図面 (/)

技術 光学レンズの研磨方法

出願人 HOYA株式会社
発明者 豊島吉明田中孝雄
出願日 2004年11月30日 (16年0ヶ月経過) 出願番号 2004-346137
公開日 2006年6月15日 (14年6ヶ月経過) 公開番号 2006-150526
状態 特許登録済
技術分野 3次曲面及び複雑な形状面の研削,研磨等
主要キーワード 仮想曲線 簡易計算 最大曲率半径 ハメアイ Y座標 ドーム部材 平面視楕円形 平面視台形状
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2006年6月15日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (17)

課題

非回転対称な被研磨面を全面にわたって良好に研磨することができる光学レンズ研磨方法を提供する。

解決手段

レンズの被研磨面の平均曲率が最小となる軸方向を算出し特定する工程S1と、レンズの被研磨面の平均曲率が最小となる軸方向が研磨治具長軸方向と一致するようにレンズを研磨装置取付ける工程S2と、レンズの被研磨面が研磨パッドと接触した状態で前記研磨治具と前記研磨パッドを首振り旋回運動させ、レンズを被研磨面の平均曲率が最小となる軸方向に往復移動させるとともに前記軸方向と直交する方向に往復回動させることにより、研磨の軌跡が1周毎に少しずつずれる無軌道研磨軌跡で被研磨面を研磨する工程S3とを備えている。

概要

背景

従来、NC制御のカーブジェネレータで球面やトーリック面形状に切削されたレンズの凹面を研磨装置によって研磨するには、研磨したい凹面の形状と略一致する凸面を有する金属製の研磨治具研磨パッド貼付け、これを研磨したい凹面に押し付けた状態で研磨治具とレンズとを相対的に摺動させることにより行っていた。しかしながら、このような方法で研磨する場合、研磨したいレンズの凹面の形状毎に異なった研磨治具を用意する必要がある。例えば、乱視矯正用のトーリックレンズの場合、トーリック面(円弧を、その円弧と同一面内にあり円弧の曲率中心を通らない軸の回りに回転させて得られる面の一部)が3000〜4000種類にも及ぶため、その数だけの研磨治具を用意する必要があった。このため、研磨治具の製造コストが嵩むばかりか、保管のために広い収納スペースを必要とし、その管理が煩雑であった。

また、球面、トーリック面だけではなく、非球面(頂点から周辺にかけて曲率が連続的に変化する回転面の一部)形状、非トーリック面(曲率が異なる互いに垂直な主経線をもつ面で、少なくとも一方の主経線の断面が円ではない面)形状、累進多焦点レンズのような自由曲面形状など複雑な形状の凹面を形成する場合があり、このような場合には研磨治具が複雑な凹面形状に対応できず研磨できないという問題があった。

そこで、このような問題を解決するための方法として、弾性材料からなり内部に流体封入して膨らませた状態で研磨するようにした研磨治具が提案されている(例えば、特許文献1参照)。なお、本発明は 特許文献1に記載された研磨治具を用いて研磨する方法の改良に関するものである。

特許文献1に記載された研磨治具は、弾性材料によって平面視形状が楕円カップ状に形成され内部に流体が導入されることにより上面側がドーム状に膨張するバルーン部材を備え、このバルーン部材の上面に設けた研磨パッドによりレンズの被研磨面を研磨するようにしたものである。レンズの凹面がトーリック面で互いに直交する方向での曲率が大幅に異なる場合、球面状のドームではこのような凹面に追随できないおそれがある。このため、バルーン部材を平面視楕円形状としてバルーン部材の上面の曲率を互いに直交する短軸方向と長軸方向で異ならせ、レンズのトーリック面に近づけるようにしている。研磨に際しては、レンズを左右方向に往復移動させるとともに前後方向に往復回動させ、研磨治具を首振り旋回運動させることにより、研磨軌跡が1周毎に少しずつずれる無軌道研磨軌跡でレンズの被研磨面を研磨するようにしている。

このような研磨治具によれば、バルーン部材の内圧を変化させることで、ドームの曲率を変化させることができるため、被研磨面の曲率に応じてドームの曲率を変更するために格別な部品や手段を設ける必要がなく、研磨治具の種類を大幅に削減することができ、また確実に研磨することができるとしている。

特開2003−266287号公報

概要

非回転対称な被研磨面を全面にわたって良好に研磨することができる光学レンズ研磨方法を提供する。レンズの被研磨面の平均曲率が最小となる軸方向を算出し特定する工程S1と、レンズの被研磨面の平均曲率が最小となる軸方向が研磨治具の長軸方向と一致するようにレンズを研磨装置に取付ける工程S2と、レンズの被研磨面が研磨パッドと接触した状態で前記研磨治具と前記研磨パッドを首振り旋回運動させ、レンズを被研磨面の平均曲率が最小となる軸方向に往復移動させるとともに前記軸方向と直交する方向に往復回動させることにより、研磨の軌跡が1周毎に少しずつずれる無軌道研磨軌跡で被研磨面を研磨する工程S3とを備えている。

目的

本発明は上記した知見に基づいてなされたものであり、その目的とするところは、非回転対称な被研磨面を全面にわたって良好に研磨することができる光学レンズの研磨方法を提供することにある。

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

弾性材料によって平面視形状が楕円カップ状に形成され内部に流体が導入されることにより上面側が曲面形状に膨張するバルーン部材と、このバルーン部材の上面に取付け研磨パッドとを用いて光学レンズ非回転対称な被研磨面を研磨する光学レンズの研磨方法であって、前記光学レンズの被研磨面の平均曲率が最小となる軸方向を算出し特定する工程と、前記光学レンズの被研磨面の平均曲率が最小となる軸方向が前記バルーン部材の長軸方向と一致するように前記光学レンズを研磨装置に取付ける工程と、前記光学レンズの被研磨面が前記研磨パッドと接触した状態で前記バルーン部材を首振り旋回運動させ、前記光学レンズを前記被研磨面の平均曲率が最小となる軸方向に往復移動させるとともに前記軸方向と直交する方向に往復回動させることにより、研磨の軌跡が1周毎に少しずつずれる無軌道研磨軌跡で前記被研磨面を研磨する工程と、を備えていることを特徴とする光学レンズの研磨方法。

請求項2

前記光学レンズの被研磨面の平均曲率が最小となる軸方向を算出し特定する工程は、前記被研磨面上の幾何学中心外周縁点対称な2点とを結ぶ前記被研磨面に沿った仮想曲線を前記被研磨面の周方向所要角度ずつずらして複数本定め、各仮想曲線上に少なくとも任意の3点を定め、これらの点の座標から当該仮想曲線の平均曲率をそれぞれ算出し、そのうちの最も小さい平均曲率となる仮想曲線を選択してその軸方向を特定することを特徴とする請求項1記載の光学レンズの研磨方法。

請求項3

前記光学レンズがメニスカスレンズであることを特徴とする請求項1または2記載の光学レンズの研磨方法。

技術分野

0001

本発明は、光学レンズ研磨方法に関し、特に被研磨面が非回転対称な光学レンズの研磨方法に関するものである。

背景技術

0002

従来、NC制御のカーブジェネレータで球面やトーリック面形状に切削されたレンズの凹面を研磨装置によって研磨するには、研磨したい凹面の形状と略一致する凸面を有する金属製の研磨治具研磨パッド貼付け、これを研磨したい凹面に押し付けた状態で研磨治具とレンズとを相対的に摺動させることにより行っていた。しかしながら、このような方法で研磨する場合、研磨したいレンズの凹面の形状毎に異なった研磨治具を用意する必要がある。例えば、乱視矯正用のトーリックレンズの場合、トーリック面(円弧を、その円弧と同一面内にあり円弧の曲率中心を通らない軸の回りに回転させて得られる面の一部)が3000〜4000種類にも及ぶため、その数だけの研磨治具を用意する必要があった。このため、研磨治具の製造コストが嵩むばかりか、保管のために広い収納スペースを必要とし、その管理が煩雑であった。

0003

また、球面、トーリック面だけではなく、非球面(頂点から周辺にかけて曲率が連続的に変化する回転面の一部)形状、非トーリック面(曲率が異なる互いに垂直な主経線をもつ面で、少なくとも一方の主経線の断面が円ではない面)形状、累進多焦点レンズのような自由曲面形状など複雑な形状の凹面を形成する場合があり、このような場合には研磨治具が複雑な凹面形状に対応できず研磨できないという問題があった。

0004

そこで、このような問題を解決するための方法として、弾性材料からなり内部に流体封入して膨らませた状態で研磨するようにした研磨治具が提案されている(例えば、特許文献1参照)。なお、本発明は 特許文献1に記載された研磨治具を用いて研磨する方法の改良に関するものである。

0005

特許文献1に記載された研磨治具は、弾性材料によって平面視形状が楕円カップ状に形成され内部に流体が導入されることにより上面側がドーム状に膨張するバルーン部材を備え、このバルーン部材の上面に設けた研磨パッドによりレンズの被研磨面を研磨するようにしたものである。レンズの凹面がトーリック面で互いに直交する方向での曲率が大幅に異なる場合、球面状のドームではこのような凹面に追随できないおそれがある。このため、バルーン部材を平面視楕円形状としてバルーン部材の上面の曲率を互いに直交する短軸方向と長軸方向で異ならせ、レンズのトーリック面に近づけるようにしている。研磨に際しては、レンズを左右方向に往復移動させるとともに前後方向に往復回動させ、研磨治具を首振り旋回運動させることにより、研磨軌跡が1周毎に少しずつずれる無軌道研磨軌跡でレンズの被研磨面を研磨するようにしている。

0006

このような研磨治具によれば、バルーン部材の内圧を変化させることで、ドームの曲率を変化させることができるため、被研磨面の曲率に応じてドームの曲率を変更するために格別な部品や手段を設ける必要がなく、研磨治具の種類を大幅に削減することができ、また確実に研磨することができるとしている。

0007

特開2003−266287号公報

発明が解決しようとする課題

0008

従来の累進屈折力レンズは、一般に2つの光学面のうちいずれか一方の面に累進面を有している。また、累進屈折力レンズは累進面と対になる面に球面形状トーリック成分を融合させたトーリック面を光学面としている。球面形状は回転対称であり、トーリック成分は回転対称である。したがって、トーリック面は回転対称となっており、このような眼鏡レンズを上記した特許文献1に記載の研磨治具と研磨装置を用いて研磨する場合、乱視軸の方向と研磨治具の長軸を一致させて研磨していた。ここで、トーリック成分は乱視の程度により適宜必要な大きさが処方される。乱視の大きさとその軸方向は処方に含まれており、レンズ受注時の処方箋より参照することができるため、乱視軸の方向と研磨治具の長軸を一致させることは容易である。

0009

ところが、近年累進屈折力レンズは累進面形状とトーリック成分との融合面で光学面を形成したり、回転対称でない非球面形状(累進要素の一部)とトーリック成分をレンズの各光学面に配分して、両面での透過屈折力によって所望の累進屈折力や乱視矯正屈折力を構成している。これらの光学面は単純な回転対称な面ではない(以下、回転対称でないことを非回転対称という)。ここで、「非回転対称なレンズ」とは、レンズの一部または全体にわたって屈折力が連続的に変化する非回転対称面を有するレンズ、例えば累進屈折力レンズ、累進要素を有する非球面屈折力レンズ等である(ISO13666.JP REV.030眼鏡レンズ)。

0010

さらに、トーリック成分が両面に配分されるため片面当たりのトーリック成分が小さくなったり、トーリック成分の処方値の絶対値が小さくなる場合がある。しかしながら、トーリック成分による形状変化がトーリック成分以外の累進面等の回転対称でない変化と比較して小さくなると、トーリック成分の軸方向と研磨治具の長軸とを一致させて研磨した場合、レンズの被研磨面と研磨治具の曲率の相違により被研磨面全体を高い精度で研磨することができなくなるという問題があった。すなわち、被研磨面が非回転対称な面の場合、トーリック成分の軸方向を研磨治具の長軸方向と一致させてレンズを研磨装置に装着すると、レンズの最小曲率とその軸方向がトーリック成分の曲率とその軸方向と相違し、最小曲率がトーリック成分の曲率より小さくなるため、レンズの被研磨面の外周縁部と研磨治具の外周部との間に隙間が生じ、被研磨面全体を均一に研磨することができなくなる。

0011

そこで、本発明者らは特に光学レンズの非回転対称な被研磨面を上記した特許文献1に記載されている研磨治具を用いて研磨する際には、レンズを研磨治具に対してどのように配置して研磨すればよいかを検討し種々の実験を行った結果、レンズ毎に最小曲率の軸方向を算出し、この最小曲率の軸方向を研磨治具の長軸方向と一致させて研磨すると、レンズの被研磨面の外周縁部と研磨治具の外周部との間に隙間が生じさせることなく、被研磨面全体を良好に研磨することができることを確認した。

0012

本発明は上記した知見に基づいてなされたものであり、その目的とするところは、非回転対称な被研磨面を全面にわたって良好に研磨することができる光学レンズの研磨方法を提供することにある。

0013

上記目的を達成するために本発明は、弾性材料によって平面視形状が楕円でカップ状に形成され内部に流体が導入されることにより上面側が曲面形状に膨張するバルーン部材と、このバルーン部材の上面に取付けた研磨パッドとを用いて光学レンズの非回転対称な被研磨面を研磨する光学レンズの研磨方法であって、前記光学レンズの被研磨面の平均曲率が最小となる軸方向を算出し特定する工程と、前記光学レンズの被研磨面の平均曲率が最小となる軸方向が前記バルーン部材の長軸方向と一致するように前記光学レンズを研磨装置に取付ける工程と、前記光学レンズの被研磨面が前記研磨パッドと接触した状態で前記バルーン部材を首振り旋回運動させ、前記光学レンズを前記被研磨面の平均曲率が最小となる軸方向に往復移動させるとともに前記軸方向と直交する方向に往復回動させることにより、研磨の軌跡が1周毎に少しずつずれる無軌道研磨軌跡で前記被研磨面を研磨する工程とを備えたものである。

0014

また、本発明は、前記光学レンズの被研磨面の平均曲率が最小となる軸方向を算出し特定する工程が、前記被研磨面上の幾何学中心と外周縁の点対称な2点とを結ぶ前記被研磨面に沿った仮想曲線を前記被研磨面の周方向所要角度ずつずらして複数本定め、各仮想曲線上に少なくとも任意の3点を定め、これらの点の座標から当該仮想曲線の平均曲率をそれぞれ算出し、そのうちの最も小さい平均曲率となる仮想曲線を選択してその軸方向を特定するものである。

0015

さらに、本発明は、光学レンズがメニスカスレンズに適用したものである。

発明の効果

0016

本発明においては、光学レンズの被研磨面の平均曲率が最小となる軸方向と、バルーン部材の長軸方向とを一致させて研磨するようにしたので、レンズの被研磨面の外周縁部とバルーン部材の外周部との間に隙間が生じるようなことはなく、被研磨面全体を研磨パッドに接触させることができる。したがって、被研磨面全体を確実に研磨することができる。

発明を実施するための最良の形態

0017

以下、本発明を図面に示す実施の形態に基づいて詳細に説明する。
図1(a)、(b)は本発明による研磨方法によって研磨されるレンズの平面図および、同レンズの断面図である。同図において、1は円形に形成された乱視矯正用のプラスチックレンズ(以下、レンズと略称する)で、凸面2aと、凹面2bと、これら両面2a,2bの外周縁を接続する円筒状のコバ面2cとにより、メニスカスレンズを形成している。また、レンズ1は、凸面2aのみが所定の光学面に仕上げられ、凹面2bが切削加工されたウレタン系またはエピチオ系の樹脂からなるセミフィニッシュレンズである。そして、凹面2bは、トーリック成分の軸方向3と凹面2bの最小曲率の軸方向4が異なる非回転対称な被研磨面を形成しており、本発明による研磨方法によって研磨され所定の光学面に仕上げられるものである。

0018

図2は本発明に係る光学レンズの研磨方法の手順を示すフローチャートである。同図において、本発明に係る光学レンズの研磨方法は、レンズ1の被研磨面2bの平均曲率が最小となる軸方向4を算出し特定する工程(ステップS1)を備えている。レンズ1の最小曲率を算出しその軸方向4を特定するには、図3に示すように先ず被研磨面2b上に複数の仮想曲線U1 ,U2 ,U3 ・・・を定める。これらの仮想曲線U1 ,U2 ,U3 ・・・は、被研磨面2b上の幾何学中心Oと外周縁の点対称な2点(点Q1 と点Q1 、点Q2 と点Q2 ・・)とをそれぞれ結ぶ、被研磨面2bの周方向に所要角度(θ)ずつずれた曲線である。各仮想曲線U1 ,U2 ,U3 ・・・を水平面に投影した投影線は、直線である。

0019

次に、各仮想曲線U1 ,U2 ,U3 ・・・上に少なくとも任意の3点(P1 ,P2 ,P3 )を定め、これらの点P1 ,P2 ,P3 から各仮想曲線U1 ,U2 ,U3 ・・・の平均曲率をそれぞれ算出する(算出方法についてはさらに後述する)。そして、算出した平均曲率のうち最も小さい平均曲率の仮想曲線を選び、その軸方向を特定する。各仮想曲線U1 ,U2 ,U3 ・・・の平均曲率は、その仮想曲線上に距離Sだけ離れた2点(例えば、点P1 と点P3 )をとり、これらの点P1 と点P3 における接線の方向の差ψ(=接線の角度α1 ,−α2 )と、点P1 〜点P3 間の弧の長さSとの比(ψ/S)である。

0020

また、本発明による光学レンズの研磨方法は、後述する研磨治具の長軸方向とレンズ1の被研磨面2bの平均曲率が最小となる軸方向4とを一致させる工程(ステップS2)と、被研磨面2bを研磨装置によって研磨する工程(ステップS3)とを備えている。被研磨面2bの研磨は、前述した特許文献1に記載されている研磨治具と研磨装置によって行う。

0021

研磨治具の長軸方向とレンズ1の被研磨面2bの平均曲率が最小となる軸方向4とを一致させる工程は、被研磨面2bの平均曲率が最小となる軸方向4が研磨治具の長軸方向と一致するようにレンズ1を研磨装置に装着することである。この場合、レンズ1はレンズ保持体によって保持され、研磨装置に装着される。

0022

研磨装置によってレンズ1の被研磨面2bを研磨する工程は、研磨治具に取付けた研磨パッドにレンズ1の被研磨面2bを接触させた状態で研磨治具と研磨パッドを首振り旋回運動させ、レンズ1を被研磨面2bの平均曲率が最小となる軸方向に往復移動させるとともに前記軸方向と直交する方向に往復回動させることにより、研磨の軌跡が1周毎に少しずつずれる無軌道研磨軌跡で前記被研磨面2bを前記研磨パッドによって研磨する工程である。研磨治具としては、弾性材料によって平面視形状が楕円でカップ状に形成され内部に流体が導入されることにより上面側が所定の曲面形状に膨張するバルーン部材が用いられる。そして、このバルーン部材は、研磨時に長軸と短軸の方向を一定に保ったままの状態で首振り旋回運動する。なお、研磨治具と研磨装置についてはさらに後述する。

0023

次に、レンズの被研磨面2bの最小曲率の軸方向を算出し特定する方法について詳述する。
レンズ1の被研磨面2bの最小曲率kを算出する方法としては、前記各仮想曲線U1 ,U2 ,U3 ・・・上の少なくとも任意の3点(P1 ,P2 ,P3 )の座標より連立方程式を解いて算出する方法と、3点以上(P1 ,P2 ,P3 ・・)の座標より最小二乗法によって算出する方法がある。前者の算出方法は、座標点が少ないため被研磨面2bの形状によっては後者の算出方法に比べて誤差が大きくなる。このため、本発明においては、レンズ毎にその被研磨面2bの最小曲率を前者の連立方程式と後者の最小二乗法によってそれぞれ算出してその結果を比較し、研磨精度に問題ない場合は前者の簡易計算方法による算出結果に基づいて研磨し、研磨精度に問題がある場合は後者の方法による算出結果に基づいて研磨するようにしている。

0024

レンズ1の表面(被研磨面)形状は、縦横に分割した格子行列(例えば110×110)の各格子上にレンズ表面の高さを数値として与えることにより表される。この場合、被研磨面2bの形状は、累進形状も含めた自由曲面である。この被研磨面2b上の(X,Y)点における高さZは、式1で表される。式1は、点列データ補間データを算出することができる公知の補間関数を用いることが可能であり、本発明においてはB−スプライン関数を使用する。

0025

0026

A.3点の座標値より連立方程式を解いて平均曲率を算出する方法
図3において、被研磨面2bの近似曲率半径rを円の方程式の連立方程式から算出する。曲率半径rは曲率kの逆数である。したがって、レンズ1の中心Oを通る各仮想曲線U1 ,U2 ,U3 ・・・上の任意の3点(P1 ,P2 ,P3 )の座標を使って各仮想曲線U1 ,U2 ,U3 ・・・の平均曲率を算出する。この場合、被研磨面2bの最小曲率とその軸方向を検出する必要があるので、角度θのピッチで周方向の全周にわたって複数の仮想曲線U1 〜Um を被研磨面2b上に設定し、各仮想曲線U1 〜Um 上の任意の3点(P1 ,P2 ,P3 )の座標を使用してその仮想曲線における被研磨面2bの平均曲率を算出する。本発明においては、隣り合う仮想曲線の角度ピッチ(θ)を1°とした。したがって、>0°から179°までの180本の仮想曲線Q1〜Q180についてその平均曲率rを算出すれば、360°にわたる全方向の平均曲率を求めたことになる。

0027

図4において、X軸に対して角度θだけ傾斜した第i番目の仮想曲線をUiとし、その平均曲率を算出する方法を説明する。
仮想曲線Ui上に任意の3点をP1 (X1 ,Y1 ,),P2 (X2 ,Y2 ),P3 (X3 ,Y3 )とする。また、仮想曲線Ui の方向の座標軸をW軸とすると、ZW断面での点P1 ,P2 ,P3 の座標値は、P1 (W1 ,Z1 ),P2 (W2 ,Z2 ),P3 (W3 ,Z3 )となる。W1 ,W2 ,W3 の座標値の設定は、前述したように直径Dのレンズ1の幾何学中心Oを通り両端の点(点P1 ,P3 )を結んだ仮想曲線Ui上の三点(P1 ,P2 ,P3 )として予め行っておく。W1 ,W2 ,W3 の座標値は、どの方向について計算するときも同じ値である。以上設定したW座標値を基にXY座標を算出する式と、算出したXY座標からZを算出する式は上記式1より次式となる。

0028

0029

したがって、ZX断面にける3点P1 ,P2 ,P3 を通る円の方程式を求めるには、以下の連立方程式を解けばよい。ただし、この3点P1 ,P2 ,P3 がZW断面において直線上にないことを条件とする。

0030

0031

a,bはそれぞれ円の中心のW,Z値の座標値、rは円の半径である。
a,b,rは式4、式5、式6によってそれぞれ求められる。

0032

0033

0034

0035

さらに、求める平均曲率kは、曲率半径rの逆数なので、次式

0036

0037

となる。
このようにして各仮想曲線U1 〜U180 の平均曲率kを順次算出し、そのうちの最も小さい平均曲率(kO )を選択する。

0038

上記方法による平均曲率kの算出例を下記の表1に示す。

0039

算出対象レンズは、非回転対称レンズである累進屈折力レンズである。
表1は非研磨面の幾何学中心Oを通り周方向にθ=10°のピッチでずれた18本の仮想曲線U1 〜U18についての平均曲率の算出例である。点P1 ,P2 ,P3 は被研磨面の各仮想曲線U1 〜U18上の座標値を示す。表1より最小曲率kO は1.103×10-0.2、その軸方向はθ=170°である。

0040

B.3点以上の座標値より最小二乗法によって平均曲率を算出する方法
図5において、レンズ1の被研磨面2b上の幾何学中心Oを通り3点以上の点、例えば9つの点P1 〜P9 を通る被研磨面2b上の座標値を使って仮想曲線U1 の近似曲率半径を円の方程式から最小二乗法で算出する。

0041

また、最小曲率とその方向を検出する必要があるので、所要の角度ピッチで周方向の全周にわたって複数の仮想曲線U1 〜Um を被研磨面2b上に設定し、各仮想曲線上の点P1 〜P9 の座標を使用してその仮想曲線における被研磨面2bの平均曲率を算出する。ここで、隣り合う仮想曲線の角度ピッチθを1°とした。したがって、この場合も0°から180°までの180本の仮想曲線U1 〜U180 についてその平均曲率を算出すれば、360°にわたる全方向の平均曲率を求めたことになる。

0042

次に、角度θの方向を第i番目の仮想曲線Ui とし、その平均曲率を算出する方法を説明する。
3点以上の座標値としては、例えば図5(b)に示すように仮想曲線Ui 上でレンズ直径を8等分する9つの点P1(X1 ,Y1 ,),P2 (X2 ,Y2 )・・・P9 (X9 ,Y9 )とする。また、仮想曲線Ui の方向の座標軸をW軸とすると、ZW断面での点P1 〜P9 の座標値は、P1 (W1 ,Z1 ),P2 (W2 ,Z2 )・・・P9 (W9 ,Z9 )となる。W1 〜W9 の座標値の設定は、レンズ1の直径Dを等間隔に分ける仮想曲線Ui 上の位置(点P1 〜P9 )に予め行っておく。W1 〜W9 の座標値は、どの方向について計算するときも同じ値である。以上設定したW座標値を基にXY座標を算出する式と、算出したXY座標からZを算出する式は、次式(8)となる。

0043

0044

ZW断面において、これらの点P1 〜P9 の座標値に最も近い円の方程式を求めるには、最小二乗法(式9)を使用して式(10)の連立方程式を解く。ただし、全ての点P1 〜P9 がZW断面において直線上にないことを条件とする。

0045

0046

式9のSが最小となるときが最も近似した円の方程式となる。したがって、Sを最小にするa,b,rを求めるにはSをa,b,rでそれぞれ微分して0とおくと、次式(10)

0047

0048

となり、これらを連立して解くと以下のようになる。

0049

0050

と置いて、
a,b,rを式12、式13、式14によってそれぞれ求める。

0051

0052

0053

0054

さらに、求める平均曲率kは、曲率半径rの逆数なので、

0055

0056

となる。このようにして各仮想曲線U1 〜U180 の平均曲率kを順次算出し、そのうちの最も小さい平均曲率kO を選択する。

0057

上記算出方法による平均曲率の算出例を下記の表2に示す。

0058

算出対象レンズは、非回転対称レンズである累進屈折力レンズである。
表2は非研磨面の幾何学中心Oを通り周方向にθ=10°のピッチでずれた18本の仮想曲線U1 〜U18についての算出例である。点P1 ,P2 ,P3 は被研磨面の各仮想曲線U1 〜U18上の座標値を示す。表2より最小曲率kO は1.103×10-0.2、その軸方向はθ=170°である。

0059

また、表1と表2の結果を比較すると、最小曲率kO とその軸方向は一致している。レンズ形状にも依存するが、本発明の形態では3点P1 ,P2 ,P3 による簡易計算でも十分な精度で最小曲率kO とその軸方向が算出可能である。

0060

次に、研磨装置によるレンズの研磨について説明する。
図6は本発明に係る研磨方法に用いられる研磨装置の概略構成図である。
同図において、全体を符号30で示す研磨装置は、床面に設置された装置本体32と、この装置本体32に紙面において左右方向(矢印X方向)に移動自在でかつ水平な軸33を中心として紙面と直交する方向(矢印AB方向)に回動自在に配設されたアーム34と、このアーム34を左右方向に往復移動させるとともに紙面と直交する方向に回動させる図示しない駆動装置と、前記アーム34に設けられレンズ1の凸面2aをレンズ保持体37を介して保持するレンズ取付部36と、このレンズ取付部36の下方に位置するように前記装置本体32に配設され、図示しない駆動装置により垂直な軸線Kを中心として首振り旋回運動(自転はしない)を行う揺動装置38等を備えている。また、前記揺動装置38上に着脱自在に設けられた研磨治具39、この研磨治具39に着脱自在に取付けられた研磨パッド40、前記レンズ取付部36を昇降させる昇降装置41等を備えている。このような研磨装置30は、上記した特許文献1に記載されている研磨装置と同一のものである。

0061

レンズ1は前述した通り、凸面だけが仕上げられた乱視矯正用のプラスチック製セミフィニッシュレンズからなり、凹面2bが非回転対称な被研磨面である。この被研磨面2bは、予め3次元NC制御を行うカーブジェネレータによって所定の面形状に切削加工されている(加工精度3μm以内:外径50φ、表面粗さRy0.3〜0.5μm)。

0062

図7は前記レンズをレンズ保持体37に取付けた状態を示す断面図である。
同図において、レンズ1を保持するレンズ保持体37は、金属製(工具鋼等)のヤトイ44と、このヤトイ44とレンズ1を接合する接着剤45とで構成されている。ヤトイ44の背面側には、前記レンズ取付部36に対して嵌合する嵌合凹部47が形成されている。この嵌合凹部47は、ハメアイの方向性を有している。接着剤45としては、通常低融点アロイ(例えば、Bi,Pb,Sn,In,Gaの合金融点約49℃)が用いられる。レンズ1の凸面2aと接着剤45との間には、傷防止用保護フィルム46が介在されている。接着剤45によってレンズ1をヤトイ44に接合するには、例えばLOH社製のレイアウトブロッカーと呼ばれる装置が用いられる。また、レンズ1は、上述した連立方程式または最小二乗法によって算出した被研磨面2bの最小曲率の軸方向を考慮してヤトイ44に取付けられる。具体的には、ヤトイ44をレンズ取付部36に取付けたとき、被研磨面2bの最小曲率の軸方向が研磨治具の39の長軸方向と一致するように、レンズ1をヤトイ44に取付ける。なお、ヤトイ44は、レンズ1の度数、外径、凸面2aの曲率に応じて大きさの異なるものが用いられる。

0063

図6において、前記揺動装置38は、垂直な回転軸21の上端垂直方向に所要角度(α)傾斜して取付けられており、上端面に前記研磨治具39が着脱可能に設置されている。回転軸48は研磨時に軸線周りに回転する。揺動装置38は回転軸48が回転すると、回転軸48の軸線周りを首振り旋回運動するように構成されている。回転軸48に対する揺動装置38の傾斜角度αは、例えば、5°である。図8は揺動装置38と研磨治具39の首振り旋回運動の軌跡50を示す。揺動装置38は、首振り旋回運動において回転軸48の周り公転するだけで自転はしない。

0064

図9図12において、前記研磨治具39は、弾性材料によってカップ状に形成された下面側が開放するバルーン部材51と、このバルーン部材51の下面側開口部を閉塞し内部を気密に保持する固定具52と、前記バルーン部材51の内部に圧縮空気を供給するバルブ53とで構成されている。

0065

前記バルーン部材51は、平面視形状が楕円形で表面が扁平または緩やかな凸曲面からなるドーム部51Aと、このドーム部51Aの外周より下方に向かって一体に延設された略楕円形の筒部51Bと、この筒部51Bの下端に一体に延設された環状の内フランジ51Cとで構成されている。

0066

バルーン部材51の材質としては、例えば硬度が20〜50度の天然ゴムに近い合成ゴム(例えば、IIR)または天然ゴムが用いられる。バルーン部材51の厚さは全体にわたって均一で、約0.5〜2mm(通常1mm程度の等厚)である。

0067

前記固定具52は、内側固定具55と外側固定具56の2部材からなり、これらによってバルーン部材51の内フランジ51Cを内側と外側から挟持することにより、バルーン部材51の下面側開口部を気密に封止している。このため、バルーン部材51の内部は、密閉空間57を形成している。内側固定具55は、バルーン部材51の筒部51Bの内側の形状と略同一の大きさの楕円板からなり、下面外周部に前記内フランジ51Cが嵌合する環状溝58が形成されている。

0068

前記外側固定具56は、上方が開放するカップ状に形成されていることにより、円板状の底板56Aと、この底板56Aの上面外周に一体に突設された円筒部56Bとからなり、この円筒部56B内に前記内側固定具55が前記バルーン部材51の筒部51Bとともに嵌挿される。円筒部56Bは、外形が円形で、内形がバルーン部材51の筒部51Bの外形と略同一の大きさの楕円形に形成されている。そして、外側固定具56は、内側固定具55が複数個止めねじ60によって一体的に結合された後、前記揺動装置38の上面に、前記バルーン部材51の長軸方向(図9の矢印F方向)を前記アーム34の往復移動方向図6のX方向)と一致させて取付けられる。

0069

前記バルブ53は逆止弁からなり、前記内側固定具55に取付けられている。

0070

前記ドーム部材51の密閉空間57に圧縮空気を前記バルブ53を介して供給すると、ドーム部51Aは上方に膨張し、ドーム部51Aの中心軸を含む断面の曲率半径が楕円の短軸方向(図9の矢印G方向)で最小、長軸方向(矢印F方向)で最大なトーリック面に近い形状となる。この場合、ドーム部51Aの曲率半径は、図13に示すようにドーム部51Aの中央高さ(頂点高さ)に対応して変化するため、適宜な装置によってドーム中央の高さを測定し調整することにより、ドーム部51Aの曲率半径を所望の曲率半径とすることができる。なお、ドーム部51Aの形状をレンズ1の凹面2bにより近づけるには長軸と短軸の寸法またはその比率が異なるドーム部材を複数種用意しておき、レンズ1の凹面2bの形状に近いものを選択して使用することが好ましい。この場合、ドーム部51Aの長軸方向の曲率半径は、レンズ1の凹面2bの最大曲率半径(最小曲率)と略等しく設定されていることが好ましい。

0071

ここで、本実施の形態においては、凹面2bがトーリック面でレンズ径65φ、70φ、75φ、80φ(mm)、屈折率1.7、凹面2bのベースカーブ0.00〜11.25〔D〕、乱視度数範囲0.00〜4.00〔D〕のレンズの研磨を行うのに、バルーン部材51の短軸の長軸に対する比率が0.9で、長軸の寸法が65φ、70φ、75φ、80φ、85φ、90φ、95φ、100φ(mm)の8種類と、バルーン部材51が略円形で外径が100mmの1種類の計9種類の研磨治具39を用意しておき、これらをレンズ1径に対応させて適宜選定使い分ける。

0072

研磨治具39の選定は、レンズ径と被研磨面2bの曲率によって適宜選定されるが、同一径のレンズの場合、曲率が大きくなる程長軸が短い研磨治具を使用するとよい。例えば、直径が70mmのトーリックレンズを研磨する場合、ベースカーブ0.00〜1.50〔D〕で乱視度数0.00〜2.00〔D〕の場合は長軸100φ(mm)の研磨治具、同ベースカーブで乱視度数2.25〜4.00〔D〕以上の場合は90φの研磨治具、ベースカーブ1.75〜6.00〔D〕で乱視度数0.00〜4.00〔D〕の場合は長軸90φの研磨治具(ただし、ベースカーブ2.75〜6.00〔D〕でかつ乱視度数が2.25〜4.00〔D〕の場合は80φ)、ベースカーブ6.25〜11.25〔D〕で乱視度数0.00〜4.00〔D〕の場合は長軸80φの研磨治具(ただし、ベースカーブ10.00〜11.25〔D〕でかつ乱視度数が2.25〜4.00〔D〕の場合は除く)を使用する。

0073

図10および図14において、レンズ1の凹面2bの研磨に用いられる前記研磨パッド40は、例えば発泡ポリウレタンフェルト、または不織布等の繊維性の布や合成樹脂等を材料とする厚さ1mm程度のシート材によって形成されたもので、前記バルーン部材51のドーム部51Aの正面視形状と略同一の大きさの楕円形に形成された研磨部70と、この研磨部70の外周から外側に伸びる複数本の固定片71とで一体に形成されている。研磨部70は、外周より中心に向かって形成された複数の溝72により放射状に分割形成された8個の花弁片73で構成されている。各花弁片73は、中心側の幅が狭く、外周側の幅が広くなるように平面視台形状に形成されており、中央において互いに連結している。前記固定片71は、8個の花弁片73のうち、長軸方向(F方向)と短軸方向(G方向)に位置する合計4つの花弁片73の外縁に径方向にそれぞれ延設されている。固定片71の幅は、花弁片73の外縁の幅より狭く設定されている。これは、研磨中にバルーン部材51の変形や固定片71が図15に示す締付部材76から引き出された際、固定片71の撓みを容易にするためである。

0074

前記固定片71は、幅が広すぎると柔軟性に欠けて撓み難くなり、狭すぎると強度的に弱くなるため研磨時に破断し易くなる。したがって、固定片71の幅は強度と柔軟性を考慮して決められる。例えば、厚さ1mmのフェルトを使用した場合、幅は5〜15mm程度とすることが望ましい。5mm以下では耐久性が低下し、15mm以上であると柔軟性が低下して、バルーン部材51の変形に追随しなくなる。固定片71の数としては、2つ以上で一定の間隔をおいて設けられることが好ましい。なお、固定片71の数が多すぎると、固定片71と締付部材76との接触面積が大きくなり、固定片71にかかる締付部材76の圧力が分散して小さくなるため外れ易くなる。反対に少なすぎると研磨パッド40の研磨治具39に対する安定した固定が得られなくなる。したがって、固定片71の数としては3〜5つ程度であるとより好ましい。

0075

このような研磨パッド40は、前記締付部材76によって前記研磨治具39に着脱自在に取付けられる。前記締付部材76は、適宜な太さの線ばねリング状に塑性変形させて両端部を重ね合わせたもので、自然状態では前記外側固定具56の外径より小さい直径を有し、両端部76a,76bが外側にそれぞれ略直角に折り曲げられている。

0076

前記研磨パッド40を研磨治具39に取付けるには、先ず圧縮空気の供給によってバルーン部材51のドーム部51Aを所定のドーム形状に膨張させた後、その上に研磨パッド40の研磨部70を載置する。次に、締付部材76の両端部76a,76bを指先で挟んでその間隔を弾性に抗して狭めることにより締付部材76を拡径化し、この状態で締付部材76を研磨パッド40の固定片71に上方から押しつけてこれらの固定片71を下方に折り曲げ外側固定具56の外周に接触させる。そして、両端部76a,76bから指先を離すと、締付部材76は元の形状に復帰して固定片71を外側固定具56の外周に締付け固定し、もって研磨パッド40の取付けが終了する。

0077

このような構造からなる研磨装置30によるレンズ1の研磨は、以下の手順によって行われる。
先ず、アーム34のレンズ取付部36にレンズ1をレンズ保持体37を介して装着する。次に、揺動装置38の上面に研磨パッド40が取付けられた研磨治具39を設置する。レンズ取付部36にレンズ1を取付ける際には、レンズ1の被研磨面2bの最小曲率の軸方向がアーム34の往復移動方向(図6の矢印X方向)と一致するように取付ける。研磨治具39を揺動装置38に設置する際には、バルーン部材51の長軸方向(F方向)をアーム34の往復移動方向(矢印X方向)と一致させて設置する。

0078

レンズ1がレンズ取付部36に取付けられると、昇降装置41によってレンズ1を下降させ、凹面2bを研磨パッド40の表面に押し付ける。この状態で研磨剤を研磨パッド40の表面に供給し、アーム34を左右方向に往復移動させるとともに軸33を中心として前後方向に回動させる。このようなアーム34の動きによるレンズ1の運動軌跡図16に示す。

0079

また、回転軸21の回転によって揺動装置38を図8に示すように首振り旋回運動させる。このようなレンズ1と揺動装置38の運動により、研磨の軌跡が1周毎に少しずつずれる無軌道研磨軌跡でレンズ1の凹面2bを前記研磨パッド40と研磨剤によって研磨し、所望のトーリック面に仕上げる。研磨パッド40による研磨代は5〜9μm程度である。研磨剤としては、例えば酸化アルミナ、ダイヤモンドパウダー等の研磨材砥粒)を研磨液に分散させた溶液状のものが用いられる。

0080

カーブジェネレータによって切削加工された凹面2bには、NC制御によるバックラッシュ等に起因する加工段差が含まれているので、この段差を研磨によって除去する必要がある。このため、凹面2bの研磨工程を荒研磨と仕上げ研磨の2工程にわけて研磨することが好ましい。例えば、荒研磨においては、研磨材の平均粒径が1.6〜1.8μmのものを用い、温度を8〜14℃に制御して研磨する。また、研磨時間は2〜6分、研磨圧は5〜400ミリバール、回転速度は400〜1000rpmとする。

0081

次に、仕上げ研磨においては、研磨材の平均粒径が0.8μm程度のものを用いて研磨する。研磨時間は30秒〜1分程度、研磨圧は5〜400ミリバール、回転速度は400〜1000rpmとする。このように研磨条件を変えて研磨すると、加工段差を確実に取り除くことができる。

0082

このように本発明においては、レンズ1の被研磨面2bの最小曲率kO を算出し、その軸方向をバルーン部材51の長軸方向と一致させて被研磨面2bを研磨するようにしたので、被研磨面が非回転対称な曲面であっても、被研磨面2bの最小曲率とその軸方向をバルーン部材51の長軸方向の曲率とその長軸方向と略一致させることができる。したがって、非研磨面2bの最小曲率の長軸方向における外周縁部と研磨治具39の長軸方向外周部との間に隙間が生じず、被研磨面全体を良好かつ均一に研磨することができ、所望の光学面を得ることができる。

0083

上記した実施の形態においては、累進要素を有する非球面の乱視矯正用眼鏡レンズのトーリック面からなる凹面2bを研磨する例について説明したが、本発明はこれに何ら特定されるものではなく、球面、非球面、非トーリック面、累進面や累進面とトーリック成分の融合面、さらには累進要素を有する非球面、これらの複合面など自由曲面からなる凹面、さらには凸面の研磨に用いることができる。なお、凸面を研磨する場合は、圧搾空気注入によって上面が楕円の凹面状に弾性変形するバルーン部材を用いればよい。

図面の簡単な説明

0084

(a)、(b)は眼鏡レンズの平面図および断面図である。
レンズの研磨工程を示すフローチャートである。
(a)、(b)は被研磨面上の仮想曲線と座標位置を示す図である。
(a)、(b)は3点から最小曲率を求めるときの仮想曲線と座標位置を示す図である。
(a)、(b)は9点から最小曲率を求めるときの仮想曲線と座標位置を示す図である。
本発明に係るレンズの研磨方法に用いられる研磨装置の概略構成図である。
レンズをレンズ保持体に取付けた状態を示す断面図である。
揺動装置と研磨治具の首振り旋回運動を示す図である。
研磨治具の平面図である。
研磨パッドが取付けられた同研磨治具の平面図である。
同研磨治具の底面図である。
図10のXII−XII線断面図である。
研磨治具の高さと曲率半径の関係を示す図である。
研磨パッドの平面図である。
締付部材の斜視図である。
レンズの運動軌跡を示す図である。

符号の説明

0085

1…レンズ、2a…凸面、2b…凹面(被研磨面)、2c…コバ面、 30…研磨装置、32…装置本体、34…アーム、36…レンズ保持部、37…レンズ保持体、38…揺動装置、39…研磨治具、40…研磨パッド、51…バルーン部材。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

該当するデータがありません

関連する公募課題

該当するデータがありません

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 有限会社システムエンジニアリングの「 ベーン溝の研削装置及び研削方法」が 公開されました。( 2020/10/29)

    【課題】砥石の耐久性を高め、砥石を回転させる装置の構成も簡略化でき、安価な提供が可能なベーン溝の研削装置を提供する。【解決手段】ワークWの外周囲をとり囲む大きさのリング形状に形成した環状砥石1を設ける... 詳細

  • 烟台檀芸工芸品有限公司の「 水晶研磨設備」が 公開されました。( 2020/10/29)

    【課題】本発明は水晶研磨設備を開示した。【解決手段】主体を含み、前記主体の中には研磨チャンバが設置され、前記研磨チャンバの中には研磨装置が設置され、前記研磨チャンバの底壁の中には動力チャンバが設置され... 詳細

  • 株式会社ディスコの「 面取り加工装置」が 公開されました。( 2020/10/29)

    【課題】ツルーイングの際に発生する屑等による被加工物の損傷や汚染を防ぐことのできる面取り加工装置を提供する。【解決手段】第1の面と第1の面とは反対側の第2の面とを有する円盤状の被加工物11の外周部を面... 詳細

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

該当するデータがありません

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ