図面 (/)

技術 偏光を減らした分光計及びそのための多数素子偏光解消装置

出願人 東京エレクトロン株式会社
発明者 ノートン、アダム・イージョンソン、ケネス・シースタンク、フレッド・イー
出願日 2003年1月7日 (17年10ヶ月経過) 出願番号 2003-562592
公開日 2005年5月26日 (15年5ヶ月経過) 公開番号 2005-515465
状態 拒絶査定
技術分野 各種分光測定と色の測定
主要キーワード 計測計器 校正特性 計測用機器 回転感度 格子状構造物 リップル効果 データ処理期間 垂直入力
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2005年5月26日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (10)

課題・解決手段

複屈折板による偏光解消装置(71)は偏光を混合させる素子及び波長と共に偏光を変化させる機能を持つ。このような偏光解消装置の1つは、3枚以上の(例えば3枚の)板(73、74、75)からなり、全ての板は、実質的に異なる厚さと、回転角(α1、α2)の光学軸を持つ。この種の偏光解消装置(222)は、微小点画像の分光計測器(200)内の、ビームスプリッタ(215)や顕微鏡対物レンズ(224)のような偏光を起こす素子の間に組み込んでも良い。スペクトル測定結果における変動はデータ処理技術似より除去することができ、あるいは、もし偏光解消装置が厚く高い複屈折性を持つならば、この変動はこの計測器波長分解能より小さくなる。

概要

背景

試料物理的特性は、計測されたその試料の光学的性質解析することにより割り出すことができる。例えば、光学的特性は、試料に入射した光の詳細が与えられたとき、試料から散乱された光により記述することができる。特に関心のある物理特性は、シリコン基板上の格子状のような構造物パラメータである。ほぼ垂直入射角で動作する反射率計は、シリコン基板上の格子状構造物の特性を計測するのに用いることができる光学計測器の一例である。一般に、上述の解析は、暗黙のうちにあるいは明白に、計測した光の強度を光学モデルからの予想と比較する。この光学モデルには、入射光、試料の光学的特性、及び検出光について詳述されている。

多くの場合、基板支持台上のいかなる回転位置で見ても良いようにすることが好ましい。例えば、光学計測機器リトグラフ軌道上や化学的機械的研磨のための研磨装置に組み込まれる場合は、試料が任意の回転位置にあることを許容することが望ましい。ロボットは、処理装置内で基板(特に関心のある試料)を様々な処理モジュールに搬送すると共に、光学計測機器を含む計測システムにも基板を配送する。基板は普通、平板な支持台に置かれる。処理装置は全体としてどのポイントにおいても基板の具体的な回転位置に注意を払わなくても良く、その回転位置を決めるための装置を用意する必要はない。処理装置内の工程におけるある場所で基板の回転位置が決定されていたとしても、処理モジュール又はロボットはその位置を保たなくても良い。このような処理装置内では空間は貴重なものだから、計測用機器のための独立した「基板整列装置」を必要としないことが好ましい。

格子状のような構造物の光学的特性は光の偏光に対して際立った感度を持つ。格子状のような構造物の試料は、入射偏光角により様々に反射し透過する光の振幅位相に影響を及ぼす。複屈折試料又は薄いフイルムを重ねた試料に垂直以外の入射角で入射した場合にも同様のことが言える。このことは光度計測器で計測を行うときの問題となり得る。リトグラフにおける応用例において、例えば半導体基板又はフォトマスク上に形成されたライン幅回折パターンの特徴の測定は、微小点反射率計又は微小点透過型分光光度計により、垂直又はほぼ垂直(以降総称的に準垂直と称す)に入力したときの反射率又は他の光学的特性を計測することで行っても良い。計測された試料のスペクトル反射率又はスペクトル透過率は、ある範囲までは入力光線偏光角と基板の回転位置の角度に依存する。したがって、光学的特性が光の偏光に強く依存する格子状試料を任意の位置に置くことを許容するためには、計測計器は事実上非偏光でなければならない。この計器による検出も同様に偏光に対して敏感でないことが必要となる。

計器によっては、格子状のようなパターンの構造物(又は複屈折表面又は薄いフイルムの積層の光学軸)が、計器の入射光に対して相対的に既知一貫した方向になるよう、試料の位置決めを行うことができる。これにより、偏光に起因するシステムの誤差データ処理過程において最小化することができる。すなわち、偏光に対する光学的性質を注意深く特徴付けることにより、また、偏光した光に対する相対的な試料の特定の方向での試料の応答の影響をモデル化することにより、その試料がモデル化された方向で計測されるという条件で、計測データは、偏光の影響を除去するように処理することが可能となる。

しかしながら、試料を計測機器に対して指定された方向に置くことは常に可能とは限らない。リトグラフの工程と結びついて基板を扱う装置は、しばしば、一貫しているが計測機器では制御できない未知の方向で、試料を、計測機器に提供する。研磨装置は、ランダムな方向に試料を生成する。したがって、基板を方向付ける必要性をなくすために計器からの光照射と検出光が偏光していないことが、好ましい。

従来、計測結果における計測器の偏光は、偏光そのものが計測するパラメータであるような計測器の場合を除いて、普通無視できる軽微な問題であった。偏光計偏光解析器が既知の偏光を持った入射光に対して用いられた。また、最近まで、分光計測器は、格子状のような構造物のライン幅や輪郭その他を計測するためには用いられなかった。

光学系における不要な偏光は、傾けて折りたたんだ鏡、ビームスプリッタプリズム、及び分光計の格子のような偏光素子により発生することがある。(この文脈において、偏光とは、部分的偏光又は何らかの意味で偏光状態に影響を及ぼすものも意味する。)以前における1つの解決手段は、システムにおける傾いた素子に対する入射平面を注意深く配置し、このような全ての傾いた素子に対して、計測器も最初の偏光の影響を打ち消すために垂直平面において傾けた素子を持つようにすることで、計測素子の偏光による影響を減らしていた。このような素子の対を用いることは光学系における更なる空間を必要とするため、コンパクトなシステムが必要な場合には使うことができなかった。この対にする技術は、システムにおける分光計の素子における偏光の影響を緩和するために用いることはできない。

種々の偏光解消装置が知られている。とりわけ、ツァイスモノリシック分光計(Zeiss monolithic spectrometers)において、光は、偏光をかき混ぜ光ファイバの束により連結される。ファイバによる偏光解消装置は、画像信号の情報もごちゃ混ぜにしてしまうので、映像信号経路に用いることができない。複屈折する楔形板及び指標適合させた複屈折しない板とからなる楔形の偏光解消装置は、偏光を解消すべき光の偏光角に対して適切に方向決めしておく必要がある。これらは側面がずれた二重像を生成するので、画像システムには適しない。

お互いの軸同士を45°にした2つの複屈折する楔形でない板からなるライオット偏光解消装置(Lyot depolarizers)、例えば、カールランブレヒト(Karl Lambrecht)や他の光素子製造業者によるものが商業的に実用化されている。ライオット偏光解消装置(Lyot depolarizers)(板)の基本素子は、図1に示すように、「遅延要素」dをもった複屈折板1である。遅延特性は、下式で与えられる。

ここでλは真空中の波長、tは板の厚さ、n0は常光軸3における光屈折率、neは異常光軸における光屈折率、kは(真空中の)波数、そしてfは遅延周波数(retardance frequency)である。板の光学的応答における振動周波数(すなわち周期)は波数の関数として、






で表される。(fは波長に関して厳密に一定ではない。なぜならn0とneは普通波長に依存するが、fの波長変動は普通振幅よりはるかに小さいからである。)基準線7は正常軸の位置を明らかにする目的で示したものである。この板により引き起こされる偏光周波数の変動はこの板の厚さ及び正常光屈折率と異常光屈折率との差に比例する。

図2に示し、米国特許番号5,371,595に記載されているように、ライオット偏光解消装置11は、比率が1:2の遅延周波数を持ち、偏光軸が相対的に45°(π/4ラジアン)回転17した2枚の複屈折板13と15からなる。もし2枚の板が同じ材質でできているなら、その厚さの比率もまた1:2となる。薄い板は遅延dに応じて低い遅延周波数f0を持つ。厚い方は、遅延2dに応じて2f0の遅延周波数を持つ。薄い板は普通2ミリメートルの厚さを持つ。ライオット偏光解消装置11を通り透過光21として出現する入射光19は,波長に依存するような混合された偏光を持つ。

ライオット偏光解消装置は、以前から望遠鏡分光放射計分光偏光計の像を得るために前から用いられていた。例えば、衛星に積んで、大気中のオゾンの減少を観察するために地球からの後方散乱光観測のために用いられていた。ファイバによる偏光解消装置や楔形偏光解消装置とは対照的に、ライオット偏光解消装置は像を保存することができ、それゆえに、画像システムに適している。

本発明の1つの目的は、半導体基板、フォトマスク、及びそれに類するもの格子状のような構造又は他の回折パターン構造を測定するためにパターンを視認する能力を持った微小領域分光分析計測器を提供することであり、ライン幅、輪郭、エロージョン及びそれに類する特性の計測においてこの計器の偏光の影響を最小限にすることができる。

本発明のもう1つの目的は、例えばライオット偏光解消装置を用いて、波長の関数として偏光を混合させる改良された特徴をもった偏光解消装置を提供することである。

本発明の更なる目的は、このような改良された偏光解消装置を用いて理想的な偏光のない計測器として振舞う分光分析計測器を提供することである。

概要

複屈折板による偏光解消装置(71)は偏光を混合させる素子及び波長と共に偏光を変化させる機能を持つ。このような偏光解消装置の1つは、3枚以上の(例えば3枚の)板(73、74、75)からなり、全ての板は、実質的に異なる厚さと、回転角(α1、α2)の光学軸を持つ。この種の偏光解消装置(222)は、微小点画像の分光計測器(200)内の、ビームスプリッタ(215)や顕微鏡対物レンズ(224)のような偏光を起こす素子の間に組み込んでも良い。スペクトル測定結果における変動はデータ処理技術似より除去することができ、あるいは、もし偏光解消装置が厚く高い複屈折性を持つならば、この変動はこの計測器の波長分解能より小さくなる。

目的

リトグラフの工程と結びついて基板を扱う装置は、しばしば、一貫しているが計測機器では制御できない未知の方向で、試料を、計測機器に提供する

効果

実績

技術文献被引用数
0件
牽制数
1件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

3枚以上の複屈折板を持つ偏光解消装置

請求項2

全ての複屈折板は、実質的に異なる厚さを持つ、請求項1に記載の偏光解消装置。

請求項3

全ての複屈折板は、光学軸が実質的に異なった回転角を持つ、請求項1に記載の偏光解消装置。

請求項4

3枚の複屈折板からなる、請求項1に記載の偏光解消装置。

請求項5

複屈折板の厚さの比が、1:3:9の順序を並べ替えたものである、請求項4に記載の偏光解消装置。

請求項6

複屈折板の厚さ比が、3:4:9の順序を並べ替えたものである、請求項4に記載の偏光解消装置。

請求項7

nを整数としたとき、2枚の複屈折板の光学軸のなす角度が実質的に(nπ/2)±arccos(−1/3)/4である、請求項4に記載の偏光解消装置。

請求項8

nを整数としたとき、2枚の複屈折板の光学軸のなす角度が実質的に(n+(1/2))π/2である、請求項4に記載の偏光解消装置。

請求項9

3枚の板からなる偏光解消装置であって、基本遅延周波数はっきりと検出されることがないように前記板の厚さが選定され、全ての前記板は光学軸のなす回転角が実質的に異なる偏光解消装置。

請求項10

試料検査する光学計測器であって、前記計測器は、計器偏光軸を定める直交する線形偏光モードを持つ照射及び集光光学系を具備し、光学系は、3枚以上の板を有する偏光解消装置を含み、試料から最も遠くにある偏光解消板は、前記計測器の偏光軸に対して回転可能に位置合わせされた偏光軸を有し、前記板の厚さと角度の順序は、検出された信号中少なくとも最小の遅延周波数を除去するよう選定されている、光学計測器。

技術分野

0001

本発明は、一般に、対象となる試料物理的特性を測定するために試料の光学的特徴計測する計測システムに関する。特に、試料(シリコン基板上の格子状のような構造物)の物理的パラメータを計測するために試料から散乱した光を(反射によるものであろうと又は透過によるものであろうと)計測し、計測した特性を(例えば、光学モデルから予想される特性と比較して)解析する光学計器を有するシステムに関連する。関連する光学計器には、分光計器、分光反射率計、及び透過型分光光度計が含まれ、とりわけ、計測すべき回折特性を持った試料の微小な点を見て光学的構成を描くことを目的とし、それに関連する顕微鏡に採用される光学計器が含まれる。

0002

本発明は、特に、光学的特性偏光に大きく依存する試料(例えば格子を持った基板)を、計器に対して任意の方向で測定できるようにするために、実質的に偏光が解消された光による試料照射により及び偏光感度のない検出により特徴付けられるあらゆる光学計測システムに関する。本発明はまた、このような計測機器のために改良された偏光解消素子に関する。

背景技術

0003

試料の物理的特性は、計測されたその試料の光学的性質を解析することにより割り出すことができる。例えば、光学的特性は、試料に入射した光の詳細が与えられたとき、試料から散乱された光により記述することができる。特に関心のある物理特性は、シリコン基板上の格子状のような構造物のパラメータである。ほぼ垂直入射角で動作する反射率計は、シリコン基板上の格子状構造物の特性を計測するのに用いることができる光学計測器の一例である。一般に、上述の解析は、暗黙のうちにあるいは明白に、計測した光の強度を光学モデルからの予想と比較する。この光学モデルには、入射光、試料の光学的特性、及び検出光について詳述されている。

0004

多くの場合、基板を支持台上のいかなる回転位置で見ても良いようにすることが好ましい。例えば、光学計測機器リトグラフ軌道上や化学的機械的研磨のための研磨装置に組み込まれる場合は、試料が任意の回転位置にあることを許容することが望ましい。ロボットは、処理装置内で基板(特に関心のある試料)を様々な処理モジュールに搬送すると共に、光学計測機器を含む計測システムにも基板を配送する。基板は普通、平板な支持台に置かれる。処理装置は全体としてどのポイントにおいても基板の具体的な回転位置に注意を払わなくても良く、その回転位置を決めるための装置を用意する必要はない。処理装置内の工程におけるある場所で基板の回転位置が決定されていたとしても、処理モジュール又はロボットはその位置を保たなくても良い。このような処理装置内では空間は貴重なものだから、計測用機器のための独立した「基板整列装置」を必要としないことが好ましい。

0005

格子状のような構造物の光学的特性は光の偏光に対して際立った感度を持つ。格子状のような構造物の試料は、入射偏光角により様々に反射し透過する光の振幅位相に影響を及ぼす。複屈折試料又は薄いフイルムを重ねた試料に垂直以外の入射角で入射した場合にも同様のことが言える。このことは光度計測器で計測を行うときの問題となり得る。リトグラフにおける応用例において、例えば半導体基板又はフォトマスク上に形成されたライン幅回折パターンの特徴の測定は、微小点反射率計又は微小点透過型分光光度計により、垂直又はほぼ垂直(以降総称的に準垂直と称す)に入力したときの反射率又は他の光学的特性を計測することで行っても良い。計測された試料のスペクトル反射率又はスペクトル透過率は、ある範囲までは入力光線偏光角と基板の回転位置の角度に依存する。したがって、光学的特性が光の偏光に強く依存する格子状試料を任意の位置に置くことを許容するためには、計測計器は事実上非偏光でなければならない。この計器による検出も同様に偏光に対して敏感でないことが必要となる。

0006

計器によっては、格子状のようなパターンの構造物(又は複屈折表面又は薄いフイルムの積層の光学軸)が、計器の入射光に対して相対的に既知一貫した方向になるよう、試料の位置決めを行うことができる。これにより、偏光に起因するシステムの誤差データ処理過程において最小化することができる。すなわち、偏光に対する光学的性質を注意深く特徴付けることにより、また、偏光した光に対する相対的な試料の特定の方向での試料の応答の影響をモデル化することにより、その試料がモデル化された方向で計測されるという条件で、計測データは、偏光の影響を除去するように処理することが可能となる。

0007

しかしながら、試料を計測機器に対して指定された方向に置くことは常に可能とは限らない。リトグラフの工程と結びついて基板を扱う装置は、しばしば、一貫しているが計測機器では制御できない未知の方向で、試料を、計測機器に提供する。研磨装置は、ランダムな方向に試料を生成する。したがって、基板を方向付ける必要性をなくすために計器からの光照射と検出光が偏光していないことが、好ましい。

0008

従来、計測結果における計測器の偏光は、偏光そのものが計測するパラメータであるような計測器の場合を除いて、普通無視できる軽微な問題であった。偏光計偏光解析器が既知の偏光を持った入射光に対して用いられた。また、最近まで、分光計測器は、格子状のような構造物のライン幅や輪郭その他を計測するためには用いられなかった。

0009

光学系における不要な偏光は、傾けて折りたたんだ鏡、ビームスプリッタプリズム、及び分光計の格子のような偏光素子により発生することがある。(この文脈において、偏光とは、部分的偏光又は何らかの意味で偏光状態に影響を及ぼすものも意味する。)以前における1つの解決手段は、システムにおける傾いた素子に対する入射平面を注意深く配置し、このような全ての傾いた素子に対して、計測器も最初の偏光の影響を打ち消すために垂直平面において傾けた素子を持つようにすることで、計測素子の偏光による影響を減らしていた。このような素子の対を用いることは光学系における更なる空間を必要とするため、コンパクトなシステムが必要な場合には使うことができなかった。この対にする技術は、システムにおける分光計の素子における偏光の影響を緩和するために用いることはできない。

0010

種々の偏光解消装置が知られている。とりわけ、ツァイスモノリシック分光計(Zeiss monolithic spectrometers)において、光は、偏光をかき混ぜ光ファイバの束により連結される。ファイバによる偏光解消装置は、画像信号の情報もごちゃ混ぜにしてしまうので、映像信号経路に用いることができない。複屈折する楔形板及び指標適合させた複屈折しない板とからなる楔形の偏光解消装置は、偏光を解消すべき光の偏光角に対して適切に方向決めしておく必要がある。これらは側面がずれた二重像を生成するので、画像システムには適しない。

0011

お互いの軸同士を45°にした2つの複屈折する楔形でない板からなるライオット偏光解消装置(Lyot depolarizers)、例えば、カールランブレヒト(Karl Lambrecht)や他の光素子製造業者によるものが商業的に実用化されている。ライオット偏光解消装置(Lyot depolarizers)(板)の基本素子は、図1に示すように、「遅延要素」dをもった複屈折板1である。遅延特性は、下式で与えられる。

0012

ここでλは真空中の波長、tは板の厚さ、n0は常光軸3における光屈折率、neは異常光軸における光屈折率、kは(真空中の)波数、そしてfは遅延周波数(retardance frequency)である。板の光学的応答における振動周波数(すなわち周期)は波数の関数として、






で表される。(fは波長に関して厳密に一定ではない。なぜならn0とneは普通波長に依存するが、fの波長変動は普通振幅よりはるかに小さいからである。)基準線7は正常軸の位置を明らかにする目的で示したものである。この板により引き起こされる偏光周波数の変動はこの板の厚さ及び正常光屈折率と異常光屈折率との差に比例する。

0013

図2に示し、米国特許番号5,371,595に記載されているように、ライオット偏光解消装置11は、比率が1:2の遅延周波数を持ち、偏光軸が相対的に45°(π/4ラジアン)回転17した2枚の複屈折板13と15からなる。もし2枚の板が同じ材質でできているなら、その厚さの比率もまた1:2となる。薄い板は遅延dに応じて低い遅延周波数f0を持つ。厚い方は、遅延2dに応じて2f0の遅延周波数を持つ。薄い板は普通2ミリメートルの厚さを持つ。ライオット偏光解消装置11を通り透過光21として出現する入射光19は,波長に依存するような混合された偏光を持つ。

0014

ライオット偏光解消装置は、以前から望遠鏡分光放射計分光偏光計の像を得るために前から用いられていた。例えば、衛星に積んで、大気中のオゾンの減少を観察するために地球からの後方散乱光観測のために用いられていた。ファイバによる偏光解消装置や楔形偏光解消装置とは対照的に、ライオット偏光解消装置は像を保存することができ、それゆえに、画像システムに適している。

0015

本発明の1つの目的は、半導体基板、フォトマスク、及びそれに類するもの格子状のような構造又は他の回折パターン構造を測定するためにパターンを視認する能力を持った微小領域分光分析計測器を提供することであり、ライン幅、輪郭、エロージョン及びそれに類する特性の計測においてこの計器の偏光の影響を最小限にすることができる。

0016

本発明のもう1つの目的は、例えばライオット偏光解消装置を用いて、波長の関数として偏光を混合させる改良された特徴をもった偏光解消装置を提供することである。

0017

本発明の更なる目的は、このような改良された偏光解消装置を用いて理想的な偏光のない計測器として振舞う分光分析計測器を提供することである。

0018

これらの物は、ライオット偏光解消装置や改良型の3枚偏光解消装置のような微小領域画像化、複屈折遅延板タイプの偏光スクランブル素子により達成され、ビームスプリッタと顕微鏡対物レンズとの間に組み込まれる。ビームスプリッタは光路中の試料の前にあって顕著に偏光させることが最もなさそうな素子である。偏光スクランブル素子は、焦点においてずれのある二重像を生成することを避けるために、光路中の視準部分に置くことが好ましい。照射光路受光路の両方が同じ偏光解消装置を通過するとき、偏光解消装置にとって好ましい方向が存在する。

0019

本発明において用いられる偏光解消装置は、楔形偏光解消装置のように、空間的に偏光を変化させるものではない。むしろ波長と共に偏光を変化させる。その結果生じる正弦波外乱スペクトルはデータ処理技術により除去される。もし、偏光解消装置が十分厚い材料、或いは、カルサイト、αホウ酸バリウム、又は石英のような高い複屈折を持つ材料でできていた場合は、この正弦波外乱は、計器の波長分解能よりはるかに狭くなるであろう。この場合、外乱は検出されず、外乱を除去するための処理は必要でなくなる。カルサイトを偏光解消装置として使うことの唯一の不利な点は、αホウ酸バリウム又は石英ほど多くのUVを透過させないことである。αホウ酸バリウムの不利な点は、コストが高いこと、複屈折性が弱いこと、及び湿度に敏感なことである。石英も低い複屈折性を持ち、効果的な偏光解消装置を作るためには非常に厚い素子を必要とする。本発明は改良された偏光解消装置であって、それは、垂直入力の反射率計における偏光のない照射と受光の目的を達成するために役立つものである。これにより、試料が反射により光の偏光状態が変化するものであっても、任意の回転位置で試料の測定を可能とする。

0020

本発明の2番目及び3番目の目的は、少なくとも3枚の複屈折板を用いた改良された偏光解消装置の使用により達成されているものである。各複屈折板は遅延特性(すなわち、2つの直線偏光モード間で生じる位相のずれ)を持っている。この板は異なった複屈折特性を持つものが選ばれ、それらは、偏光軸をお互いに及び光学システムに対してあらかじめ定めた回転位置に置いて組み立てられる。3枚の複屈折板は、相異なる材料を用いることもでき、また他の厚さの比率でも動作するが、好ましい実施の形態において3枚の複屈折板は同じ材料(例えばカルサイト又は石英)で構成され、それらの厚さの比率は(具体的な設計上の要請及び制約に応じて)1:3:9又は4:3:9とする。外側の板における偏光軸の角度は内側の板における偏光軸の角度と相対的に45°及び[cos-1(-1/3)]/4=27.368°とすることが好ましい。

発明を実施するための最良の形態

0021

図3を参照すると、本発明による分光計測器100には、試料128上の対象となる点における反射率を検出するために、ライオット偏光解消装置122が含まれていることがわかる。図3の計測器100は、ほぼ垂直に入力する反射率計である。光源(図示せず)からの光線104は光ファイバ102から出てゆく。鏡106で光線104は反射しコリメータ108を通る。反射鏡110及び112により、光は照射用絞り114を通ってビームスプリッタ115へと導かれる。ビームスプリッタ115は、ゴースト反射を最小限にするためには、キューブビームスプリッタよりプレートビームスプリッタが好ましい。このビームスプリッタ115は照射光の一部116を透過させ、ビームダンプ118がそれを吸収する。あるいは、参照用分光光度計をビームダンプ118の位置において透過してきた部分116を計測する。(又は、このような参照用分光光度計を、フリップインミラー又は他のビームスイッチを介して光路120から一時的に転送された光を代わりに受光するために置いてもよい。)照射光の一部120はビームスプリッタ115で反射し、偏光解消装置122を透過して、対物レンズ124と窓126に送られ、最終的には基板128を照射する。

0022

窓126は、基板の特徴を光学的に計測する間、計測用計器100及びそれに関連する汚染の危険および基板128から物理的に隔離される。基板128は、計測器100の下で基板を、回転角θで代表されるような、1以上の試験位置に動かし、あるいは回転させるために使うことができる支持台162の上に置かれる。分光計測器の光学系は、基板の支持台162に対して横方向に平行移動させることができるバックプレーンに取り付けてもよい。長さ方向に動かす焦点合わせの動作は、対物レンズ124を動かしても、試料支持台162を動かしても、あるいは両方動かしても実施することができる。CCDカメラ152に加えて広域カメラシステムを、計測器100で計測する一般的な対象範囲を特定するために、用意しておいてもよい。

0023

基板128は、反射光130として照射光120の一部を反射し、反射光は、窓126、対物レンズ124及びライオット偏光解消装置122を通ってビームスプリッタ115へ戻る。(便宜上、照射光と反射光120及び130は、図3において別に描かれている。実際には、反射光130は異なったスペクトルと空間的な特徴を持つものの、これらの光は実質的に重なり合う。)反射光のうち、ビームスプリッタにより反射され光ファイバ10に戻る部分は無視される。反射光130の一部132は、ビームスプリッタを通過し、検出用開口134と結像光学系136を通って進み、反射鏡138を経由して、ピンホールミラー140に焦点が合わされる。ピンホールミラー140は、反射光132を分光計144に導く分光計用光ファイバ142へ通す。ピンホールミラー140は記録用光線132を反射させ、再結像光学系148を通り、反射鏡146を経由してCCDカメラ152へ導く。

0024

コリメータ108は、光ファイバ102から出てくる発散光集光して照射光線104とする。コリメータ108は、対物レンズ124に対してケーラー照明を提供するためにファイバの像を形成する。コリメータ108は、対物レンズ124、結像光学系136、及び再結像光学系148と同様に、先行技術として周知の通り、複数の素子で構成しても良い。反射鏡110、112、138、等は、梱包するのに便利で小型なものである。絞り114は、光線120が基板128を照射するとき絞りの開口数を制御する。先行技術として周知の通り、このことは口径食を防ぎ、基板128への光線の入射角の範囲を制御するために重要である。偏光解消装置122は、主光路に沿って意図せぬ反射を避けるため少し傾けておくことが好ましい。ビームスプリッタ115と偏光解消装置122の間の光線は光行差を最小限にするために平行にすることが好ましい。光源からビームスプリッタを通った光は偏光効果を受けることがあり、従ってこの光は普通非偏光ではない。偏光解消装置122について以下に詳細に説明する。対物レンズ124は照射光120を集光し基板128に焦点を合わせ、そして反射光130を集光し平行光にする。ビームスプリッタ115は、検出すべき照射光120と反射光130を空間上で重複させる。このことにより、垂直入射反射率計としての動作が容易になる。ビームダンプ118は、精度を上げるために、計器中の迷走光を減少させるものである。先行技術として周知の通り、検出用絞り134は、反射角度検出開口数に制限し、意図せぬ回折次数を除外し、検出システム及び画像システムの回折点の大きさを制御する。照射用絞り114は、例えば、基板128の傾きに対して、感度を制限するための計器を詰め込むために、検出用絞り134より大きいことが好ましい。結像光学系136は、ピンホールミラー140で基板の画像を作る。これは分光計144により検出されるべき基板上の十分特定された点から反射された部分の光をピンホールに通過させる。ピンホールミラーは、再結像光学系148がCCDカメラ152上に画像を作ることができるように、反射光132の残り(ピンホールを通過しなかったもの)を反射させる。この画像には、ピンホールミラー140を通過し分光計144で検出された部分の光は失われている。カメラに映った基板128の画像にある暗い点は、基板の特徴に関する計測点の正確な位置を示す。

0025

図4及び5に関して、分光計器は図3に示すような垂直入射率計である必要はなく、垂直に近い入射角での分光反射率計あるいは分光透過率計とすることもできる。図4で示した垂直でない入射角の分光反射率計は、別々の入射光路及び反射光路を持ち、一対の対物レンズ37と43を持ち、そして少なくとも1つ或いは2つの偏光解消素子35及び/又は45を持つ点で、図3の分光反射率計とは異なっている。照射光学系31は、例えば、図3における光ファイバ102、コンデンサレンズ108及びフォールドミラー106、110及び112に対応するものであり、第1のライオット偏光解消装置35を通り、対物レンズ37により、試料40の上の小さな点に焦点が合わされる光33を出す。試料40から反射した光41は、第2の対物レンズにより集光され、第2のライオット偏光解消装置45を通って集光光学系47に至る。これは例えば、図3における素子134〜144に対応し、図3における素子144のような分光計素子を含むものである。図5透過試料60に対する透過分光計測器においてもまた、一対の偏光解消素子55及び65、及び対物レンズ57及び63が別々の照射光路及び集光光路中にあり、これらは試料の位置とは反対側に位置する。照射光学系31は、ライオット偏光解消装置55により偏光面が波長に応じて変化する光を出し、この光は対物レンズ57により試料60上の点59に焦点が合わされる。試料60を透過した光61は対物レンズ63により集光され、再び偏光が解消され65、分光計を含む集光光学系67に送られる。どんな実施形態においても、1以上の対物レンズは反射屈折式であり、それにはミラー素子が含まれ、この場合は、対物レンズと試料の位置の間に偏光解消素子を置くことが、たとえ色収差を増大することになっても、いくらかの利点がある。もし照射光学系31又は51、或いは集光光学系47又は67が光をそんなに偏光させないようなものであれば、偏光解消素子35、45、55、又は65はこの光路から取り除くことができる。

0026

あるいは、分光計は光検出器に、光源は走査単色光分光器に置き換えることができる。この場合は、各波長帯域順番に計測される。

0027

偏光素子の効果と、光及び最終的には計測における偏光の効果は、種々の異なる方法でモデル化することができる複雑な現象となる。典型的な方法は、ストークスパラメータを用いて光の偏光を記述し、ミュラーマトリックスを用いて光路中の光エレメントの効果を記述するものである。これらは、例えば光学ハンドブック(The Handbook of Optics)巻2、第2版(Michael Mass, editor, 1995)第2章に記載されている。また、「Ellipsometry and Polarized Light」Assan and Bashara、1987年、参照のこと。任意に偏光された光と波長は以下のストークスベクトルを用いて記述される。



ここで、S0は光の全体強度であり、S1、S2、及びS3、は異なる変更における光強度の差分である。非偏光光線は以下のストークスベクトルを持つ。

0028

ストークスベクトルの値はその座標系の向きに依存する。座標系を、ミュラーマトリックスとともに角度pだけ(数学的に)回転することができる。

0029

上記背景技術の項で注記したとおり、ライオット偏光解消装置の基本素子は、図1に示した通り、「遅延特性」dを持つ複屈折板1である。

0030

遅延特性は以下で与えられる。



ここで、λは真空中の波長、tは板厚、n0は常光光学軸3の光学指数、neは異常光光学軸5、kは波数(真空中における)、そしてfは「遅延周波数」である。この板における光学的応答の振動の周波数(すなわち、周期の逆数)は波数の関数として、以下となる。

0031

(n0とneが一般に波長に依存するので、fは厳密には波長に関して一定とはならないが、fの波長による変化は一般にその振幅に比べて十分小さい。)基準線7は常光の光学軸の位置を示すことを目的とするものである。この板により引き起こされる偏光の変化による周波数は、この板の厚さ及び常光の光学指数と異常光の光学指数との差に比例する。この板のミュラーマトリックスは、x軸に沿った常光の光学軸に対して、以下となる。

0032

角度pだけ回転した複屈折板に対するミュラーマトリックスM(p)は、元の(回転されていない)ミュラーマトリックスの前後に2つの回転マトリックス乗算したものである。

M(p)=R(p)M(0)R(−p) Eq.8

ここで、Eq.7で定義したとおりM(0)=D(d)である。

0033

Eq.2で示したとおり、商業的に実用化されているライオット偏光解消装置は、遅延周波数が1:2の比を持ち、光学軸の相対的回転角17が45°(π/4ラジアン)である、2つの複屈折板13及び15からなる。これらの板13と15は、石英、カルサイト、又はαホウ酸バリウムのような、種々の複屈折結晶材料のいずれかにより構成される。もし2つの板が同じ材料であるならば、その厚さもまた、1:2の比率となる。薄い板は、遅延特性dに対応して低い遅延周波数f0を持つ。厚いほうは、遅延特性2dに対応して低い遅延周波数2f0を持つ。薄い板は、一般に約2mmの厚さである。

0034

偏光解消板の材料は偏光解消装置を選択するときに検討すべき独自の特性を持っている。カルサイトは、αホウ酸バリウムや石英ほどUV光を透過しない。αホウ酸バリウムはカルサイトより複屈折特性が弱く、湿分に敏感であり、高価である。石英は、複屈折特性が弱く、効果的な偏光解消装置を作るために非常に厚い板を必要とするが、UV光を非常によく透過する。

0035

この板は、波長に強く依存する遅延特性を持つので、この型の偏光解消装置は、周期的に光線の光周波数に対する偏光特性が変化する。この計測用機器におけるこれ以外の光学系により起こる偏光は、測定されたスペクトルに正弦波リップルを生じさせる。この正弦波の外乱は、波数に関してはほぼ一定なので、もしデータがリップル周期整数倍に等しい期間で平均化されるなら、正弦波の変動および計器の偏光はこのようにして除去される。正弦波のリップル効果データ処理期間中に数学的に除去する他の方法は、理想的な偏光解消装置を仮定して、正弦波の外乱を持つデータに最も合致する理論的なスペクトルを回帰分析により見つけることである。最適な理論的スペクトルは当然外乱のあるスペクトルの中間値になるであろう。もし偏光解消装置が十分厚く、及び/あるいは、高い複屈折特性を持つ材料で作られているなら、外乱は分からなくなるかもしれず、それを取り除くための処理も必要でなくなるだろう。この場合、正弦波の外乱は計器の波長分解能よりもっと小さくなるだろう。

0036

ライオット偏光解消装置のモデルでは、任意のストークスベクトルSin(すなわち、任意の偏光状態)を持った入射光17を取り、透過光のストークスベクトルSoutを生じる。

Sout=R(π/4)D(2d)R(−π/4)D(d)Sin Eq.9

0037

目的は、を非偏光とすることである(Eq.5)。ゼロであることが望ましい項は、2つの板のうち薄いほうの遅延周波数の1、2及び3倍の遅延周波数における波長に依存する遅延特性を持つものである。もし検出装置が、最低遅延周波数を1以上の期間で平均化するなら、ストークスベクトル〈Sout〉はまさに求めていたものとなる。

0038

すなわち、透過光19は、効果的に偏光が解消される。一般に、システムは、最低遅延周波数の正確な整数倍の期間で平均化することはしないで、むしろ傾きのある重み関数を持たせて、波数の「窓」について積算した方が良い。重み関数のスペクトル幅は、光学システムのスペクトル分解能又は「帯域幅」を定義する。一般に、システムのスペクトル帯域幅の大きさが大きくなるにつれて、又は基本的な遅延周波数f0が大きくなるにつれて、このようなシステムの効率的な光学的応答はEq.9に近づく。

0039

このような「偏光の解消」は、「効率的な」偏光の解消であって、本当の偏光の解消ではない。言い換えれば、各波数は、少なくとも部分的には偏光しているかもしれないが、波数の「妥当な」平均値は偏光していない。ライオット偏光解消装置による高速な偏光のばらつきは、光学系の中における他の要素による高速な偏光のばらつきと関連付けられて相互に作用するものではないと仮定すると、ライオット偏光解消装置はうまく作用する。

0040

偏光解消素子として他の案も可能である。例えば、3枚以上を使い軸の向きや、厚さの異なった組み合わせによりほぼ同じ機能が得られる。試料の偏光方向に対して45°に光学軸を維持できるならば、1枚板とすることもできる。これらの代案は、ライオット偏光解消装置の代わり、又は、ライオット偏光解消装置と組み合わせて使用することができる。

0041

時間と共に偏光状態を変化させ、検出した信号を時間で平均化することにより、偏光を効率的に解消することができる。例えば、信号を検出するときに、試料と他の偏光光学要素との間の光学素子を回転することにより、偏光状態を変化させることができる。

0042

図3に示すように、照射光と反射光が同じ偏光解消装置を通過するとき、試料の回転角度に対して感度が波長と共にゆっくりと変化することがある。この現象は、薄い板を基板にむけ、厚い板の光学軸をビームスプリッタ115への入射面に平行にするよう偏光解消装置を置くことにより、除去することができる。またこの現象は、対物レンズの絞りの部分を偏光解消装置で覆うことにより除去することができるが、このことにより、少し画像の質が悪くなる。

0043

しかし、2つのライオット偏光解消装置を直列に置くことは、2番目の偏光解消装置も急速に偏光特性が変化するという問題が起きる可能性がある。試料128上の計測したい点における反射率を検出するために、ライオット偏光解消装置122を用いた図3の計器を使う場合を考えてみる。照射と基板からの反射が同じ偏光解消装置を通過することは、透過実験装置において2つの偏光解消装置を直列に用いたのと等価である。偏光解消装置122は、好ましい機能と特性をもっている。その機能と特性により、基板表面の良好な画像を、良好な点の大きさでピンホールミラー140上、及びCCDカメラ152上に結像させることが可能となるであろう。その機能と特性により、基板をその点から反射した検出強度を変化させることなく、基板を回転させることが可能となるであろう。これを実現させるためには、基板に照射する光は効率的に偏光を解消しておかなくてはならず、反射し偏光解消装置を通って戻ってくる光もまた効率的に偏光を解消しておかなくてはならない。これ以外の光学システムの特性、例えばビームスプリッタは入射光の偏光、又は検出における感度の偏りの原因になるので、偏光解消装置は、照射及び検出の両方において効率的に偏光を解消する責務を負う。最終的に、検出の目的である分光計の信号は、基板と計測器の光学的特性のモデルと比較される。分光計の信号を反映した基板と計測器の光学的特性は、可能な限りモデルにされる。

0044

ミュラーマトリックスMを持つ光学サブシステムを含んだ光学システムの信号応答(sig)は、

sig=SDMS1 Eq.12

となり、ここでS1は、光源及び光源とサブシステム間の光学系の特性を示す4行1列ストークスベクトルであり、SDは光学検出器及びサブシステムと検出器との間の光学系の特性を示す「共役ストークスベクトル」である。

0045

多くの場合、計測器の偏光による影響について実質的に関心がある部分は、Eq.12の最も一般的な場合より単純な形をしている。一般的に、照射と集光光学系は直交する線形偏光モード(すなわち、光学系に影響されない偏光状態)を持っており、ここでは最後の2つの要素S1とSDとが(システムの自然な座標系が参照されたとき)消える。

0046

図3で示したような計測器に対してはこれが望ましい。(照射及び集光において顕著に偏光させる素子は反射鏡であり、且つ、隣り合う反射鏡の入射光平面が平行又は直交するような場合である。)
これについての検討において、Mで特徴付けられる光学「サブシステム」は、測定用試料128、偏光解消装置122、及び、間に入る光学素子(例えば対物レンズ124)からなる。一般に、間に入る光学素子はそれほど偏光させるものではなく、その影響は以下の議論において無視する。実際には多くの場合、試料は直交する線形偏光モードを持ち、そのミュラーマトリックスMsは(試料の自然な座標系を参照して)、以下の式で表される。

0047

試料の回転をそろえるために、ミュラー回転マトリックス(Eq.6)をこの前後に乗算しなければならない。したがって、偏光解消装置がないときは、サブシステムのミュラーマトリックスMは、

M=R(p)MsR(−p) Eq.16

となり、検出信号は、偏光解消装置がないとき、代数的に、(Eq.6、12、14、15、16により)



となる。

0048

偏光解消装置がないと、検出信号は、いくつかの好ましくない特性を持つ。検出信号は基板の回転角に依存する。これについては、機械的に基板を光学計測器100に対して確実に正しい方向に置くことを考慮するか、又は、数学的に、上式に示すようなq及び他の量を算定することを考慮しなければならない。さもなければ、基板の回転位置により引き起こされる計測誤差が現れるであろう。検出器の信号は、基板の総反射率R0のみならず、偏光特性R1及びR2にも依存する。同様に、誤差を無くすためには、かなりの努力を注いで、これらも数学的に考慮しなければならないだろう。結局、校正しなければ誤差の原因となるような、照射又は検出特性(Sターム)を持ついくつかの製品が存在する。特性の分かった特別な試料を、この計測器で測定し、この計測器における1以上の特性を決定するような校正法がある。一般的には、計測器のこれらの校正特性を記録しておき後の計測値判読に用いる。

0049

もし計測器がSl1とSD1がゼロである点で(他がゼロであることはEq.14に示されている)理想的であるとするならば、照射と検出には偏光がなく、Eq.17は、以下の通り簡単になる。

0050

sig=(SD0SI0)R0 Eq.18

ここで、積は1つだけ、SD0SI0、であり、校正を必要とし、回転感度を持たず、数学的に処理しなければならない基板(R0)の唯一の特性を持つ。

0051

ライオット偏光解消装置により、上記基板−偏光解消装置サブシステムは以下で与えられるミュラーマトリックスMを持つ。

0052

(これは、薄い偏光解消板が基板から最も遠くにあり、計測器の偏光軸に位置合わせされていることを前提としている。pは基板の偏光軸と厚い板の偏光軸との角を示す。)ライオット偏光解消装置を持つ反射率計と上述の試料の最終的な結果は、以下となる。

0053

ライオット偏光解消装置における遅延特性の変動を解消するために、検出器が全波長にわたって効率的に積分するならば、dを含む関数がゼロに平均化されスペクトルで平均化された信号〈sig〉は、以下となる。

0054

ライオット偏光解消装置と適切な平均化によるこの結果は、偏光解消装置のない計測器に対するものよりも良いが、理想的な反射率計に対するEq.18で示した好ましい結果を生み出さない。これは、上述の通り、二重光路モードで動作するライオット偏光解消装置は、単光路で偏光解消装置がするようには、光路を通る光を効率的に偏光の解消を行わないことを示している。偏光のない場合の感度を持つ計測器と等価な結果を達成するためには、より良い偏光解消装置が必要である。

0055

図6は、本発明に係る計測器の好ましい実施の形態を示す。これは、図3に示した先行技術と非常に似ているので、違っている部分と好ましい具体的な特徴のみをここに示す。(図6における参照番号は、図3における対応する要素に100を加えたものである。)
この場合もやはり、好ましい光源(図示せず)から可視光及びUV光の光線が光ファイバに送り込まれる。ビームスプリッタ115の場合と同様に、ビームスプリッタ215は、ゴースト反射を避けるため及びUV光中のセメント劣化避けるために、キューブビームスプリッタよりプレートビームスプリッタが好ましい。図6に示すように、偏光解消装置222は、以下に検討する3枚の板からなるものが好ましい。偏光解消装置122の場合と同様、偏光解消装置222は、偏光解消装置と試料との間で多方向への反射を避けるため少し傾けておくことが好ましい。また、ビームスプリッタ212と偏光解消装置222の間の光線は、光行差を最小限にするために平行にすることが好ましい。

0056

グループ260に、基板の半径方向に沿ってy方向に動かすことができる光学系が装備され、z軸の周りに基板をθだけ回転できる支持台262が設けられ、偏光調整システムにおいて基板上の点を走査することができる計器が与えられていることが好ましい。長さ方向に動かす焦点合わせの動作は、対物レンズ224を動かしても、試料支持台262を動かしても、あるいは両方動かしても実施することができる。基板の走査は他の様々な実施形態が可能である。

0057

偏光解消装置の好ましい実施の形態が図7に示されている。この偏光解消装置71は、厚さの比が各々4:3:9である3枚の板73、74、及び75を具備する。(板75が最も基板に近い。)例えば、厚さは各々、1.5mm、1.125mm、及び、3.375mmである。板の光学軸は一般に平らな面に平行である。基準線77は、板の偏光軸73(常光又は異常光のどちらかの軸)の1つの方向(すなわち、z軸に対して直角に回転する)を示す。板74は基準線78で示される偏光軸の1つを持ち、板73の偏光軸と角度α1だけ回転している。図8に示すように、角度α1は45°であることが好ましい。板75は基準線79で示される偏光軸を持ち、板74の偏光軸と角度α2≒27.368°だけ回転している。

0058

上記にて論じたとおり、偏光解消装置71の板は明確な偏光軸を持つ異方性物質である。偏光解消装置は、カルサイトの板73〜75で構成されることが好ましい。カルサイトの異方性は、図9に示されるように自己の波長の関数となる、常光の光学指数と異常光の光学指数との差で特徴付けられる。代わりの材料としてBBO(ホウ酸バリウム)があげられる。BBOは、図9に示すように異方性が低く、等価な偏光解消特性を持つ板は、以下に述べるようにより厚くなる。他の欠点は吸湿性があること、すなわち水を吸収することである。BBOの1つの利点は、特にUV波長領域において光の吸収が少ないことである。

0059

Eq.19から一般化すると、ライオット偏光解消装置の代わりとされた3枚板の偏光解消装置からなる基盤偏光解消装置サブシステムは下式で与えられるミュラーマトリックスを持つ。

0060

ここで、d1、d2、及びd3は、各々板73、74、及び75の遅延特性である。この式を拡張し、遅延係数三角関数に置き換えると、Eq.22は、以下のような形の三角関数線形的な結合となる。

0061

ここで、m1、m2、及びm3は下記レンジ整数である。

0062

このような各三角関数の引数(m1d1+m2d2+m3d3)により、関連する遅延周波数が以下のように定義される。

0063

ここで、t1、t2、及びt3は各々板73、74、及び75の厚さである。Eq.1参照のこと。(ここでは3枚の板は、常光と異常光に対する屈折率がn0とneで特徴付けられる、同じ材質でできていることが仮定されている。)このような(m1=m2=m3=0の場合を除く)遅延周波数により、「基本遅延周波数」f0が定義される。f0が十分大きく、この周波数において偏光の変動は計測器で検出できないと仮定すると、全ての遅延特性における三角関数(Eq.23の形式で示される項)はスペクトル的に平均化した信号においてゼロに平均化される。この結果導き出される信号には、遅延特性に依存せず、基板の回転角pと偏光特性に依存する項が含まれる。しかし、この依存性は、板同士のなす角a1とa2を適切に選択することにより除去することができる。この原理を満たす角は以下となる。

0064

ここで、J1とJ2は任意の整数である。全周波数にわたって適切な平均化が行われる状況において、これにより、以下のようなスペクトル的に平均化された信号〈sig〉がもたらされる.

0065

これは、基板の回転に依存せず、各波長毎に校正を必要とする項、SD0SI0+SD1SI1/3は1つであり、計算のために必要な基板の特性R0はただ1つだけなので、これは好ましい結果である。上記結果は、Eq.12、13、及び22に基づく。これは、SIとSDに対するさらに限定的な式Eq.14を前提としていない。このようにして、この装置の動作は、光学システムの偏光特性の特別な対称性に依存せず、この動作において、その性能は、偏光解消装置の回転方向によることがなくなる。上記結果は、Eq.15の形で表されるミュラーマトリックスMを持った試料にのみに適用されるのではあるが、この結果は、もっと一般的な場合に拡張できる。つまり、任意の試料におけるミュラーマトリックスMSにとって、〈sig〉は、偏光特性に対してある感度を示すものの、試料の回転に対しては依然として感度がないのである。

0066

上記解析において重要な前提は、基本遅延周波数f0は十分大きく、偏光解消により誘発される偏光の変動は検出不能なことである。現実的な制約を条件として、f0を最大化することがここでの目的である。一例として、検出装置252の一画素の応答がガウス応答を持つ場合を考えると、その信号出力は以下となる。

0067

ここで信号出力は、スペクトル強度I(k)と全幅を持つガウス関数との積の全波数にわたる積分であり、wの半値幅の値と中心波数k0・cは定数(約0.6)であり、eは検出装置効率を含む定数である。I(k)はcos(2πf)、sin(2πf)の形の項を線形的に重ね合わせたものであり、fはEq.25で定義される遅延周波数である。Eq.29の積分は、下式の項に対応する線形結合からなる。

0068

遅延周波数fが増加するにつれ、あるいは全振幅や検出装置の帯域wの半値幅が増大するにつれて、このような項の大きさは、2乗の指数関数の逆数として、急速に減少することに注意すべきである。検出画素の帯域幅は他のことも必要とする。例えば、試料からもたらされた波数に伴う変動の問題を適切に解決しなければならない。したがって、wをできるだけ良い平均値を取るであろうような幅にすることは好ましくない。与えられた検出帯域幅は、Eq.25の和の結果である最大の基本遅延周波数f0を持つことが好ましい。Eq.29及び30の例では、共通の前提として、検出器の応答としてガウス分布を仮定している。他の検出応答機能から同様の結論が導き出されている。

0069

この板の厚みを増大させると、それに比例して最低周波数が増加する。しかし、厚みの合計には、実際的には他の制限が存在する。制限の1つは、板の、特に例えばUV領域における吸収である。他の制限は、大きさ又は材料のコスト面からのものであろう。解決手段の1つは厚さの比を1:3:9に選択することである。これは、重ね合わせた厚さの総計があたえられたとき、最も大きな基本周波数f0をもたらすからである。好ましい解決手段として、最も薄い板がより厚くより製造し組み立てることが簡単になるよう、厚さの比を4:3:9にすることである。1:3:9のデザインに対して、f0=(n0−ne)T/(26π)でありここでTは板厚の総計(T=t1+t2+t3)となる、一方4:3:9のデザインではf0=(n0−ne)T/(32π)となる。

0070

基本周波数f0に起因する性能上の制限は、Eq.14に表現された対称性という特性を光学系が満足するなら、一部回避することができる。この場合、信号は、Mの第1の四分区間(すなわち、Mの最初の2行と2列)におけるミュラーマトリックス要素にのみ依存する。偏光解消板の厚さの順序と角度と偏光解消装置の方向を選ぶことにより、1以上の最小次数の遅延周波数が、第1の四分区間で消えるようにすることができる。1:3:9と4:3:9の両方に対して、2個の最小周波数が消えるようないくつかの要求がある。4:3:9のデザインは、3個の最小周波数が消えるような構成も持つ。この構成によれば、最も厚い板が中間にあり、最も薄い板が基板から最も遠い位置にあり、この最も厚い板の偏光軸と薄い板の偏光軸とのなす角度が45°である。(基板から最も遠い板の偏光軸波計測器の偏光軸と揃えなければならない。)
上述のように、厚い値に対し与えられた比率で厚さを定めることで、効率的な偏光解消を達成する上でより良い平均的特性が得られるが、過大なUV光の吸収をもたらす。この二律背反関係の調和をとるための好ましい厚さは、合計6mm、つまり、板73、74、及び75を各々1.5mm、1.125mm、及び3.375mmとすることである。

0071

説明の目的で用いられる計測器200は反射率計である。真の垂直入力反射率計には、照射光と反射光が通る図示の位置に、1つの偏光解消装置を置く必要がある。このような計測器には必然的にビームスプリッタが組み込まれており、このビームスプリッタには、一般に、除去しなければならない偏光効果がある。しかし、検出光の偏光解消装置と照射光の偏光解消装置をその光路中に置くことができる、照射と検出のための「光路(arm)」を別々に持つ計測器がたくさん存在する。例えば、準垂直入力反射率計は、入射光線反射光線とに多少のずれがある。また多くの偏光解析器が他の例である。このような計測器には、1つを照射光路他の1つを反射光路に置き、合計値の平均化と異なる周波数に対して適切な厚さを持った、2つのライオット偏光解消装置を用いれば十分である。例えば、2つのライオット偏光解消装置の4枚の板が厚さ比1:2:4:8、すなわち1つのライオット偏光解消装置が他のライオット偏光解消装置の4倍の厚みがあるとすると、最低周波数は、単純に、最も薄い板の最低周波数になる。

0072

他の多くの実施形態が可能である。例えば、板は様々な角度に回転することができ、様々な順序で積み重ねることができる。厚みの比は整数であることが好ましいが、整数でない比率も可能である。f0が全ての波長に対して最大になるよう(すなわち、ある波長でf0が増加するようにデザインを調整することで、他の波長でf0が減少することがなくなる)、3枚の板は同じ材料であることが好ましいが、この板を違った材料で構成しても良い。

0073

偏光解消装置の使用に加えて、偏光を最小限にする技術には、傾かせた垂直面と組となった素子や、偏光を混合する光ファイバを具備する分光計の使用が含まれる。偏光解消装置の主な役割は、確実に偏光が解消された光を試料へ照射させること、及び、試料からの回折光が、システムの画像光路中にある偏光に対し感度をもつ素子と相互作用を起こす前に、試料からの回折光の偏光を解消することである。

図面の簡単な説明

0074

偏光解消装置に用いられた複屈折遅延板の斜視図である。
図1に示した遅延板を用いた、ライオット偏光解消装置の斜視図である。
ライオット偏光解消装置を用いた、本発明による分光計測器の第1の実施の形態の概略側面図である。
本発明による分光計測器の2つの代案における構成の概略側面図であり、1つは(図4は)入射光と反射光が垂直でない分光反射率計であり、他の1つは(図5は)透過分光光度計である。
本発明による分光計測器の2つの代案における構成の概略側面図であり、1つは(図4は)入射光と反射光が垂直でない分光反射率計であり、他の1つは(図5は)透過分光光度計である。
改良された3枚の偏光解消板を用いた、本発明による第2の分光計測器の第1の実施の形態の概略側面図である。
図6に示す分光計測器に用いる本発明による3枚の偏光解消板の斜視図である。
図7に示す偏光解消板202,204,及び206の相対的な偏光軸方向を示したグラフである。ここでXとYは、板202に対する偏光軸を示す。
カルサイトとホウ酸バリウムの複屈折板材料について、正常−異常屈折率の異方性と波長の関係を示すグラフである。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ