定光の一部を、結像光学系に入射する複数の異なる波長の前記反射測定光の1/3を超える測定光の検出器光検出面への入射を遮断した状態で、前記結像光学系を通過させて前記検出器の光検出面上に向けるステップと、前記検出器に入射する前記測定光の波長依存強度分布を検出するステップと、検出された前記波長依存強度分布に基いて前記物体の表面形状を決定するステップとを含むことを特徴とする方法。

請求項2

前記結像光学系に入射する前記反射測定光は、所定形状の開口を有するビーム絞りによって前記検出器の光検出面への入射が遮断される請求項1に記載の方法。

請求項3

複数の異なる波長の前記測定光は、前記物体の表面に同時に入射し、前記波長依存強度分布の検出は、前記結像光学系を通り抜けた前記測定光の分光分析を含む請求項1に記載の方法。

請求項4

複数の異なる波長の前記測定光は、前記物体の表面に同時に入射し、前記波長依存強度分布の検出は、前記異なる波長における前記測定光の強度分布を続いて検出することを含む請求項1に記載の方法。

請求項5

複数の異なる波長の前記測定光の生成は、単一の波長範囲の前記測定光を一時に生成し、その後、生成された前記測定光の波長範囲を変更することを含む請求項1に記載の方法。

請求項6

参照光を生成し、前記参照光を前記検出器上に向けて前記物体の表面で反射した前記測定光の部分と重ね合わせるステップをさらに含む請求項1に記載の方法。

請求項7

前記物体の表面形状の決定は、重ね合わせた前記参照光と前記測定光とによって生成された干渉縞分析することを含む請求項6に記載の方法。

請求項8

前記参照光は、前記物体の表面に入射する前記測定光のビーム経路において、生成された前記測定光の一部を前記物体の表面の上流に配置された基準面で反射させることにより生成される請求項6に記載の方法。

請求項9

前記照明光学系及び結像光学系は、それぞれ複数の光学素子を有し、少なくとも1つの前記光学素子は、前記照明光学系及び結像光学系の両方の構成要素である請求項1に記載の方法。

請求項10

前記色照明光学系は、回折格子を含む請求項1に記載の方法。

請求項11

前記回折格子は、前記照明光学系及び結像光学系の両方の構成要素である請求項10に記載の方法。

請求項12

前記回折格子は、前記結像光学系の外側に配置されている請求項10に記載の方法。

請求項13

前記色照明光学系は、前記物体の表面に入射する前記測定光のビーム経路の位置にビーム断面を有し、重複しない、異なる波長帯域の測定光が、前記ビーム断面の、重複しない、異なる領域を通り抜ける請求項1に記載の方法。

請求項14

前記ビーム断面の重複しない領域は、環状である請求項1に記載の方法。

請求項15

物体の表面形状を決定する方法であって、前記物体の表面に異なる入射方向から入射する、異なる波長の測定光を生成するステップと、前記表面の広範な領域から出てくる測定光に結像光学系を通り抜けさせるステップと、前記結像光学系を通り抜けた前記測定光の複数の光線群の各々の光強度を検出するステップと、検出された前記光強度に基づいて、前記物体の表面の前記広範な領域の形状を決定するステップとを含み、各光線群は、その光線の波長範囲及び所定の方向に対する光線の角度範囲を前記光線群と関連付けて有しており、前記群は、全群の1/2未満の群の検出された光強度がバックグラウンド強度の2倍よりも大きくなるように選択されることを特徴とする方法。

請求項16

前記光強度の検出は、前記結像光学系を通り抜けた前記測定光の一部のみがビーム絞りに設けられた開口を通り抜けるようにし、前記開口を通り抜けた前記測定光の前記一部の光強度を検出することを含む請求項15に記載の方法。

請求項17

前記光線群の選択は、間隔を置いて設けられた複数の検出器素子を有する位置感度検出器を用いることを含む請求項15に記載の方法。

請求項18

前記物体の表面に入射する前記測定光の生成は、前記測定光を、前記結像光学系を通過させて方向付けることを含む請求項15に記載の方法。

請求項19

前記表面から出てくる前期測定光は、前記表面で反射した測定光である請求項18に記載の方法。

請求項20

目標とする形状の表面を有する物体の製造方法であって、複数の異なる波長の測定光を生成するステップと、前記測定光が前記表面の複数の位置に、前記各位置における第1の波長の測定光の入射方向と第2の波長の測定光の入射方向との差が1分よりも大きい状態で入射するように、前記測定光を、色照明光学系を通過させて前記物体の表面上に向けるステップと、前記物体の表面で反射した測定光の一部を、結像光学系に入射する複数の異なる波長の前記反射測定光の1/3を超える測定光の検出器の光検出面への入射を遮断した状態で、前記結像光学系を通過させて前記検出器の光検出面上に向けるステップと、前記検出器に入射する前記測定光の波長依存強度分布を検出するステップと、検出された前記波長依存強度分布に基いて前記物体の表面形状のずれを決定するステップと、前記決定されたずれに基づいて前記物体の表面を加工するステップとを含むことを特徴とする方法。

請求項21

前記結像光学系に入射する前記反射測定光は、所定形状の開口を有するビーム絞りによって前記検出器の光検出面への入射が遮断される請求項20に記載の方法。

請求項22

複数の異なる波長の前記測定光は、前記物体の表面に同時に入射し、前記波長依存強度分布の検出は、前記結像光学系を通り抜けた前記測定光の分光分析を含む請求項20に記載の方法。

請求項23

複数の異なる波長の前記測定光は、前記物体の表面に同時に入射し、前記波長依存強度分布の検出は、前記異なる波長における前記測定光の強度分布を続いて検出することを含む請求項20に記載の方法。

請求項24

複数の異なる波長の前記測定光の生成は、単一の波長範囲の前記測定光を一時に生成し、その後、生成された前記測定光の波長範囲を変更することを含む請求項20に記載の方法。

請求項25

参照光を生成し、前記参照光を前記検出器上に向けて前記物体の表面で反射した前記測定光の部分と重ね合わせるステップをさらに含む請求項20に記載の方法。

請求項26

前記物体の表面形状の決定は、重ね合わせた前記参照光と前記測定光とによって生成された干渉縞を分析することを含む請求項25に記載の方法。

請求項27

前記色照明光学系は、回折格子を含む請求項20に記載の方法。

請求項28

前記目標とする形状は、非球面形状である請求項20に記載の方法。

請求項29

前記物体の表面の加工は、ミリング研削ルースアブラシブ研削、研磨イオンビーム面出し及び磁気レオロジー面出しの少なくとも1つと、前記物体の表面の仕上げ加工とを含む請求項20に記載の方法。

請求項30

前記仕上げ加工は、前記表面にコーティングを塗布することを含む請求項29に記載の方法。

請求項31

前記コーティングは、反射コーティング反射防止コーティング及び保護コーティングの少なくとも1つを含む請求項30に記載の方法。

請求項32

物体の表面形状を測定するシステムであって、広い波長範囲内の測定光を生成する光源と、前記測定光を前記物体の表面上に向ける色照明光学系であって、測定される前記物体に最も近接して配置された光学素子の前面を有し、前記前面上の複数の位置の各々において、第1の波長の測定光の出射方向と第2の波長の測定光の出射方向との差が1分よりも大きくなるような分散を生じさせる色照明光学系と、前記物体の表面の像を検出器の光検出面上に結像する結像光学系であって、そのビーム経路内に配置された、開口を有するビーム絞りを備え、前記開口の断面が、前記ビーム絞りの上流の当該結像光学系の前記ビーム経路の有効断面の1/3よりも小さい結像光学系と、前記光源と前記検出器との間の前記測定光のビーム経路に配置され、狭い波長範囲内の測定光のみを透過するスペクトルセレクタとを備えたことを特徴とするシステム。

請求項33

前記スペクトルセレクタは、前記照明光学系の上流の前記測定光のビーム経路に配置されている請求項32に記載のシステム。

請求項34

前記スペクトルセレクタは、前記結像光学系の下流の前記測定光のビーム経路に配置されている請求項32に記載のシステム。

請求項35

前記スペクトルセレクタは、干渉フィルタを含む請求項32に記載のシステム。

請求項36

前記色照明光学系は、回折格子を含む請求項32に記載のシステム。

請求項37

前記結像光学系を含む測定アームと、反射基準面を含む基準アームとを有する干渉計をさらに備えた請求項32に記載のシステム。

請求項38

前記基準面は、前記結像光学系に配置されている請求項37に記載のシステム。

請求項39

前記測定光のコヒーレンス長は、前記基準面と、検査される前記光学面に最も近接して配置された前記照明光学系の前面との間の光路長よりも短い請求項34に記載のシステム。

請求項40

物体の表面形状を測定するシステムであって、結像光学系と、開口を有するビーム絞りと、前記物体の表面が、前記結像光学系に対して前記開口と共役になる位置から距離を隔てて配置されるよう、前記物体を搭載するように構成された試験片取付台と、前記物体の表面から出て、前記結像光学系及び前記開口を通り抜けた測定光を検出するための位置感度検出器と、広い波長範囲内の測定光を生成する光源と、前記測定光を前記表面上に向ける色照明光学系と、前記広い波長範囲から、前記位置感度検出器に入射する前記測定光の、前記広い波長範囲の幅に対するその幅の比率が1/4未満である、調整可能な狭い波長範囲を選択するためのスペクトルセレクタと、複数の異なる狭い波長範囲が続いて調整されるように前記スペクトルセレクタを制御し、前記複数の異なる狭い波長範囲の各々に関し、前記位置感度検出器によって検出された光強度の表示を受け取るように構成されたコントローラとを備えたことを特徴とするシステム。

請求項41

前記スペクトルセレクタは、前記光源の発光波長を調整するための前記光源のコントローラを含む請求項40に記載のシステム。

請求項42

前記スペクトルセレクタは、前記光源と前記物体の表面との間の前記測定光のビーム経路に配置されたスペクトルフィルタを含む請求項40に記載のシステム。

請求項43

前記スペクトルセレクタは、前記物体の表面と前記位置感度検出器との間の前記測定光のビーム経路に配置されたスペクトルフィルタを含む請求項40に記載のシステム。

請求項44

前記色照明光学系は、回折格子を含む請求項40に記載のシステム。

請求項45

前記結像光学系を含む測定アームと、反射基準面を含む基準アームとを有する干渉計をさらに備えた請求項40に記載のシステム。

請求項46

前記基準面は、前記結像光学系によって設けられている請求項45に記載のシステム。

請求項47

前記測定光のコヒーレンス長は、前記基準面と前記物体の前記光学面との間の光路長差よりも短い請求項46に記載のシステム。

請求項48

物体の表面形状を決定する方法であって、前記物体の表面に異なる入射方向から入射する、異なる波長の測定光を生成するステップと、前記物体で反射した前記測定光の波長依存強度分布を検出するステップと、検出された前記波長依存強度分布に基づいて、前記物体の表面の形状を決定するステップとを含むことを特徴とする方法。

請求項49

前記検出は、前記物体で反射し、検出される前記物体で反射した前記測定光の少なくとも1/2を遮断するように構成されたビーム絞りの開口を通り抜けた前記測定光の波長依存強度分布を検出することを含む請求項48に記載の方法。

請求項50

物体の表面形状を測定するシステムであって、波長範囲内の測定光を生成する光源と、前記測定光を前記物体の表面上に向ける照明光学系と、前記物体の表面の像を検出器の光検出面上に結像する結像光学系とを備え、前記照明光学系と前記結像光学系は、第1及び第2の光学非球面を前記照明光学系に対して配置することができるように構成されており、前記第1及び第2の光学非球面の対応する位置の像が、前記検出器の前記光検出面上の同じ位置に結像され、前記対応する位置における前記第1及び第2の光学非球面の方向の差が、λminを、前記測定光の最小波長、pを、前記検出器の前記光検出面における検出器画素ピッチとしたときのarcsin(λmin/2p)よりも大きくなり得ることを特徴とするシステム。

技術分野

0001

本発明は、物体表面形状の決定システム及び方法、並びに所定形状の表面を有する物体の製造方法に関する。特に、本発明は、非球面形状の表面を有する物体の測定及び製造に関する。これらのシステム及び方法は、光学素子等の物体の測定及び製造に適用することができる。

背景技術

0002

光学素子は、例えば、天文学において用いられる望遠鏡等の光学システムや、リソグラフィ法において構造体(例えば、マスクレチクル上に形成された構造体)を放射線感応基板(例えば、レジスト)上に結像するために用いられる光学システムにおいて使用される、光学レンズ光学ミラー等の光学部品を含み得る。このような光学システムの成功は、実質的に、光学システムの設計者によって決定された目標とする形状となるように、光学面をいかに精度良く機械加工又は製造できるかによって決まる。このような製造においては、機械加工された光学面の形状を目標とする形状と比較し、機械加工された面と目標とする面との差を決定する必要がある。そして、光学面は、機械加工された面と目標とする面との差が、例えば、所定の閾値を超える部分において、さらに機械加工され得る。

0003

光学面の測定には、干渉装置がよく用いられる。このような装置は、例えば、米国特許第4,732,483号明細書(特許文献1)、米国特許第4,340,306号明細書(特許文献2)、米国特許第5,473,434号明細書(特許文献3)、米国特許第5,777,741号明細書(特許文献4)、米国特許第5,488,477号明細書(特許文献5)に開示されている。これらの文献の全内容を本願に引用して援用する。

0004

球面状の光学面を測定する従来の干渉計装置は、一般に、コヒーレント光源と、球面状の波面を有する測定光ビームを生成する干渉計光学系とを含む。測定光は、被検表面の位置において測定光の波面が検査中の表面の目標とする形状と同じ形状となるように被検表面に入射する。このような状況において、測定光ビームは、検査中の表面に垂直に入射し、その表面で反射して干渉計光学系へと戻る。その後、検査中の表面で反射した測定ビームの光が基準面で反射した光と重ね合わされ、その結果生じる干渉縞から、検査中の表面形状と目標とする形状とのずれが決定される。

0005

球面状の光学面を検査するための球面状の波面は、従来の干渉計光学系により比較的高い精度で生成することができるが、光が検査中の非球面の各位置に実質的に垂直に入射するように非球面状の波面を有する測定光ビームを生成するために、より改良された光学系(補償板ヌルレンズ配置又はK−システムとも称される)が用いられる。ヌルレンズ配置又は補償板に関する背景情報は、例えば、ダニエルマラカラ(Daniel Malacara)のテキストブック「光学工場試験(Optical Shop Testing)」、第2版、ジョン ワイリアンドサンズ(John Wiley & Sons)株式会社、1992年、第12章(非特許文献1)から入手可能である。

0006

特定種類の非球面を測定する用途のためには、その特定種類の非球面に垂直に入射する非球面状の波面を生成するための対応するヌルレンズ配置を設計及び製造する必要がある。これにより、様々な種類の非球面を検査する際の柔軟性が必然的に制限される。

0007

米国特許第5,004,346号明細書(特許文献6)により、球面状の波面を生成する干渉計光学系を用いて非球面を検査する方法が知られている。球面状の波面は、検出される干渉縞の生成に非球面の一部のみが寄与するように、その一部においてのみ非球面に実質的に垂直に入射する。干渉計光学系と被検非球面との間の距離を変化させることにより、検出可能な干渉縞の生成に寄与する非球面の部分を変えることができる。従って、干渉計光学系から複数の距離を隔てた場所において非球面を球面状の波面で検査することにより、実質的に非球面の全表面積を検査し、複数の距離を隔てた場所で得られた測定値から、その表面形状を計算することができる。

0008

このため、非球面と干渉計光学系との間の距離を正確に制御する必要がある。このような方法においては、干渉計光学系に対して非球面を移動させるアクチュエータに高い要件が求められる。
米国特許第4,732,483号明細書
米国特許第4,340,306号明細書
米国特許第5,473,434号明細書
米国特許第5,777,741号明細書
米国特許第5,488,477号明細書
ダニエルマラカラ(Daniel Malacara)のテキストブック「光学工場試験(Optical Shop Testing)」、第2版、ジョン ワイリーアンドサンズ(John Wiley & Sons)株式会社、1992年、第12章
米国特許第5,004,346号明細書

発明が解決しようとする課題

0009

本発明は、上記の問題を考慮してなされたものである。

0010

本発明の実施の形態は、物体の表面形状を決定する他の方法を提供し、さらにその物体を製造するための対応する方法を提供する。

課題を解決するための手段

0011

本発明の特定の実施の形態は、物体の表面に異なる入射方向から入射する、異なる波長の測定光を生成し、前記物体で反射した前記測定光の波長依存強度分布を検出し、検出された前記波長依存強度分布に基づいて前記物体の表面形状を決定することにより、物体の表面形状を決定する方法を提供する。

0012

波長が異なれば物体への入射方向も異なるような測定光を生成するために、色照明光学系を用いることができる。色照明光学系は、測定光の分散を意図的に生じさせるように構成されている。これは、例えば、色照明光学系に入射する2つの異なる波長の同軸上の光線は、色照明光学系による分散効果のために互いに分離され、これら2つの異なる波長の光線は、異なる出射角度で色照明光学系から出射されるということである。例えば、色照明光学系は、異なる波長間での出射角度の差が約1分よりも大きくなるよう、十分な分散性を有する。同様に、物体の表面の選択された位置に入射する光は、波長に依存した入射方向を有する。例えば、色照明光学系は、異なる波長間での光の入射方向の差が約1分よりも大きくなるよう、十分な分散性を有する。

0013

特定の波長の光が物体へ入射する方向は、その特定の波長付近の小さい波長範囲の光の光強度を平均化することによって計算された方向として求めることができる。ここで、平均化は、表面上の半球全体にわたって行われる。同様に、色光学系からの出射方向は、適切に選択された小さい波長範囲の光が光学系から出射される方向を平均化したものとして求めることができる。

0014

物体の表面で反射され、位置感度検出器によって検出された測定光は、複数の異なる波長の入射光に対する物体の反射面部分の方向に応じて、波長依存強度分布を示す。測定光の入射方向の波長依存性のため、表面部分の方向が変化すると、表面部分で特定の方向に反射した測定光の波長も変化することになる。

0015

従って、物体の表面で反射した測定光の波長依存強度分布の検出結果を分析することにより、例えば、所定方向に対する物体の表面部分の方向を求めることができる。さらに、複数の位置において求められた表面部分の方向から、物体の表面形状を決定することができるようになる。

0016

このように、物体の表面形状は、比較的簡単な測定によって決定することができる。ここで、照明光学系結像光学系及び光源等の、この測定に用いられた装置は、物体の特定の表面形状の検査に限定されるものではなく、異なる形状の様々な物体を同じ装置を用いて検査することができる。

0017

本発明の一実施の形態によれば、物体の表面形状を決定する方法は、複数の異なる波長の測定光を生成するステップと、前記測定光が前記表面の複数の位置に、前記各位置における第1の波長の測定光の入射方向と第2の波長の測定光の入射方向との差が1分よりも大きい状態で入射するように、前記測定光を色照明光学系を通過させて前記物体の表面上に向けるステップと、前記物体の表面で反射した測定光の一部を、結像光学系に入射する複数の異なる波長の前記反射測定光の1/3を超える測定光の検出器光検出面への入射を遮断した状態で、前記結像光学系を通過させて前記検出器の光検出面上に向けるステップと、前記検出器に入射する前記測定光の波長依存強度分布を検出するステップと、検出された前記波長依存強度分布に基いて前記物体の表面形状を決定するステップとを含む。

0018

ここで、一実施の形態によれば、物体の表面で特定の方向又はさまざまな方向に反射した反射測定光は、所定形状の開口を有するビーム絞りによる検出のために選択される。所定形状は、円形、環状、直線スリット状等の形状とすることができる。

0019

さらなる一実施の形態によれば、方法は、前記物体の表面に入射する、異なる波長の測定光を生成するステップと、前記表面から出てくる測定光に結像光学系を通り抜けさせるステップと、前記結像光学系を通り抜けた前記測定光の複数の光線群の各々の光強度を検出するステップとを含み、各光線群は、その光線の波長範囲及び所定の方向に対する光線の角度範囲を前記光線群と関連付けて有している。前記物体の表面形状は、検出された前記光強度に基づいて決定される。

0020

異なる波長及び色光学系の設計は、異なる波長の測定光の光線が、色光学系の分散のために、当該光学系により、検出可能な程度に十分に異なる角度で偏向されるように選択される。波長及び角度に基づいて光強度を検出することにより、測定光が出てくる表面の形状を計算するために十分な情報を得ることが可能となる。

0021

本発明の典型的な一実施の形態においては、表面から90°の角度で発散する光のみが検出され、結像光学系は十分な色光学系である。色結像光学系の分散のため、特定の位置において表面から出てくる検出光の1つの波長のみが、表面から90°の角度で発散するという条件を厳密に満たすことになる。既に(Already)この波長を概算で求めることにより、その位置での表面の方向を十分な精度で求めることができ、この計算を表面の複数の位置に対して行なうことにより、最終的に表面全体の表面形状を所望の精度で計算することができる。

0022

本発明の典型的な一実施の形態によれば、検出された測定光の光線の発散角度は、開口を有するビーム絞りによって選択される。

0023

本発明の典型的な一実施の形態によれば、特定の角度を有する光線群の選択は、間隔を置いて設けられた複数の検出器素子を有する位置感度検出器を用いることを含む。各検出器素子は、所定方向に対して小さい角度範囲内にある光線を検出することができる。

0024

特定の波長範囲を有する光線群の選択は、典型的な一実施の形態によれば、出射光の波長を調整することが可能な光源を用いて行うことができる。これは、広帯域の光源又は白色光源と、光源の下流の選択フィルタとを用いることを含み得る。ここで、選択フィルタは、比較的狭い波長範囲の光を透過させることができる。

0025

他の典型的な一実施の形態によれば、広帯域の光源又は白色光源からの光等、広い波長範囲の光が、検査される表面に入射することができ、表面から出て、色結像光学系を通り抜けた測定光に関して分光分析が行われる。

0026

典型的な一実施の形態によれば、色結像光学系は、生成された測定光を、測定される表面上に向けるためにも用いられる。

0027

さらなる典型的な一実施の形態によれば、表面から出てくる測定光は、表面で反射した測定光である。他の一実施の形態によれば、表面から出てくる測定光は、物体の表面を通り抜けた測定光である。

0028

さらなる典型的な一実施の形態によれば、光強度の検出は、表面から発散される測定光に対して十分にコヒーレント参照光を生成し、参照光を表面から発散される測定光と重ね合わせて、建設的でかつ相殺的干渉を交互に生じさせることを伴う干渉検出を含む。

0029

本発明はさらに、表面形状を決定する上記方法を用いて、目標とする形状の表面を有する物体を製造し、決定された表面形状の目標とする形状からのずれに基づいて、その物体の表面を加工する方法を提供する。

0030

光学面の加工は、ミリング研削ルースアブラシブ(loose abrasive)研削、研磨イオンビーム面出し及び磁気レオロジー面出し等の機械加工と、光学素子の光学面の仕上げ加工とを含み得る。加工はまた、操作者の手又は腕の動きにより、表面全体にわたって直接的又は間接的に移動される手持ち式器具又は他の適切な器具を用いた加工を含み得る。

0031

一実施の形態によれば、仕上げ加工は、光学面にコーティングを塗布することを含む。コーティングは、反射コーティング反射防止コーティング及び保護コーティング等のコーティングを含み得る。

0032

本発明はさらに、物体の表面形状を測定するシステムを提供する。ここで、システムは、複数の異なる波長の測定光を生成する光源と、測定光を検出器の表面上に向ける色照明光学系と、物体の表面で反射した測定光を検出する位置感度検出器と、検出器の上流ビーム経路に配置された波長セレクタとを備える。

0033

本発明の一実施の形態によれば、物体の表面形状を測定するシステムは、広い波長範囲内の測定光を生成する光源と、前記測定光を前記物体の表面上に向ける色照明光学系であって、測定される前記物体に最も近接して配置された光学素子の前面を有し、前記前面上の複数の位置の各々において、第1の波長の測定光の出射方向と第2の波長の測定光の出射方向との差が1分よりも大きくなるような分散を生じさせる色照明光学系と、前記物体の表面の像を検出器の光検出面上に結像する結像光学系であって、そのビーム経路内に配置された、開口を有するビーム絞りを備え、前記開口の断面が、前記ビーム絞りの上流の当該結像光学系の前記ビーム経路の有効断面の1/3よりも小さい結像光学系と、前記光源と前記検出器との間の前記測定光のビーム経路に配置され、狭い波長範囲内の測定光のみを透過するスペクトルセレクタとを備える。

0034

本発明のさらなる一実施の形態によれば、システムは、結像光学系と、開口を有するビーム絞りと、前記物体の表面が、前記色結像光学系に対して配置されるよう、前記物体を搭載するように構成された試験片取付台と、前記物体の表面から出て、前記結像光学系及び前記開口を通り抜けた測定光を検出するための位置感度検出器と、広い波長範囲内の測定光を生成する光源と、前記測定光を前記表面上に向ける色照明光学系と、前記広い波長範囲から、調整可能な狭い波長範囲を選択し、選択した前記狭い波長範囲の測定光のみを前記位置感度検出器に入射させるためのスペクトルセレクタと、前記位置感度検出器によって検出された光強度を表す信号を受け取り、複数の異なる狭い波長範囲が続いて前記検出器に入射するように前記スペクトルセレクタを制御するためのコントローラとを備える。

0035

典型的な一実施の形態によれば、色光学系は、ホログラム又は回折格子を備える。

0036

さらなる典型的な一実施の形態によれば、システムは、測定アーム基準アームとを有する干渉計を備える。ここで、測定アームは、結像光学系と、測定される表面とを含む。ここで、典型的な一実施の形態によれば、干渉計は、干渉計の、基準アームの光路長と測定アームの光路長との差よりも短いコヒーレンス長を有する光を用いた白色光干渉計である。

0037

さらなる典型的な一実施の形態によれば、検査される光学面は、球面形状から相当にずれた非球面である。本願の文脈中においては、非球面とその最も球面に近い形状との差が所定の基準よりも大きい場合に、光学面を非球面と称することができる。このような基準の1つは、非球面とその最も球面に近い形状との差の勾配(gradient)に基づくもので、このような勾配が、6μmを光学面の有効径で割った値を超える場合に、光学面は非球面と称される。

発明を実施するための最良の形態

0038

本発明の上記及びその他の有利な特徴は、添付の図面を参照した以下の本発明の典型的な実施の形態の詳細な説明からより明らかになるであろう。考えられる本発明の実施の形態の全てが、ここに認められた全ての利点を示すものであるとは限らないことを書き留めておく。

0039

図1は、本発明の第1の実施の形態における表面形状を測定するためのシステムの模式図である。

0040

図2は、本発明の第2の実施の形態における表面形状を測定するためのシステムの模式図である。

0041

図3は、図2に示すシステムと類似のシステムにおいて用いられるホログラムの線密度を示すグラフである。

0042

図4は、検査される表面上の投射位置(perspective position)に依存する、検出器に入射する測定光の波長を示すグラフである。

0043

図5は、図4に示す強度から計算された表面形状を示すグラフである。

0044

図6は、本発明の第3の実施の形態における物体の表面形状を測定するためのシステムの一部の模式図である。

0045

図7は、本発明の第4の実施の形態における表面形状を測定するためのシステムの模式図である。

0046

図8は、本発明の第5の実施の形態における表面形状を測定するためのシステムの模式図である。

0047

図9は、本発明の第6の実施の形態における表面形状を測定するためのシステムの模式図である。

0048

図10は、図9に示すシステムの一部を拡大して示した模式図である。

0049

図11は、本発明における光学素子の製造方法のフローチャートである。

0050

以下に記載する典型的な実施の形態において、機能及び構造が等しい構成要素は、可能な限り同じ参照符号で示す。従って、特定の実施の形態の個々の構成要素の特徴を理解するためには、他の実施の形態の説明及び課題を解決するための手段を参照する必要がある。

0051

図1は、物体5の表面3の形状を測定するためのシステム1を模式的に示している。図1に示す例において、物体5はガラス製のレンズであり、測定される表面3は非球面形状を有する凸面である。しかし、本発明は、このような物体に限定されるものではない。システム1は、光学素子の他の表面、例えば、鏡面、凹面及び平面、並びに他の製造物(例えば、油圧システム燃料噴射システムにおけるバルブの構成要素、又は十分な鏡面反射率を有する他の構成要素等)の表面を測定するために用いてもよい。

0052

システム1は、物体5の表面3に面していない第1の表面8と、物体5に面している表面9とを有するプレート7を含む結像光学系6を備えている。表面9は、システム1の光軸13に対して回転対称格子構造を有するホログラム11を保持している。物体5は、結像光学系6に対して所定の位置で試験片ホルダー7に搭載されている。

0053

システム1はさらに、光軸13に対して垂直に配置され、光軸13がその中心を通り抜ける小さな開口17を有するビーム絞り15を備えている。ホログラム11は、物体5が位置21rとホログラム11との間に配置されていない場合に、赤色光が光軸13上の位置21rで開口17の像を形成するように設計されている。赤色光はまた、赤色光を用いた場合に開口17と位置21rとがホログラム11に対して互いに共役となるよう、位置21rの像を開口17の位置に結像する。同様に、図1は、緑色光を用いた場合に結像光学系6に対して開口17と共役になる位置21gと、青色光を用いた場合に結像光学系6に対して開口17の位置と共役になる位置21bとを示している。

0054

尚、本願の実施の形態の説明における赤色、緑色及び青色は、説明のために選択されているに過ぎず、本発明をこのような色に限定するものではないことに留意すべきである。実際には、本発明を実施するための測定光として、十分に広い波長範囲又は複数の異なる波長範囲の他の電磁放射線を用いてもよい。

0055

ビーム絞り15と結像光学系6との間のビーム経路において、折り曲げられた光軸13'が光軸13に対して横向きに配置されるよう、光軸13に対して角度をなして方向付けられた半透明ミラー26が配置されている。

0056

ハロゲンランプ等の広帯域の光源27が軸13'上に配置されており、照明光学系29が光源27から出射された光ビーム31をビーム絞り35に設けられた開口33に集束させる。照明された開口33は、開口33の位置から出射された広帯域の測定光37の点光源を生じさせる。開口33は、折り曲げられた光軸13'上において、結像光学系6に対し、赤色光に関して位置21rと共役になり、緑色光及び青色光に関してそれぞれ位置21g及び21bと共役になる位置に配置されている。

0057

図1において、光軸13に対して5つの異なる角度で広がる5つの典型的な測定光線が、参照符号401 、402 、403 、404 及び405 で示されており、光線403 は、光軸13と同軸上にある。結像光学系6の色特性のため、光線401 は、その波長に応じてホログラム11によって分散され、赤色、緑色及び青色の成分に関する光線401 の3つの典型的な分散光線41r1 、41g1 及び41b1 が図1に示されている。参照符号42r1 、42g1 及び42b1 は反射光線を示しており、反射光線42r1 は、表面3で反射した光線41r1 であり、光線42g1 及び42b1 はそれぞれ、表面3で反射した光線41g1 及び41b1 である。図1に示す典型的な状態において、光線41g1 は、表面3に垂直に入射し、表面3から出てくる反射光線42g1 は、表面3に入射する光線41g1 と同軸上にある。ホログラム11の分散特性のため、他の入射光線41r1 及び41b1 は、光線41g1 に対して90°とは異なる角度で方向付けられ、これらの光線41r1 及び41b1 は、表面3から出てくる対応する反射光線42r1 及び42b1 がそれぞれ、入射光線41r1 及び41b1 と同軸とならないよう、表面3に垂直には入射しない。

0058

垂直に反射した光線42g1 は、ホログラム11に入射し、照明測定光線401 と同軸となるようにホログラム11によって偏向され、半透明ミラー25及びビーム絞り15の開口17を通り抜ける。そして、光線42g1 はさらに、カメラ光学系47を通り抜けてカメラ52のカメラチップ49の画素501 に入射する。他の反射光線42r1 及び42b1 は、偏向されることがないようホログラム11に入射しないか、あるいは、ビーム絞り15によって遮断されるように開口17に入射することがないよう結像光学系6によって偏向される。図1に示す典型的な状態において、画素501 は、緑色の測定光以外の表面3から出てくる測定光を検出しない。実際には、光軸13に対して横方向に画素501 が拡大されるため、画素501 が検出する光は、光軸13に対して狭い角度範囲からの、表面3の幾分拡大された部分から放射される光であって、厳密には必ずしも単色光ではなく、中心の光線42g1付近の狭い範囲の波長を含み得る。

0059

同様に、照明光線402 は、結像光学系6により、光線41r1 、41g1 及び41b1 が表面3に入射する位置とは異なる位置又は領域において表面3に入射する光線41r2 、41g2 及び41b2 に分散される。光線41r2 、41g2 及び41b2 は、表面3で反射し、光線42r2 、42g2 及び42b2 が出てくる。ここで、表面3は、光線41r2 、41g2 及び41b2 が入射する位置において、光線41r2 のみが表面3に垂直に入射するように方向付けられている。反射光線42r2 は、入射光線41r2 と同軸上にあり、照明光線402 とも同軸となるようにホログラム11によって回折される。従って、反射光線42r2 は、開口17を通り抜けることができ、検出器49の画素502 に入射する。他の反射光線42g2 及び42b2 は、光軸13に対して異なる角度にあるため、開口17を通り抜けることができず、画素502 は狭い帯域幅の赤色光のみを検出する。

0060

照明光線403 は、光軸13と同軸上にあり、入射光線413 がその全ての色成分に関して表面3に垂直に入射するよう、結像光学系6によって偏向されず、対応する反射光線423 は、その光線の色とは無関係に、結像光学系6及び開口17を通り抜けて検出器52の画素503 に入射する。従って、画素503 は、入射光線403 のほぼ全ての色成分を検出する。

0061

図1に示す典型的な状態は、検出器49の画素504 が光線42r4 の赤色光を検出し、画素505 が光線42g5 の緑色光を検出するよう、光軸13に対して対称である。

0062

照明光学系29は、コリメータレンズ55と、その間に配置されたカラーフィルタ57とを備えている。この種のカラーフィルタ57は、例えば、ドイツのマインツのショット(SCHOTT)から入手可能である。カラーフィルタ57は、コントローラ61によって制御されるアクチュエータ59によって操作される。アクチュエータ59は、カラーフィルタ57を通り抜けることのできる狭い波長帯域中心波長を選択するため、カラーフィルタ57を折り曲げられた光軸13'に対して横方向60に移動させるように構成されている。コントローラ61は、測定光37が赤色光、緑色光及び青色光で続いて形成されるよう、3つの異なる位置でカラーフィルタ57を続いて調整するようにコンピュータ制御及びプログラムされていてもよい。コントローラ61はさらに、検出器52によって検出されたパターンを受け取る。測定光37が赤色光で形成されるようにカラーフィルタ57が位置付けられている第1の状態において、コントローラ61は、検出された光強度を画素502 、503 及び504 から受け取る。測定光37が緑色光で形成されるようにカラーフィルタ57が位置付けられている第2の状態において、コントローラ61は、検出された強度情報を画素501 、503 及び505 から受け取る。測定光37が青色光で形成されるようにカラーフィルタ57が位置付けられている第3の状態において、コントローラ61は、検出された強度情報を画素503 のみから受け取る。

0063

狭い波長帯域の各々に対して得られたパターン画像情報から、表面3の複数の位置において光軸13に対する表面3の方向を求め、さらに表面3の表面形状を計算することができる。

0064

図1に示す簡略化された方法においては、開口17を通り抜ける15個の光線群が検出される。この15群は、5つの検出器素子に3つの異なる色を乗じた結果として生じる。3つの検出器素子が緑色光を検出し、3つの検出器素子が赤色光を検出し、1つの検出器素子が青色光を検出する。従って、7つの光線群のみが強度の測定に寄与する。他の光線群は、ビーム絞り15によって遮断される。強度(検出されたバックグラウンド強度を除く)の測定に寄与する群の総群数に対する比率は、1/2未満である。高解像度の検出器が用いられ、より多くの光線群を形成するためにより多くの狭い波長帯域が使用される実用的な実施の形態において、この比率はさらに小さくなる。

0065

システム1は、図1に示す非球面形状と全く同じ形状の表面を有する物体の測定に限定されるものではない。さらに、他の物体を結像光学系6のビーム経路にセットすることができる。このような他の形状の表面は、検出器の画素上に結像した像の位置において、光軸13に対して他の方向を有しており、異なる色パターンが検出器52によって検出される。これらの異なる色パターンから、異なる表面形状も計算することができる。

0066

様々な非球面形状は、単一の結像光学系を用い、結像光学系6に対して表面を高精度に移動させることなく決定することができる。

0067

図1に示す測定システム1は、検出器が5つの画素のみを備え、測定が3つの異なる波長に対してのみ行われる点においても優れたものと言える。実用的な実施の形態において、検出器は、例えば、1024×1024画素の高解像度を有する二次元位置感度検出器であり、測定光は、多数の異なる狭い波長帯域、例えば、数百の異なる波長帯域に調整され、各波長帯域の検出器画像がコントローラによって得られ、高精度に表面形状が計算される。

0068

ホログラム11は、写真乾板に参照光及び球面からの反射光を当てて生成することができる。あるいは、ホログラムは、コンピュータを用いて対応する格子を計算し、光線追跡等の方法を伴い、計算された格子をプレート7の表面9上にプロットすることによって生成されるコンピュータ生成ホログラムCGH)であってもよい。格子は、例えば、リソグラフィ法によって形成することができる。干渉分光法において用いられるホログラムに関する背景情報は、ダニエルマラカラの上記テキストブックの第15章により入手可能である。

0069

図2は、表面3aの形状を決定するためのさらなる典型的なシステム1aを示している。ここで、システム1aは、図1に示すシステム1と類似している。特に、システム1aの測定光学系6a及び表面3aは、図1に示す状態と同一である。図1及び図2のシステムは、システム1aが表面3aを広い波長帯域の白色照明光で照明し、必要な波長選択が検出器52aで行われる点で異なっている。照明光学系29aは、白色光源27aの光がビーム絞り35aの開口33aに直接集束するよう、カラーフィルタを備えていない。

0070

色選択は、表面3aから発せられる反射光線42a1 ・・・42a5 を分割し、これらの光線の1つの分割部分を固定ミラー73に入射させ、これらの光線の他の分割部分を可動ミラー75に入射させるビームスプリッタ71を備えたフーリエ分光計カメラ52aを用いて行われる。固定ミラー73及び可動ミラー75で反射した光線は、ビームスプリッタ71によって再結合して、検出器チップ49aの検出器素子15a1 、・・・、15a5 に入射する。可動ミラー75は、コントローラ61aによって制御されるアクチュエータ59aによって移動される。反射光線42a1 ・・・42a5 の波長分析は、光学面3a上の異なる位置で反射した測定光の波長を求めるため、フーリエ分光計カメラの原理に基づき、可動ミラー75をコントローラ61aの制御下で移動させることによって行われる。

0071

図3は、図2に示す結像光学系6aのホログラム11aの線密度を、光軸13aからの距離の関数として示したグラフである。

0072

図4は、分光計カメラ52aによって検出された光の波長を、光軸13aに対する角度の関数として、また、検出器59a上に結像したホログラム11a上の光軸13aからの距離として示したグラフである。

0073

図5は、表面3aの表面形状を、光軸13aからの距離の関数として示したグラフである。表面形状は、278.2mmの曲率半径を有する球面形状からのずれΔδとして示されている。表面は、175.0mmの直径(diameter)を有している。

0074

図1及び図2に示す実施の形態において、検査される表面から発する検出測定光は、検査される表面で直接反射する光である。

0075

図6は、レンズ5bの表面3bの形状を測定するためのシステム1bの一部分を模式的に示している。ここで、測定光は、検査される表面3bを通り抜ける。詳細には、測定光40bの照明ビームは、図1又は図2に示される照明光学系と類似の照明光学系6bによって生成される。照明ビーム40bは、プレート7b上に設けられたホログラム11bによって分散され、分散された光41br、41bg及び41bbは、検査される表面3bを通り抜け、レンズ5bの裏面4bから出てくる。その後、分散されたビームは、既知の形状の基準面81を有するミラー82に入射する。ホログラム11bの分散作用のため、入射光線41br、41bg及び41bbは、ミラー82の基準面81に異なる角度で入射する。図6の例示において、反射光線42bgが入射光線41bgと同軸となり、結像光学系6bを通過して戻ることができ、開口17bを通り抜けて検出器(図6には図示せず)によって検出されるよう、光線41bgのみがミラー82の基準面81に垂直に入射する。レンズ5bを再び通り抜けて最終的に表面3bから出てくる、ミラー82の基準面81で反射した入射光線41bg及び光線42bgは、共に表面3bで偏向され、表面3bの光軸13bに対する傾斜の変化により、開口17bを通り抜けるよう、表面3bから出てくる測定光の色が変化する。

0076

図7は、物体5cの表面3cの形状を測定するためのシステム1cを模式的に示している。ここで、システム1cは、色結像光学系6cの利点と干渉計測原理の利点とを組み合わせたものである。

0077

色結像光学系6cは、回折素子屈折素子の両方を備えている。測定光に対して比較的強い分散効果を有する回折素子は、プレート7c上に保持されたホログラム11cによって設けられている。測定光の分散に寄与し得る屈折素子は、2つのレンズ85及び87によって設けられている。ここで、レンズ87は、ビーム絞り15cに設けられた開口17cの位置に曲率中心を有する、定曲率フィゾー面89を与える。測定光のビーム37cの一部は、フィゾー面89で反射し、開口17cを通り抜け、検出器49cに入射する。フィゾー面89で反射しない測定光の一部はさらに、結像光学系6cを通り抜けることで分散され、検査される表面3cに入射する。表面3cに垂直に入射する入射測定光41cの色は、開口17cを通り抜けて検出器49cにも入射し得るよう、入射光と同軸となるように表面3cで反射する。検出器上において、基準フィゾー面89で反射した光及び検査される表面3cで反射した光は、コントローラ61cによって分析される干渉縞を形成する。検出された光の色選択は、測定光が検査される表面3cに入射する前に、照明光37cの照明ビーム経路に設けられたカラーフィルタ57cによって行われる。光源は広帯域の光源であるため、生成された光のコヒーレンス長は、比較的短く、特に、フィゾー面89と検査される表面3cとの間の距離よりも短い。

0078

フィゾー面89で反射した光と検査される表面で反射した光との間の干渉を得るために、光学的な遅延装置91が照明ビーム経路に設けられている。遅延装置91は、光源27cによって生成された光ビーム31cを2つの光ビーム95及び96に分離するためのビームスプリッタ93を備えている。分離された光ビーム95及び96は、ミラー97及び98にそれぞれ入射し、ミラー97及び98でそれぞれ反射した後、ビームスプリッタ93によって再結合される。再結合された光は、コリメータ55cによって開口33cに集束され、これにより照明測定光37cの点光源が生じる。アクチュエータ99は、カラーフィルタ57cによって目下調整された色の入射光線41cが表面3cに垂直に入射する位置において、ビームスプリッタ93とミラー97との間の光路長と、ビームスプリッタ93とミラー98との間の光路長との差が、フィゾー面98と検査される表面3cとの間の光路長差と一致する程度までミラー97をビーム95の方向に移動させるよう、コントローラ61cによって制御される。

0079

白色干渉分光法を用いる従来のシステムを除き、図7に示すシステム1cは、分散測定光学系6cが測定光の検査される表面への様々な入射角度に対して干渉状態を実現することができるため、様々な形状の表面3cを検査するために用いることができる。

0080

図7を参照して説明した上記実施の形態において、光学的な遅延装置91は、照明光のビーム経路に配置されている。しかし、測定光学系6cと検出器装置52cとの間のビーム経路に対応する装置を設けることもできる。

0081

図8は、表面形状を測定するためのシステム1dのさらなる実施の形態の一部を模式的に示している。システム1dは、主に、色感度カメラ52dの上流に設けられたビーム絞り15dが、中央の円形開口ではなく環状開口17dを有している点で上記実施の形態と異なる。同様に、照明光ビーム31dに設けられたビーム絞り25dは、対応する環状開口33dを有している。このような配置により、複数の照明・結像光線40dが、異なる角度で色結像光学系6dを横断する。特に、対称軸13d上で色結像光学系6dに入射する光線40d3 は、ゼロとは異なる角度で入射する。結像光学系6dがホログラムとして具体化されている場合には、上記実施の形態に比べて、対称軸に近接した領域で回折力が増加するという利点がある。

0082

他の実施の形態において、開口の形状は、環状開口とは異なり、延長された直線、正方形楕円等の形状を含む。さらに、検出器の上流の開口の形状に対応した様々な形状の光源、例えば、環状光源、延長された直線状の光源等を用いることができる。

0083

上記実施の形態において、検査される表面に異なる波長の光を異なる入射方向から入射させるために必要な分散は、主に、照明ビーム及び結像ビームの両方が通り抜ける光学系の一部、すなわち、光源と物体との間のビーム経路及び物体と検出器との間のビーム経路に配置された格子等の光学素子によって発生される。

0084

図9及び図10を参照しながら、表面3eの形状を測定するためのシステム1eについて説明する。このシステム1eにおいて、分散は、検査される表面と検出器との間のビーム経路の外側で発生される。従って、照明光学系は、著しく色照明光学系であり、結像光学系は、色照明光学系に比べて分散が小さい。

0085

照明光学系の分散発生部を図10に詳細に示す。

0086

ビーム絞り35eのピンホール33eから発散ビーム161が出射される。ビーム161は、同時又は続いて生成された複数の異なる波長を含んでいる。異なる波長は、本実施の形態を説明するために、赤色、緑色及び青色として示されている。ビーム161は、レンズ141によって平行光にされ、円錐レンズ147の錐面165に入射する平行ビーム163が形成される。円錐レンズ147を通り抜けたビーム167は、レンズ145に保持されたコンピュータ生成ホログラム11eに入射する。図10は、ホログラム11eの同じ位置に入射するビーム167の2つの典型的な光線171及び172を示している。参照符号173は、光線171の+1次回折光を示しており、参照符号174は、光線172の+1次回折光を示している。これらの回折次数のビームは、ビーム絞り143によって遮断される。

0087

光線171r、171g及び171bは、それぞれ、光線171の、−1次回折された赤色、緑色及び青色の光線を示しており、参照符号172r、172g及び172bは、それぞれ、光線172の、−1次回折された対応する赤色、緑色及び青色の光線を示している。

0088

レンズ141から出射された測定光のビーム179のビーム断面が、このビーム断面を通り抜ける測定光の特定の色分布を有することは明らかである。赤色光は、光軸13e上の中心でこのビーム断面を通り抜け、緑色光は、赤色光部分付近の環状部分においてこのビーム断面を通り抜け、青色光は、緑色光環状部分の外側の環状部分においてこのビーム断面を通り抜ける。

0089

レンズ141から出射された光は、レンズ85e、87e及び131〜137によってで形成された光学系に入射する。図9を参照し、レンズ141は、レンズ85〜137の光学系を照射するための拡大光源として理解することができる。ここで、拡大光源141の断面は、色分けされた環状発光部分を有している。

0090

さらに、このような配置から、検査される非球面3e上の各位置が複数色の測定光で照明され、複数色の入射方向が互いに異なることは明らかである。

0091

レンズ85e〜137の光学系はさらに、レンズ47eと、環状開口17eを有するビーム絞り15eとをさらに備えた結像光学系の一部である。結像光学系は、実質的な分散を招くことなく、非球面3eの像を検出器75e上に結像するために用いられる。

0092

図9には、システム1eのスペクトルセレクタは示されていない。しかし、図1のカラーフィルタ57と類似のセレクタを、ピンホール33eを照射するための光源とビーム絞り35eとの間に配置してもよく、あるいは図9に模式的に示すカメラ75eが、図2に示すフーリエ分光形等の波長セレクタを備えていてもよい。

0093

システム1eの主要な光学部品の光学データを、下記表1に示す。

0094

0095

上記実施の形態において、結像光学系は、軸に対して回転対称である。しかし、回転対称ではなく、特に、測定光に対して非回転対称の分散作用を有する結像光学系を用いることもできる。例えば、ホログラムは、異なる回折次数の分離を向上させるために、搬送周波数を含んでいてもよい。その結果、特に、検査される表面の回転軸に入射する測定光のビームは、その波長に応じて分散されるようになる。

0096

図1図6を参照しながら説明した表面形状の測定システム及び方法は、高精度に作製された光学面を有する光学素子の製造に有利に用いることができる。

0097

上記システムを用いて光学面を高精度に作製する方法について、図11に示すフローチャートを参照しながら説明する。処理手順を開始した後、ステップ101において、測定光のビームのビーム経路に光学素子が配置される。ステップ103において、測定のために光の第1の波長が選択される。ステップ107において、検出器から検出された光強度を読み取ることで第1の測定が行われる。その後、全ての所望の波長で測定が行われたかどうかの判断111がなされる。全ての所望の波長で測定が行われていない場合には、ステップ107で処理が継続され、さらなる測定がステップ107で繰り返し行われ、ステップ109でさらなる波長が選択される。判断ステップ111で測定が完了すると、ステップ119において、光学面の表面マップが決定される。この表面マップの決定は、光学面3の測定に基づくものである。

0098

ステップ121において、ステップ119で決定された表面マップに基づき、測定された光学面の形状と目標とする形状との差が計算される。ステップ123において、検査された非球面が、完成した光学面の仕様と対応するかどうか判断される。差が、適切に選択された閾値未満である場合、光学面に対して仕上げステップ125が行われる。仕上げ工程は、表面の仕上げ磨きや、適切なコーティング(例えば、スパッタリング等の適切な方法よって光学面に塗布された反射コーティング、反射防止コーティング及び保護コーティング)の堆積を含み得る。反射コーティングは、例えば、複数層(例えば、酸化モリブデン及び酸化シリコン等の誘電材料が交互に並んだ10層)を含み得る。このような層の厚さは、約5nmとすることができ、反射率が実質的に高くなるよう、光学面で反射される波長に適合される。最後に、反射コーティングを皮膜で保護するための保護キャップ層によって当該反射コーティングを被覆してもよい。保護キャップ層は、ルテニウム等の材料を堆積することによって形成される層を含み得る。レンズ素子等の光学素子の光学面での放射線の反射を低減させることを目的とする反射防止コーティングは、フッ化マグネシウム酸化ランタン及び他の適切な材料等の材料を含み得る。反射防止コーティングもまた、保護キャプ層によって被覆してもよい。

0099

ステップ123において、決定された差が閾値未満である場合には、光学面を加工するステップ129において処理手順が継続される。このために、光学素子は、干渉計光学系のビーム経路から取り外され、決定された表面形状と目標とする形状との差が閾値を超える光学面の表面部分を除去するために適切な機械工具に搭載される。その後、ステップ101において処理手順が継続され、光学素子が再び干渉計システムにおける測定光のビーム中に搭載され、光学面の表面形状が測定され、目標とする形状からの差が決定され、差が閾値未満になるまで加工が繰り返し行われる。

0100

加工は、ミリング、研削、ルース・アブラシブ研削、研磨、イオンビーム面出し及び磁気レオロジー面出し等の動作を含み得る。

0101

ステップ125において光学面の仕上げ工程が行われた後、ステップ127において、光学素子が送出されて光学システムに組み込まれる。その後、ステップ101において、次の検査される光学素子が干渉計ビーム経路に搭載され、この次の表面が仕様を満たすまで、この表面の測定及び機械加工が繰り返し行われる。

0102

上記閾値は、光学システムに合わせて設計された光学面の光学システムにおける用途に依存する。例えば、光学面が、波長λ=193nmの放射線でレチクル構造をレジスト上に結像する対物レンズにおけるレンズ表面である場合、このような閾値は、約1nm〜10nmの範囲とすることができ、光学面が、波長λ=13.5nmのEUV(超紫外線)を用いた結像対物レンズにおける鏡面である場合、閾値は、約0.1nm〜1.0nmの範囲となる。尚、上記閾値は、光学面の全体にわたって一定である必要がないことに留意すべきである。閾値は、例えば、光学面の中心からの距離や他のパラメータに依存するものであってもよい。特に、測定された表面とその目標とする形状との差の、異なる範囲の空間周波数に対して複数の閾値を定義してもよい。

0103

干渉計システムの実施の形態を用いれば、干渉計システムの同じ照明及び結像光学系で、様々な形状の光学面を検査することができる。例えば、照明光学系に対し、2つの異なる光学面を各測定位置に配置することができる。ここで、対応する位置における2つの光学面の方向の差は、arcsin(λmin/2p)よりも大きくなり得る。ここで、λminは、測定光の最小波長であり、pは、検出器の検出器画素ピッチである。この文脈において、「対応する位置」という語は、以下のように理解すべきである。第1の光学面が測定位置に配置されている場合には、第1の光学面上の第1の位置の像が検出器上の選択された位置に結像される。その後、第2の光学面が測定位置に配置されると、第2の光学面上の第2の位置の像が検出器上の同じ選択された位置に結像される。第1の光学面上の第1の位置及び第2の光学面上の第2の位置の像は共に、検出器上の同じ選択された位置に結像されるため、第1の光学面上の第1の位置及び第2の光学面上の第2の位置を、第1及び第2の光学面上の「対応する位置」と称する。

0104

例えば、検出器は、1000×1000個の画素を有し得る。第1及び第2の光学面はそれぞれ、200mmの直径を有し、それらの像が検出器の全面に結像される。そして、検出器画素のピッチは、一方向の画素数に対する光学面の直径の比率である200mm/1000に対応する。測定に用いられる最短波長は、この実施例によれば、600nmである。従って、対応する位置における第1及び第2の光学面の方向の差は、arcsin(0.6μm/(2*200mm/1000))=0.086°よりも大きくなり得る。

0105

上記実施の形態において、干渉計システムはフィゾー型である。しかし、本発明は、このような型の干渉計に限定されるものではないことに留意すべきである。他の型の干渉計、例えば、トワマングリーン型の干渉計(その例は、ダニエルマラカラにより編集されたテキストブック、光学工場試験、第2版、ワイリーインターサイエンスパブリケーション(Wiley Interscience Publication)(1992)の第2.1章に説明されている)、マイケルソン型の干渉計(その例は、ダニエル マラカラにより編集されたテキストブックの第2.1章に説明されている)、マッハツェンダー型の干渉計(その例は、ダニエル マラカラにより編集されたテキストブックの第2.6章に説明されている)、点回折型の干渉計(その例は、米国特許第5,548,403号明細書、及びパトリックP.ナウレアウ(Patrick P. Naulleau)らによる記事「超紫外線位相シフト点回折干渉計:サブオングストローム参照波精度を有する波面計測器具」、応用光学‐IP、第38巻、第35項、7252〜7263頁、1999年12月に説明されている)、及び他の適切な型の干渉計を用いてもよい。

0106

上記実施の形態において、検査される物体は、レンズやミラー等の高精度光学素子である。しかし、本発明の概念を他の製造物の検査に適用することも可能である。例えば、自動車工学におけるバルブシートの形状を検査するために、開示のシステム及び方法を用いることができる。

0107

要約すると、表面形状を決定するシステム及び方法は、測定光の分散を発生させる色光学系を含む。検査される表面から出て、検出器により受け取られる測定光に含まれる色情報は、検査される表面の形状を決定するために用いることができる。

0108

いくつかの典型的な実施の形態に関して本発明を説明したが、多くの代替修正及び変更が明らかであることは、当業者にとって明白である。従って、ここに記載した本発明の典型的な実施の形態は、説明を目的としたもので、本発明は決してこれらの実施の形態に限定されるものではない。請求項に規定された本発明の精神及び範囲から逸脱することなく、種々の変更が可能である。

図面の簡単な説明

0109

図1は、本発明の第1の実施の形態における表面形状を測定するためのシステムの模式図である。
図2は、本発明の第2の実施の形態における表面形状を測定するためのシステムの模式図である。
図3は、図2に示すシステムと類似のシステムにおいて用いられるホログラムの線密度を示すグラフである。
図4は、検査される表面上の投射位置に依存する、検出器に入射する測定光の波長を示すグラフである。
図5は、図4に示す強度から計算された表面形状を示すグラフである。
図6は、本発明の第3の実施の形態における物体の表面形状を測定するためのシステムの一部の模式図である。
図7は、本発明の第4の実施の形態における表面形状を測定するためのシステムの模式図である。
図8は、本発明の第5の実施の形態における表面形状を測定するためのシステムの模式図である。
図9は、本発明の第6の実施の形態における表面形状を測定するためのシステムの模式図である。
図10は、図9に示すシステムの一部を拡大して示した模式図である。
図11は、本発明における光学素子の製造方法のフローチャートである。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ