図面 (/)

技術 ガスバリア性積層体の製造方法

出願人 東洋インキSCホールディングス株式会社ユニチカ株式会社
発明者 岡本淳二吉田光男尾崎邦彦山田正実鴨下深雪藤塚玲子三宅宗博桑田秀樹大葛貴良穴田有弘
出願日 2004年3月26日 (17年3ヶ月経過) 出願番号 2004-091336
公開日 2005年10月6日 (15年9ヶ月経過) 公開番号 2005-270907
状態 拒絶査定
技術分野 積層体(2) 流動性材料の適用方法、塗布方法 高分子成形体の被覆
主要キーワード 次式群 補強材入り UC層 加熱処理用 水酸化金属化合物 ポリアクリル酸系ポリマー 低湿度雰囲気 三次元架橋性
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2005年10月6日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (0)

図面はありません

課題

本発明の課題は、構造中に塩素を含有せず、高温高湿度下に長期間保存時してもガスバリア性の低下しない優れたガスバリア性積層体を得ることである。

解決手段

プラスチック基材上に直に、又はアンダーコート層を介してプラスチック基材上に、ポリアルコール系ポリマー(A)とポリカルボン酸系ポリマー(B)とを含有するガスバリア層形成用塗料(C)を塗布し、熱処理した後、1価塩基性金属化合物(D)及び/または塩基性有機化合物(E)を含有する水の存在下に加熱処理してなることを特徴とするガスバリア性積層体の製造方法。

概要

背景

ポリアミドフィルムポリエステルフィルム等の熱可塑性樹脂フィルムは、強度、透明性、成形性に優れていることから、包装材料として幅広い用途に使用されている。しかし、これらの熱可塑性樹脂フィルムは酸素等のガス透過性が大きいので、一般食品レトルト処理食品、化粧品医療用品農薬等の包装に使用した場合、長期間保存する内にフィルムを透過した酸素等のガスにより内容物の変質が生じることがある。

そこで、熱可塑性樹脂の表面にポリ塩化ビニリデン(以下PVDCと略記する)のエマルジョン等をコーティングし、ガスバリア性の高いPVDC層を形成せしめた積層フィルム食品包装等に幅広く使用されてきた。しかし、PVDCは焼却時に酸性ガス等の有機物質を発生するため、近年環境への関心が高まるとともに他材料への移行が強く望まれている。

PVDCに代わる材料としてポリビニルアルコール(以下PVAと略記する)は有毒ガスの発生もなく、低湿度雰囲気下でのガスバリア性も高いが、湿度が高くなるにつれて急激にガスバリア性が低下するので、水分を含む食品等の包装には用いることが出来ない場合が多い。

PVAの高湿度下でのガスバリア性の低下を改善したポリマーとして、ビニルアルコールエチレン共重合体EVOH)が知られている。しかし、高湿度でのガスバリア性を実用レベルに維持するためにはエチレンの共重合比をある程度高くする必要があり、このようなポリマーは水に難溶となる。
そこで、エチレンの共重合比の高いEVOHを用いてコーティング剤を得るには、有機溶媒または水と有機溶媒の混合溶媒を用いる必要があり、環境問題の観点からも望ましくなく、また有機溶媒の回収工程などを必要とするため、コスト高になるという問題がある。

水溶性のポリマーからなる液状組成物をフィルムにコートし、高湿度下でも高いガスバリア性を発現させる方法として、PVAとポリアクリル酸またはポリメタクリル酸部分中和物とからなる水溶液をフィルムにコートし熱処理することにより、両ポリマーエステル結合により架橋する方法が提案されている(特許文献1:特開平06−220221号公報、特許文献2:同07−102083号公報、特許文献3:同07−205379号公報、特許文献4:同07−266441号公報、特許文献5:同08−041218号公報、特許文献6:同10−237180号公報等参照)。
しかし、上記公報に提案される方法では、高度なガスバリア性を発現させるためには高温での加熱処理もしくは長時間の加熱処理が必要であり、製造時に多量のエネルギーを要するため環境への負荷が少なくない。
また、高温で熱処理すると、ガスバリア層を構成するPVA等の変色や分解の恐れが生じる他、ガスバリア層を積層しているプラスチックフィルム等の基材に皺が生じるなどの変形が生じ、包装用材料として使用できなくなる。プラスチック基材劣化を防ぐためには、高温加熱に十分耐え得るような特殊な耐熱性フィルムを基材とする必要があり、汎用性、経済性の点で難がある。
一方、熱処理温度が低いと、非常に長時間処理する必要があり、生産性が低下するという問題点が生じる。

また、PVAに架橋構造を導入することで、上記PVAフィルムの問題点を解決するための検討がなされている。しかし、一般的に架橋密度の増加と共にPVAフィルムの酸素ガスバリア性湿度依存性は小さくなるが、その反面PVAフィルムが本来有している乾燥条件下での酸素ガスバリア性が低下してしまい、結果として高湿度下での良好な酸素ガスバリア性を得ることは非常に困難である。
尚、一般にポリマー分子を架橋することにより耐水性は向上するが、ガスバリア性は酸素等の比較的小さな分子侵入拡散を防ぐ性質であり、単にポリマーを架橋してもガスバリア性が得られるとは限らず、たとえば、エポキシ樹脂フェノール樹脂などの三次元架橋性ポリマーはガスバリア性を有していない。

PVAのような水溶性のポリマーを用いながらも高湿度下でも高いガスバリア性を有するガスバリア性積層体を、従来よりも低温もしくは短時間の加熱処理で提る方法が提案されている(特許文献7:特開2001−323204号公報、特許文献8:同2002−020677号公報、特許文献9:同2002−241671号公報参照)。

特許文献7〜9に記載されるコート剤は、水溶性のポリマーを用いながらも特許文献1〜6に記載されるコート剤よりも低温もしくは短時間の加熱で高湿度下で従来よりも高いガスバリア性を有するガスバリア性積層体を形成し得る。
しかし、特許文献1〜9に記載される、加熱によって、PVA中水酸基とポリアクリル酸中もしくはエチレン−マレイン酸共重合体中のCOOHとをエステル化反応させるという方法だけでは、ガスバリア層を形成したフィルムを高温高湿度下に長時間保存すると加水分解によりエステル結合が分解し、ガスバリア性が著しく劣化する。
以上の結果、特許文献1〜9に記載されるコート剤を加熱、硬化するだけでは、より厳しい要求には応えられなかった。
特開平06−220221号公報
特開平07−102083号公報
特開平07−205379号公報
特開平07−266441号公報
特開平08−041218号公報
特開平10−237180号公報
特開2001−323204号公報
特開2002−020677号公報
特開2002−241671号公報

概要

本発明の課題は、構造中に塩素を含有せず、高温高湿度下に長期間保存時してもガスバリア性の低下しない優れたガスバリア性積層体を得ることである。プラスチック基材上に直に、又はアンダーコート層を介してプラスチック基材上に、ポリアルコール系ポリマー(A)とポリカルボン酸系ポリマー(B)とを含有するガスバリア層形成用塗料(C)を塗布し、熱処理した後、1価塩基性金属化合物(D)及び/または塩基性有機化合物(E)を含有する水の存在下に加熱処理してなることを特徴とするガスバリア性積層体の製造方法。 なし

目的

本発明の課題は、高温高湿度下に長時間保存してもガスバリア性を維持できるガスバリア性積層体を提供することである。

効果

実績

技術文献被引用数
2件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

プラスチック基材上に直に、又はアンダーコート層を介してプラスチック基材上に、ポリアルコール系ポリマー(A)とポリカルボン酸系ポリマー(B)とを含有するガスバリア層形成用塗料(C)を塗布し、熱処理した後、1価塩基性金属化合物(D)及び/または塩基性有機化合物(E)を含有する水の存在下に加熱処理することを特徴とするガスバリア性積層体の製造方法。

請求項2

ポリアルコール系ポリマー(A)がポリビニルアルコールまたは糖類であることを特徴とする請求項1記載のガスバリア性積層体の製造方法。

請求項3

ポリカルボン酸系ポリマー(B)がオレフィンマレイン酸共重合体(F)、またはポリメタアクリル酸であることを特徴とする請求項1又は2記載のガスバリア性積層体の製造方法。

請求項4

オレフィン−マレイン酸共重合体(F)がエチレン−マレイン酸共重合体であることを特徴とする請求項1ないし3いずれか記載のガスバリア性積層体の製造方法。

請求項5

1価塩基性金属化合物(D)が水酸化リチウムであることを特徴とする請求項1ないし4いずれか記載のガスバリア性積層体の製造方法。

技術分野

0001

本発明は、高温高湿度下に長時間保存されても優れたガスバリア性を有するガスバリア性積層体の製造方法に関する。

背景技術

0002

ポリアミドフィルムポリエステルフィルム等の熱可塑性樹脂フィルムは、強度、透明性、成形性に優れていることから、包装材料として幅広い用途に使用されている。しかし、これらの熱可塑性樹脂フィルムは酸素等のガス透過性が大きいので、一般食品レトルト処理食品、化粧品医療用品農薬等の包装に使用した場合、長期間保存する内にフィルムを透過した酸素等のガスにより内容物の変質が生じることがある。

0003

そこで、熱可塑性樹脂の表面にポリ塩化ビニリデン(以下PVDCと略記する)のエマルジョン等をコーティングし、ガスバリア性の高いPVDC層を形成せしめた積層フィルム食品包装等に幅広く使用されてきた。しかし、PVDCは焼却時に酸性ガス等の有機物質を発生するため、近年環境への関心が高まるとともに他材料への移行が強く望まれている。

0004

PVDCに代わる材料としてポリビニルアルコール(以下PVAと略記する)は有毒ガスの発生もなく、低湿度雰囲気下でのガスバリア性も高いが、湿度が高くなるにつれて急激にガスバリア性が低下するので、水分を含む食品等の包装には用いることが出来ない場合が多い。

0005

PVAの高湿度下でのガスバリア性の低下を改善したポリマーとして、ビニルアルコールエチレン共重合体EVOH)が知られている。しかし、高湿度でのガスバリア性を実用レベルに維持するためにはエチレンの共重合比をある程度高くする必要があり、このようなポリマーは水に難溶となる。
そこで、エチレンの共重合比の高いEVOHを用いてコーティング剤を得るには、有機溶媒または水と有機溶媒の混合溶媒を用いる必要があり、環境問題の観点からも望ましくなく、また有機溶媒の回収工程などを必要とするため、コスト高になるという問題がある。

0006

水溶性のポリマーからなる液状組成物をフィルムにコートし、高湿度下でも高いガスバリア性を発現させる方法として、PVAとポリアクリル酸またはポリメタクリル酸部分中和物とからなる水溶液をフィルムにコートし熱処理することにより、両ポリマーエステル結合により架橋する方法が提案されている(特許文献1:特開平06−220221号公報、特許文献2:同07−102083号公報、特許文献3:同07−205379号公報、特許文献4:同07−266441号公報、特許文献5:同08−041218号公報、特許文献6:同10−237180号公報等参照)。
しかし、上記公報に提案される方法では、高度なガスバリア性を発現させるためには高温での加熱処理もしくは長時間の加熱処理が必要であり、製造時に多量のエネルギーを要するため環境への負荷が少なくない。
また、高温で熱処理すると、ガスバリア層を構成するPVA等の変色や分解の恐れが生じる他、ガスバリア層を積層しているプラスチックフィルム等の基材に皺が生じるなどの変形が生じ、包装用材料として使用できなくなる。プラスチック基材劣化を防ぐためには、高温加熱に十分耐え得るような特殊な耐熱性フィルムを基材とする必要があり、汎用性、経済性の点で難がある。
一方、熱処理温度が低いと、非常に長時間処理する必要があり、生産性が低下するという問題点が生じる。

0007

また、PVAに架橋構造を導入することで、上記PVAフィルムの問題点を解決するための検討がなされている。しかし、一般的に架橋密度の増加と共にPVAフィルムの酸素ガスバリア性湿度依存性は小さくなるが、その反面PVAフィルムが本来有している乾燥条件下での酸素ガスバリア性が低下してしまい、結果として高湿度下での良好な酸素ガスバリア性を得ることは非常に困難である。
尚、一般にポリマー分子を架橋することにより耐水性は向上するが、ガスバリア性は酸素等の比較的小さな分子侵入拡散を防ぐ性質であり、単にポリマーを架橋してもガスバリア性が得られるとは限らず、たとえば、エポキシ樹脂フェノール樹脂などの三次元架橋性ポリマーはガスバリア性を有していない。

0008

PVAのような水溶性のポリマーを用いながらも高湿度下でも高いガスバリア性を有するガスバリア性積層体を、従来よりも低温もしくは短時間の加熱処理で提る方法が提案されている(特許文献7:特開2001−323204号公報、特許文献8:同2002−020677号公報、特許文献9:同2002−241671号公報参照)。

0009

特許文献7〜9に記載されるコート剤は、水溶性のポリマーを用いながらも特許文献1〜6に記載されるコート剤よりも低温もしくは短時間の加熱で高湿度下で従来よりも高いガスバリア性を有するガスバリア性積層体を形成し得る。
しかし、特許文献1〜9に記載される、加熱によって、PVA中水酸基とポリアクリル酸中もしくはエチレン−マレイン酸共重合体中のCOOHとをエステル化反応させるという方法だけでは、ガスバリア層を形成したフィルムを高温高湿度下に長時間保存すると加水分解によりエステル結合が分解し、ガスバリア性が著しく劣化する。
以上の結果、特許文献1〜9に記載されるコート剤を加熱、硬化するだけでは、より厳しい要求には応えられなかった。
特開平06−220221号公報
特開平07−102083号公報
特開平07−205379号公報
特開平07−266441号公報
特開平08−041218号公報
特開平10−237180号公報
特開2001−323204号公報
特開2002−020677号公報
特開2002−241671号公報

発明が解決しようとする課題

0010

本発明の課題は、高温高湿度下に長時間保存してもガスバリア性を維持できるガスバリア性積層体を提供することである。

課題を解決するための手段

0011

本発明者らは、鋭意研究の結果、これまではガスバリア性低下の大きな原因になると考えられていた水分を逆に利用し、しかもその水に特定の塩基性化合物を含有しておくことによって、驚くべきことに高温高湿度下に長時間保存してもガスバリア性を維持できることを見出し本発明に到達した。
即ち、本発明は、プラスチック基材上に直に、又はアンダーコート層を介してプラスチック基材上に、ポリアルコール系ポリマー(A)とポリカルボン酸系ポリマー(B)とを含有するガスバリア層形成用塗料(C)を塗布し、熱処理した後、1価塩基性金属化合物(D)及び/または塩基性有機化合物(E)を含有する水の存在下に加熱処理することを特徴とするガスバリア性積層体の製造方法に関する。

0012

また、本発明は、ポリアルコール系ポリマー(A)がポリビニルアルコールまたは糖類であることを特徴とする上記発明に記載のガスバリア性積層体の製造方法に関する。

0013

さらに本発明は、ポリカルボン酸系ポリマー(B)がオレフィン−マレイン酸共重合体(F)、またはポリメタアクリル酸であることを特徴とする上記いずれかの発明に記載のガスバリア性積層体の製造方法に関し、
さらにまた本発明は、オレフィン−マレイン酸共重合体(F)がエチレン−マレイン酸共重合体であることを特徴とする上記発明のいずれかに記載のガスバリア性積層体の製造方法に関する。

0014

また本発明は、1価塩基性金属化合物(D)が水酸化リチウムであることを特徴とする上記発明のいずれかに記載のガスバリア性積層体の製造方法に関する。

発明の効果

0015

本発明により、構造中に塩素を含有せず、高温高湿度下に長時間保存されてもガスバリア性に優れたガスバリア性積層体の製造法を提供することができた。

発明を実施するための最良の形態

0016

以下、本発明について詳細に説明する。
[ガスバリア層形成用塗料(C)]
ガスバリア層形成用塗料(C)は、後述するプラスチック基材等に塗布し、ガスバリア性を付与するためのものであり、ポリアルコール系ポリマー(A)とポリカルボン酸系ポリマー(B)とを含有するものである。

0017

<ポリアルコール系ポリマー(A)>
本発明で使用するポリアルコール系ポリマー(A)は、分子内に2個以上の水酸基を有するポリマーであり、PVA、エチレンービニルアルコール共重合体、糖類や、ポリヒドロキシエチル(メタ)アクリレートポリグリセリン(メタ)アクリレートといった水酸基を有するモノマー重合して成るポリマー、等が挙げられる。

0018

<PVA>
本発明において用いられるPVAは、ビニルエステル重合体を完全または部分ケン化するなどの公知の方法を用いて得ることができる。
ビニルエステルとしては、ぎ酸ビニル酢酸ビニルプロピオン酸ビニルピバリン酸ビニルバーサチック酸ビニル等が挙げられ、中でも酢酸ビニルが工業的に最も好ましい。

0019

本発明の効果を損ねない範囲で、ビニルエステルに対し他のビニル化合物を共重合することも可能である。他のビニル系モノマーとしては、クロトン酸、アクリル酸、メタクリル酸等の不飽和モノカルボン酸およびそのエステル、塩、無水物、アミドニトリル類や、マレイン酸イタコン酸フマル酸などの不飽和ジカルボン酸およびその塩、炭素数2〜30のα−オレフィン類、アルキルビニルエーテル類、ビニルピロリドン類などが挙げられる。

0020

本発明において、フィルム表面にガスバリア性を付与するために積層されるポリマーは水溶性とすることが生産上好ましく、疎水性の共重合成分を多量に含有させると水溶性が損なわれるので好ましくない。

0021

なお、ケン化方法としては公知のアルカリケン化法や酸ケン化法を用いることができ、中でもメタノール中で水酸化アルカリを使用して加アルコール分解する方法が好ましい。ケン化度は100%に近いほどガスバリア性の観点から好ましく、ケン化度が低すぎるとガスバリア性能が低下する。ケン化度は通常約95%以上が好ましく、98%以上であることがより好ましい。平均重合度は50〜4000が好ましく、200〜3000のものがより好ましい。

0022

<糖類>
糖類(糖質類ともいう)としては、単糖類オリゴ糖類、及び多糖類が挙げられる。これらの糖類には、糖アルコールや各種置換体誘導体なども包含される。これらの糖類は、水溶性のものが好ましい。

0023

糖類としては、単糖類、二糖類オリゴ糖、多糖類、糖アルコール、またはこれらの誘導体が挙げられる。単糖類は、二糖類、オリゴ糖、多糖類の構成成分であって、通常Cm(H2O)nで表される。単糖類としては、例えば、グルコースガラクトースタロースマンノースソルボースタガトースフルクトースプシコースエリトローストレオースエリトルロースアラビノースキシロースリボースリキソースリブロース等が挙げられる。

0024

また、二糖類は、2個の単糖グリコシル結合しているものであり、例えば、麦芽糖乳糖ショ糖セロビオーストレパースゲンチオビオースイソマルトース等が挙げられる。

0025

また、オリゴ糖とは、3個から6個の単糖がグリコシル結合しているものであり、例えば、ラフィノースゲンチアノース等が挙げられる。さらに、多糖類とは、7個以上の単糖がポリグリコシル化している高分子化合物であり、例えば、セルロースでんぷんプルラングリコーゲンイヌリンデキストランキチン等が挙げられ、プルランが好ましい。

0026

さらに、糖アルコールとは、単糖類を還元して得られるポリヒドロキシアルカンであり、ソルビトールマンニトールズルシトールキシリトールエリトリトールグリセロールなどを挙げることができる。

0027

さらにまた、糖類の誘導体とは、上記糖類に対して、エステル化カルボキシメチル化アセチル化リン酸化カルボキシル化アミノ化アリルエーテル化メチルエーテル化カルボキシメチルエーテル化グラフト化等の置換変性を施したものである。

0028

上記糖類に対してグラフト重合させる際のモノマーとしては、クロトン酸、アクリル酸、メタクリル酸等の不飽和モノカルボン酸およびそのエステル、塩、無水物、アミド、ニトリル類や、マレイン酸、イタコン酸、フマル酸などの不飽和ジカルボン酸およびその塩、炭素数2〜30のα−オレフィン類、アルキルビニルエーテル類、ビニルピロリドン類などが挙げられる。

0029

上記二糖類、オリゴ糖、多糖類、またはこれらの誘導体は、一種類の単糖類で構成されていても、二種類以上の単糖類から構成されていてもよい。上記の糖類は、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。

0030

<水酸基を有するモノマーを重合して成るポリマー>
水酸基を有するモノマーを重合して成るポリマーとしては、例えば、2−ヒドロキシエチル(メタ)アクリレート、3−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、3−ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、グリセリン(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート(CH2CH2Oユニットの繰り返しが1〜6のものが好ましい)、水酸基末端ウレタン(メタ)アクリレート等を、それぞれ単独で重合して成るホモポリマー、複数共重合して成るコポリマー、他のモノマーと共重合して成るコポリマーを挙げることができる。前2者、即ちホモポリマー、水酸基及びエチレン性不飽和二重結合を有するモノマー同士のコポリマーが好ましく、本発明のガスバリア形成用塗料は、ホモポリマーを2種以上、又は水酸基及びエチレン性不飽和二重結合を有するモノマー同士のコポリマーを2種以上含有することもできる。さらにホモポリマーとコポリマーとを含有することもできる。

0031

水酸基を有するモノマーと共重合し得る他のモノマーとしては、水酸基、カルボキシル基を有しないモノマーであって、水酸基を有するモノマーと共重合し得るモノマーを適宜用いることができる。
例えば、クロトン酸、(メタ)アクリル酸等の不飽和モノカルボン酸エステル、(メタ)アクリルアミド、(メタ)アクリルニトリルスチレンスチレンスルホン酸ビニルトルエン、エチレンなどの炭素数2〜30のα−オレフィン類、アルキルビニルエーテル類、ビニルピロリドン等が挙げられる。

0032

上記のポリアルコール系ポリマー(A)は、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。

0033

<ポリカルボン酸系ポリマー(B)>
本発明で使用するポリカルボン酸系ポリマー(B)は、分子内に2個以上のカルボキシル基もしくは酸無水物基を有するポリマーであり、カルボキシル基もしくは酸無水物基を有するモノマーを重合して成るポリマー、等が挙げられる。
カルボキシル基もしくは酸無水物基を有するモノマーとしては、例えば、(メタ)アクリル酸、2−カルボキシエチル(メタ)アクリレート、ω−カルボキシポリカプロラクトンモノアクリレート、マレイン酸、無水マレイン酸、フマル酸、無水フマル酸、シトラコン酸、無水シトラコン酸、イタコン酸、無水イタコン酸が挙げられ、(メタ)アクリル酸、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸が好ましい。

0034

ポリカルボン酸系ポリマー(B)としては、これらモノマーをそれぞれ単独で重合して成るホモポリマーや複数共重合してなるコポリマー、他のモノマーと共重合して成るコポリマーを挙げることができる。

0035

カルボキシル基もしくは酸無水物基を有するモノマーと共重合し得る他のモノマーとしては、水酸基、カルボキシル基を有しないモノマーであって、カルボキシル基もしくは酸無水物基を有するモノマーと共重合し得るモノマーを適宜用いることができる。
例えば、クロトン酸、(メタ)アクリル酸等の不飽和モノカルボン酸エステル、(メタ)アクリルアミド、(メタ)アクリルニトリル、スチレン、スチレンスルホン酸、ビニルトルエン、エチレンなどの炭素数2〜30のα−オレフィン類、アルキルビニルエーテル類、ビニルピロリドン等が挙げられる。

0036

具体的なポリカルボン酸系ポリマー(B)としては、ポリアクリル酸、ポリメタクリル酸、ポリマレイン酸ポリイタコン酸や、アクリル酸−メタクリル酸共重合体、エチレン−無水マレイン酸に代表されるオレフィン−マレイン酸共重合体(F)等が挙げられ、ポリアクリル酸、ポリイタコン酸、オレフィン−マレイン酸共重合体(F)が好ましく、ポリ(メタ)アクリル酸、エチレン−無水マレイン酸共重合体がより好ましい。

0037

上記のポリカルボン酸系ポリマーは、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。

0038

<オレフィン−マレイン酸共重合体(F)>
本発明における、オレフィン−マレイン酸共重合体(F)は、無水マレイン酸またはマレイン酸とオレフィンモノマー溶液中などにおけるラジカル重合などの公知の方法で共重合することにより得られる。

0039

上記無水マレイン酸と共重合可能なオレフィンモノマーとしては、メチルビニルエーテルエチルビニルエーテルなどの炭素数3〜30のアルキルビニルエーテル類、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル等の(メタ)アクリル酸エステル類ギ酸ビニル、酢酸ビニルなどのビニルエステル類、スチレン、p−スチレンスルホン酸、エチレン、プロピレンイソブチレンなどの炭素数2〜30のオレフィン、PVAの水酸基などと反応する反応性基を有する化合物などが挙げられ、これらの混合物を用いることもできる。

0040

このうち、アルキルビニルエーテル類、低級オレフィン類がガスバリア性を向上させることができる点で好ましく、特にメチルビニルエーテル、イソブチレン、エチレンが好ましい。

0041

上記オレフィン−マレイン酸共重合体(F)中のマレイン酸単位は、乾燥状態では隣接カルボキシル基が脱水環化した無水マレイン酸構造となりやすく、湿潤時や水溶液中では開環してマレイン酸構造となる。
したがって、本発明においては、特記しない限り、マレイン酸単位と無水マレイン単位とを総称してマレイン酸単位という。

0042

本発明におけるオレフィン−マレイン酸共重合体(F)中のマレイン酸単位は、10モル%以上含有することが好ましく、35モル%以上含有することがより好ましく、マレイン酸単位がほぼ等モルのオレフィンと無水マレイン酸との共重合体がより好ましい。マレイン酸単位が10モル%より少ないと、ポリアルコール系ポリマーとの反応による架橋構造の形成が不十分となり易く、ガスバリア性が低下する傾向にある。尚、このマレイン酸単位は部分的にエステル化もしくはアミド化されていてもよい。
また、本発明で用いられるオレフィン−マレイン酸共重合体(F)は、重量平均分子量が3000〜1000000であることが好ましく、5000〜900000であることがより好ましく、10000〜800000であることが更に好ましい。

0043

<エチレン−マレイン酸共重合体>
本発明において用いられるエチレン−マレイン酸共重合体(以下、EMAという)は、無水マレイン酸とエチレンとを溶液ラジカル重合などの公知の方法で重合することにより得られるものである。また、本発明の目的を損なわない範囲で他のビニル化合物を少量共重合することも可能である。ビニル化合物としては例えば、アクリル酸メチル、メタアクリル酸メチル、アクリル酸エチル、メタアクリル酸エチル、アクリル酸ブチル、メタアクリル酸ブチル等のアクリル酸エステル類、ギ酸ビニル、酢酸ビニルなどのビニルエステル類、スチレン、p−スチレンスルホン酸、プロピレン、イソブチレンなどの炭素数3〜30のオレフィン類や、PVAの水酸基などと反応する反応性基を有する化合物を挙げることができる。

0044

本発明におけるEMA中のマレイン酸単位は、10モル%以上含有することが好ましく、マレイン酸単位がほぼ等モルのエチレンと無水マレイン酸との交互共重合体が好ましい。マレイン酸単位が10モル%より少ないと、PVA単位との反応による架橋構造の形成が不十分でありガスバリア性が低下する。
また、本発明で用いられるEMAは重量平均分子量が3000〜1000000であることが好ましく、5000〜900000であることがより好ましく、10000〜800000であることが更に好ましい。

0045

なお、本発明で用いられるEMA中のマレイン酸単位は、乾燥状態では隣接カルボキシル基が脱水環化した無水マレイン酸構造となりやすく、一方、湿潤時や水溶液中では開環してマレイン酸構造となる。

0046

本発明において用いられるガスバリア層形成用塗料(C)は、ポリアルコール系ポリマー(A)とポリカルボン酸系ポリマー(B)の重量比が、ポリアルコール系ポリマー/ポリカルボン酸系ポリマー=90/10〜10/90であることが好ましく、70/30〜15/85であることがより好ましく、60/40〜20/80であることがさらに好ましく、50/50〜25/75であることが特に好ましい。相対的にポリマーのいずれかが極端に多いと、ガスバリア性向上の効果が小さい。

0047

本発明において用いられるポリカルボン酸系ポリマー(B)は、塩基性化合物により部分的に中和することが好ましい。塩基性化合物としては水酸化ナトリウム、水酸化リチウム、水酸化カリウム等のアルカリ金属水酸化物水酸化マグネシウム水酸化カルシウム水酸化バリウム水酸化亜鉛水酸化アルミニウム水酸化コバルト水酸化すず水酸化鉄水酸化チタン水酸化銅水酸化ニッケル水酸化マンガン等の2価以上の水酸化金属化合物アンモニアメチルアミンエチルアミンブチルアミンジメチルアミンジエチルアミンジブチルアミントリメチルアミントリエチルアミントリブチルアミン等のアルキルアミン類ジメチルアミノエタノールジエタノールアミンエタノールアミンアミノメチルプロパノール等のアルコールアミン類モルホリン等の環状アミン類、エチレンジアミン等の多価アミン類があるが、水酸化ナトリウム、水酸化リチウム、水酸化マグネシウム、水酸化カルシウムが好ましい。塩基性化合物は1種類、あるいは複数を併用して使用してもよい。
塩基性化合物の量はカルボン酸に対して0.1〜50mol%中和が好ましく、0.5〜40mol%中和がより好ましい。中和率が低すぎても高すぎても良好なガスバリア性が得られない。

0048

本発明において用いられるガスバリア層形成用塗料は、さらに無機層状化合物を含有することもできる。無機層状化合物を含有することにより、ガスバリア層やガスバリア性積層体のガスバリア性をさらに向上させることができる。
ガスバリア性という観点からは、無機層状化合物の含有量は多い方が好ましい。しかし、無機層状化合物は、水親和性が強く吸湿しやすい。また無機層状化合物を含有する塗料は、高粘度化しやすいので塗装性を損ないやすい。さらに無機層状化合物の含有量が多いと、形成されるガスバリア層やガスバリア性積層体の透明性が低下する。
そこで、これらの観点から無機層状化合物は、ポリアルコール系ポリマーと、ポリカルボン酸系ポリマーとの合計100重量部に対して、1〜300重量部であることが好ましく、2〜200重量部であることがより好ましく、多くとも100重量部であることがさらに好ましい。

0049

ここでいう無機層状化合物とは、単位結晶層が重なって層状構造を形成する無機化合物であり、特に溶媒中で膨潤劈開するものが好ましい。
無機層状化合物の好ましい例としては、モンモリロナイトバイデライトサポナイトヘクトライト、ソーコナイトバーミキュライトフッ素
雲母白雲母パラゴナイト、金雲母、黒雲母、レピドライト、マーガライト、クリトナイト、アナンダイト、緑泥石ドンバサイト、スドーアイト、クッケアイト、クリノクロア、シャモサイト、ニマイト、テトラシリリックマイカタルクパイロフィライト、ナクライト、カオリナイトハロイサイトクリソタイルナトリウムテニオライト、ザンソフィライトアンチライトディカイトハイドロタルサイトなどがあり、膨潤性フッ素雲母又はモンモリロナイトが特に好ましい。

0050

これらの無機層状化合物は、天然に産するものであっても、人工的に合成あるいは変性されたものであってもよく、またそれらをオニウム塩などの有機物で処理したものであってもよい。

0051

膨潤性フッ素雲母系鉱物白色度の点で最も好ましく、次式で示されるものである。
α(MF)・β(aMgF2・bMgO)・γSiO2(式中、Mはナトリウム又はリチウムを表し、α、β、γ、a及びbは各々係数を表し、0.1 ≦α≦2、2≦β≦3.5 、3≦γ≦4、0≦a≦1、0≦b≦1、a+b=1である。)

0052

このような膨潤性フッ素雲母系鉱物の製造法としては、例えば、酸化珪素酸化マグネシウムと各種フッ化物とを混合し、その混合物を電気炉あるいはガス炉中で1400〜1500℃の温度範囲で完全に溶融し、その冷却過程反応容器内にフッ素雲母鉱物結晶成長させる、いわゆる溶融法がある。

0053

また、タルクを出発物質として用い、これにアルカリ金属イオンインターカレーションして膨潤性フッ素雲母系鉱物を得る方法がある(特開平2-149415号公報)。この方法では、タルクに珪フッ化アルカリあるいはフッ化アルカリを混合し、磁性ルツボ内で約 700〜1200℃で短時間加熱処理することによって膨潤性フッ素雲母系鉱物を得ることができる。

0054

この際、タルクと混合する珪フッ化アルカリあるいはフッ化アルカリの量は、混合物全体の10〜35重量%の範囲とすることが好ましく、この範囲を外れる場合には膨潤性フッ素雲母系鉱物の生成収率が低下するので好ましくない。

0055

珪フッ化アルカリ又はフッ化アルカリのアルカリ金属は、ナトリウムあるいはリチウムとすることが好ましい。これらのアルカリ金属は単独で用いてもよいし併用してもよい。また、アルカリ金属のうち、カリウムの場合には膨潤性フッ素雲母系鉱物が得られないが、ナトリウムあるいはリチウムと併用し、かつ限定された量であれば膨潤性を調節する目的で用いることも可能である。

0056

さらに、膨潤性フッ素雲母系鉱物を製造する工程において、アルミナを少量配合し、生成する膨潤性フッ素雲母系鉱物の膨潤性を調整することも可能である。

0057

モンモリロナイトは、次式で示されるもので、天然に産出するものを精製することにより得ることができる。
MaSi4(Al2-aMga)O10(OH)2・nH2O(式中、Mはナトリウムのカチオンを表し、aは0.25〜0.60である。また、層間のイオン交換性カチオンと結合している水分子の数は、カチオン種や湿度等の条件に応じて変わりうるので、式中ではnH2Oで表す。)
またモンモリロナイトには次式群で表される、マグネシアンモンモリロナイト、鉄モンモリロナイト、鉄マグネシアンモンモリロナイトの同型イオン置換体も存在し、これらを用いてもよい。
MaSi4(Al1.67-aMg0.5+a)O10(OH)2・nH2O
MaSi4(Fe(III)2-aMga)O10(OH)2・nH2O
MaSi4(Fe(III)1.67-aMg0.5+a)O10(OH)2・nH2O
(式中、Mはナトリウムのカチオンを表し、aは0.25〜0.60である。)

0058

通常、モンモリロナイトはその層間にナトリウムやカルシウム等のイオン交換性カチオンを有するが、その含有比率産地によって異なる。本発明においては、イオン交換処理等によって層間のイオン交換性カチオンがナトリウムに置換されていることが好ましい。また、水処理により精製したモンモリロナイトを用いることが好ましい。

0059

無機層状化合物は、ポリアルコール系ポリマー(A)及びポリカルボン酸系ポリマー(B)に直接混合することもできるが、混合する前に予め液状媒体に膨潤、分散しておくことが好ましい。膨潤、分散用の液状媒体としては、特に限定されないが、例えば天然の膨潤性粘土鉱物の場合、水、メタノール、エタノール、プロパノール、イソプロパノールエチレングリコールジエチレングリコール、等のアルコール類ジメチルホルムアミドジメチルスルホキシドアセトン等が挙げられ、水やメタノール等のアルコール類がより好ましい。

0060

本発明において用いられるガスバリア層形成用塗料(C)には、その特性を大きく損わない限りにおいて、熱安定剤酸化防止剤強化材顔料劣化防止剤、耐候剤、難燃剤可塑剤離型剤滑剤などを添加してもよい。

0061

熱安定剤、酸化防止剤及び劣化防止剤としては、例えばヒンダードフェノール類リン化合物ヒンダードアミン類イオウ化合物銅化合物、アルカリ金属のハロゲン化物あるいはこれらの混合物が挙げられる。

0062

次に本発明において用いられるガスバリア層形成用塗料(C)の製造方法について説明する。
たとえば、ポリアルコール系ポリマー(A)とポリカルボン酸系ポリマー(B)を別々に水溶液とし、使用前に混合して用いる方法が好ましい。
塩基性化合物を用いてカルボン酸を部分中和する場合には、種々の方法でガスバリア層形成用塗料(C)を得ることができる。例えば、
(1)ポリアルコール系ポリマー(A)の水溶液とポリカルボン酸系ポリマー(B)の水溶液とを混合する際に塩基性化合物もしくは塩基性化合物の水溶液を混合する、
(2)ポリカルボン酸系ポリマー(B)の水溶液に塩基性化合物を予め溶解しておき、これとポリアルコール系ポリマー(A)の水溶液とを混合する、
(3)ポリアルコール系ポリマー(A)の水溶液に塩基性化合物を予め溶解しておき、これとポリカルボン酸系ポリマー(B)の水溶液とを混合する、
等の方法が挙げられ、(2)の方法が好ましい。

0063

ガスバリア層形成用塗料(C)の濃度(=固形分)は、塗装装置や乾燥・加熱装置仕様によって適宜変更され得るものであるが、あまりに希薄な溶液ではガスバリア性を発現するのに充分な厚みの層をコートすることが困難となり、また、その後の乾燥工程において長時間を要するという問題を生じやすい。他方、ガスバリア層形成用塗料(C)の濃度が高すぎると、均一な塗料を得にくく、塗装性に問題を生じ易い。この様な観点から、ガスバリア層形成用塗料(C)の濃度(=固形分)は、5〜50重量%の範囲にすることが好ましい。

0064

[プラスチック基材]
上述のガスバリア層形成用塗料(C)をプラスチック基材上に直に、又はアンダーコート層(以下、UC層ともいう)を介してプラスチック基材上に塗布し、加熱処理した後、さらに特定の塩基性が化合物含有水の存在下に加熱処理することによって、耐湿性に優れるガスバリア性積層体を得ることができる。
ここで用いられるプラスチック基材は、熱成形可能な熱可塑性樹脂から押出成形射出成形ブロー成形延伸ブロー成形或いは絞り成形等の手段で製造された、フィルム状基材の他、ボトルカップトレイ等の各種容器形状を呈する基材であってもよく、フィルム状であることが好ましい。
また、プラスチック基材は、単一の層から構成されるものであってもよいし、あるいは例えば同時溶融押出しや、その他のラミネーションによって複数の層から構成されるものであってもよい。

0065

プラスチック基材を構成する熱可塑性樹脂としては、オレフィン系共重合体ポリエステルポリアミドスチレン系共重合体塩化ビニル系共重合体アクリル系共重合体ポリカーボネート等が挙げられ、オレフィン系共重合体、ポリエステル、ポリアミドが好ましい。

0066

オレフィン系共重合体としては、低−、中−或いは高−密度ポリエチレン線状低密度ポリエチレンポリプロピレンエチレン−プロピレン共重合体、エチレン−ブテン−共重合体、アイオノマー、エチレン−酢酸ビニル共重合体、エチレン−ビニルアルコール共重合体等が、
ポリエステルとしては、ポリエチレンテレフタレートポリブチレンテレフタレート、ポリエチレンテレフタレート/イソフタレートポリエチレンナフタレート等が、
ポリアミドとしては、ナイロン6、ナイロン6,6、ナイロン6,10、メタキシリレンアジパミド等のポリアミド;
スチレン系共重合体としては、ポリスチレン、スチレン−ブタジエンブロック共重合体、スチレン−アクリロニトリル共重合体、スチレン−ブタジエン−アクリロニトリル共重合体(ABS樹脂)等が、
塩化ビニル系共重合体としては、ポリ塩化ビニル塩化ビニル−酢酸ビニル共重合体等が、
アクリル系共重合体としては、ポリメチルメタクリレートメチルメタクリレートエチルアクリレート共重合体等がそれぞれ挙げられる。
これらの熱可塑性樹脂は、単独で使用してもよいし、2種以上を混合し使用しても良い。

0067

前記の溶融成形可能な熱可塑性樹脂には、所望に応じて顔料、酸化防止剤、帯電防止剤紫外線吸収剤、滑剤などの添加剤の1種或いは2種類以上を樹脂100重量部当りに合計量として0.001部乃至5.0部の範囲内で添加することもできる。
また、本発明のガスバリア性積層体を用いて後述するように包装材を形成する場合、包装材としての強度を確保するために、ガスバリア性積層体を構成するプラスチック基材として、各種補強材入りのものを使用することができる。即ち、ガラス繊維芳香族ポリアミド繊維カーボン繊維パルプコットンリンター等の繊維補強材、或いはカーボンブラックホワイトカーボン等の粉末補強材、或いはガラスフレークアルミフレーク等のフレーク状補強材の1種類或いは2種類以上を、前記熱可塑性樹脂100重量部当り合計量として2乃至150重量部の量で配合でき、更に増量の目的で、重質乃至軟質炭酸カルシウム、雲母、滑石カオリン石膏クレイ硫酸バリウムアルミナ粉シリカ粉炭酸マグネシウム等の1種類或いは2種類以上を前記熱可塑性樹脂100重量部当り合計量として5乃至100重量部の量でそれ自体公知の処方に従って配合しても何ら差支えない。
さらに、ガスバリア性の向上を目指して、鱗片状の無機微粉末、例えば水膨潤性雲母、クレイ等を前記熱可塑性樹脂100重量部当り合計量として5乃至100重量部の量でそれ自体公知の処方に従って配合しても何ら差支えない。

0068

[アンダーコート層]
本発明のガスバリア性積層体は、上述のガスバリア層形成用塗料(C)をプラスチック基材上に直に、又はUC層を介してプラスチック基材上に塗布し、加熱処理した後、さらに水の存在下に加熱処理して形成されたものである。そこで本発明において用いられるUC層について説明する。UC層は、ガスバリア層とプラスチック基材との間に位置し、ガスバリア層の密着性向上の役割を主として担う。
UC層は、ウレタン系、ポリエステル系、アクリル系、エポキシ系等種々のポリマーから形成され得、ウレタン系のUC層が好ましい。

0069

例えば、ウレタン系のUC層の場合、
(1)ポリエステルポリオールポリエーテルポリオール等のポリオール成分とポリイソシアネート成分とを含有するUC用組成物をプラスチック基材上に塗工、加熱し、ポリオール成分とポリイソシアネート成分とを反応させ、ウレタン系のUC層を形成することができる。該UC層上に、前記塗料(C)の溶液を塗工し、これを加熱すれば基材/UC層/ガスバリア層からなる積層体を得ることができる。
(2) UC用組成物をプラスチック基材上に塗工、乾燥し、ポリオール成分とポリイソシアネート成分との反応が完了していない、UC層の前駆体を得、該前駆体上に前記塗料(C)の溶液を塗工し、加熱することによってUC層の形成とガスバリア層の形成とを一度に行って、基材/UC層/ガスバリア層を得ることもできる。
(3) あるいは、UC用組成物をプラスチック基材上に塗工後、加熱せずに、前記ガスバリア層形成用塗料を塗工し、加熱することによってUC層の形成とガスバリア層の形成とを一度に行って、基材/UC層/ガスバリア層からなる積層体を得ることもできる。
UC用組成物に含まれるポリイソシアネートが,ガスバリア層との界面領域において,ポリアルコール系ポリマー(A)中の水酸基とも反応し、密着性向上に寄与する他、ガスバリア層の架橋を補助し、耐水性の向上にも効果があると考えられるので、(2)、(3)の方法が好ましい。

0070

UC層の形成に供されるポリオール成分としては、ポリエステルポリオールが好ましく、ポリエステルポリオールとしては、多価カルボン酸もしくはそれらのジアルキルエステルまたはそれらの混合物と、グリコール類もしくはそれらの混合物とを反応させて得られるポリエステルポリオールが挙げられる。
多価カルボン酸としては、例えばイソフタル酸テレフタル酸ナフタレンジカルボン酸等の芳香族多価カルボン酸アジピン酸アゼライン酸セバシン酸シクロヘキサンジカルボン酸脂肪族多価カルボン酸が挙げられる。
グリコールとしては、例えばエチレングリコール、プロピレングリコール、ジエチレングリコール、ブチレングリコールネオペンチルグリコール、1,6ーヘキサンジオールなどが挙げられる。

0071

これらのポリエステルポリオールは,ガラス転移温度(以下、Tgという)−50℃〜120℃のものが好ましく,−20℃〜100℃のものがより好ましく,0℃〜90℃のものがさらに好ましい。ポリエステルポリオールの好適なTgは、塗料(C)を塗布後加熱硬化する際の加熱硬化条件とも関係する。比較的低温で加熱硬化する場合には、比較的高Tgのポリエステルポリオールが好ましく、比較的高温で加熱硬化する場合には、低温から高温まで比較的幅広いTgのポリエステルポリオールが好適に使用できる。例えば、180℃で塗料(C)を加熱硬化する場合には、70〜90℃程度のTgのポリエステルポリオールが好ましい。一方、200℃で塗料(C)を加熱硬化する場合には、0〜90℃程度のTgのポリエステルポリオールを使用することができる。
また,これらのポリエステルポリオールの数平均分子量は1000〜10万のものが好ましく,3000〜5万のものがより好ましく,1万〜4万のものがさらに好ましい。

0072

UC層の形成に供されるポリイソシアネートとしては、
例えば、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、m−フェニレンジイソシアネート、p−フエニレジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、2,4’−ジフェニルメタンジイソシアネート、2,2’−ジフェニルメタンジイソシアネート、3,3’−ジメチル−4,4’−ビフェニレンジイソシアネート、3,3’−ジメトキシ−4,4’−ビフエニレンジイソシアネート、3,3’−ジクロロ−4,4’−ビフェニレンジイソシアネート、1,5−ナフタレンジイソシアネート、1,5−テトラヒドロナフタレンジイソシアネート、キシリレンジイソシアネートテトラメチルキシリレンジイソシアネートなどの芳香族ポリイソシアネート
テトラメチレンジイソシアネート、1,6−ヘキサメチレンジイソシアネートドデカメチレンジ イソシアネート、トリメチルヘキサメチレンジイソシアネート、1,3−シクロヘキシレンジイソシアネート、1,4−シクロヘキシレンジイソシアネート、水素添加キシリレンジイソシアネート、リジンジイソシアネート、イソホロンジイソシアネート、4,4’−ジシクロヘキシルメタンジイソシアネート、3,3’−ジメチル−4,4’−ジシクロヘキシルメタンジイソシアネート等の脂肪族ポリイソシアネート
上記ポリイソシアネート単量体から誘導されたイソシアヌレートビューレットアロファネート等の多官能ポリイソシアネート化合物、あるいはトリメチロールプロパン、グリセリン等の3官能以上のポリオール化合物との反応により得られる末端イソシアネート基含有の多官能ポリイソシアネート化合物等を挙げることができる。ヘキサメチレンジイソシアネート(以下、HMDIともいう)の三量体である3官能イソシアヌレート体が好ましい。

0073

ポリエステルポリオールとポリイソシアネートの重量比は10:90〜99:1のものが好ましく,30:70〜90:10のものがより好ましく,50:50〜85:15のものがさらに好ましい。

0074

UC層の膜厚は使用する用途に応じて適宜決めることが出来るが、0.1μm〜10μmの厚みであることが好ましく、0.1μm〜5μmの厚みであるとより好ましく、0.1μm〜1μmの厚みであることが特に好ましい。0.1μm未満の厚みでは接着性を発現する事が困難となり、一方10μmを越える厚みになると塗工等の生産工程において困難を生じやすくなる。

0075

UC用組成物中のポリエステルオールとポリイソシアネートとの濃度は適切な溶剤を用いて調節することができ,その濃度は両者を足して0.5〜80重量%の範囲であることが好ましく、1〜70重量%の範囲であることがより好ましい。溶液の濃度が低すぎると,必要な膜厚の塗膜を形成することが困難となり,また,乾燥時に余分な熱量を必要としてしまうので好ましくない.溶液の濃度が高すぎると溶液粘度が高くなりすぎて,混合、塗工時などにおける操作性の悪化を招く問題が生じる。

0076

UC用組成物に使用できる溶剤としては、例えば,トルエン,MEK,シクロヘキサノン,ソルベッソ,イソホロンキシレンMIBK,酢酸エチル酢酸ブチルがあげられるが,これらに限定されるものではない.
UC層には上記成分の他に、公知である硬化促進触媒充填剤軟化剤老化防止剤、安定剤、接着促進剤レベリング剤消泡剤、可塑剤、無機フィラー粘着付与性樹脂繊維類、顔料等の着色剤可使時間延長剤等を使用することもできる。

0077

UC層、ガスバリア層を形成するには,各層を形成するための組成物を,ロールコーター方式グラビア方式グラビアオフセット方式スプレー塗装方式,あるいはそれらを組み合わせた方式などにより,それぞれプラスチック基材上、UC層上に、所望の厚さに塗布することができるが,これらの方式に限定されるものではない。
また、未延伸フィルムに塗布して乾燥した後、延伸処理することもできる。例えば、乾燥後、テンター式延伸機に供給してフィルムを走行方向と幅方向に同時に延伸(同時2軸延伸)、熱処理することもできる。あるいは、多段熱ロール等を用いてフィルムの走行方向に延伸を行った後に塗料等を塗布し、乾燥後、テンター式延伸機によって幅方向に延伸(逐次2軸延伸)してもよい。また、走行方向の延伸とテンターでの同時2軸延伸を組み合わせることも可能である。
本発明におけるガスバリア層の厚みは、積層体のガスバリア性を十分高めるためには少なくとも0.1μmより厚くすることが望ましい。

0078

[ガスバリア性積層体]
本発明のガスバリア性積層体は、上述のガスバリア層形成用塗料(C)をプラスチック基材上に直に、又はUC層を介してプラスチック基材上に塗布し、加熱処理した後、さらに1価塩基性金属化合物(D)及び/または塩基性有機化合物(E)を含有した水の存在下に加熱処理して形成されたものである。
即ち、ガスバリア層形成用塗料(C)を塗布した後、一旦加熱処理することによって、ポリアルコール系ポリマー(A)とポリカルボン酸系ポリマー(B)とのエステル化反応により、最終のガスバリア性積層体の前駆体ともいうべきガスバリア性積層体(以下、この前駆体を「ガスバリア性積層体(1)」ということもある)が生成される。

0079

ポリアルコール系ポリマー(A)とポリカルボン酸系ポリマー(B)との比や、塗料中に含まれる種々の成分の等によっても影響を受け得るので、塗料(C)の好ましい加熱処理条件は一概には言えないが、100℃以上300℃以下の温度で行うことが好ましく、120℃以上250℃以下がより好ましく、140℃以上240℃以下がさらに好ましく、160℃以上220℃以下が特に好ましい。
詳しくは、100℃以上140℃未満の温度範囲で90秒以上、または140℃以上180℃未満の温度範囲で1分以上、または180℃以上250℃未満の温度範囲で30秒以上の熱処理を行うことが好ましく、
100℃以上140℃未満の温度範囲で2分以上、または140℃以上180℃未満の温度範囲で90秒以上、または180℃以上240℃以上の温度範囲で1分以上の熱処理を行うことがより好ましく、
100℃以上140℃未満の温度範囲で4分以上、または140℃以上180℃未満の温度範囲で3分以上、または180℃以上220℃未満の温度範囲で2分程度の熱処理を行うことが特に好ましい。

0080

前記駆体を1価塩基性金属化合物(D)及び/または塩基性有機化合物(E)を含有する水の存在下に加熱処理することによって、高温高湿度下に長時間曝されてもガスバリア性の低下を抑制・防止することができる(以下、1価塩基性金属化合物(D)及び/または塩基性有機化合物(E)を含有する水の存在下に加熱処理したガスバリア性積層体を「ガスバリア性積層体(2)」ということもある)。
背景技術の欄で述べたように、塗料を塗布した後、加熱することによって、ポリアルコール系ポリマー(A)中の水酸基とポリアクリル酸系ポリマー(B)中のCOOHとをエステル化反応のみで架橋させた場合、高温高湿度下でガスバリア性積層体が長時間保存されるとエステル結合が加水分解をおこし、ガスバリア性の劣化が著しかった。
これに対し、上述したように、ガスバリア層形成用塗料(C)を塗布、加熱処理した後、1価塩基性金属化合物(D)及び/または塩基性有機化合物(E)を含有する水の存在下に加熱処理することによって、従来よりもはるかにガスバリア性の低下を抑制・防止できる。

0081

<1価塩基性金属化合物(D)>
1価塩基性金属化合物(D)は、アルカリ金属の水酸化物であり、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等があげられる。1価塩基性金属化合物(D)は、ガスバリア性の低下を抑制・防止効果の点で後述する塩基性有機化合物(E)よりも好ましく、水酸化リチウムが特に好ましい。

0082

<塩基性有機化合物(E)>
アンモニア、メチルアミン、エチルアミン、ブチルアミン、ジメチルアミン、ジエチルアミン、ジブチルアミン、トリメチルアミン、トリエチルアミン、トリブチルアミン等のアルキルアミン類、メタノールアミンジメタノールアミン、トリメタノールアミン、エタノールアミン、ジエタノールアミン、トリエタノールアミンメチルアミノメタノール、ジメチルアミノエタノール、エチルアミノメタノール、ジエチルアミノメタノール、アミノメチルプロパノール等のアルコールアミン類、モルホリン等の環状アミン類、エチレンジアミン等の多価アミン類があるが、沸点が100℃以上のものが好ましい。

0083

1価塩基性金属化合物(D)及び/または塩基性有機化合物(E)の加熱処理用の水に対する濃度は、合計で0.0001〜60%が好ましい。より好ましくは0.0002〜50%である。0.0001%より低いと高温高湿度曝露によるガスバリア性の低下を抑制する効果があまり期待できない。60%より高濃度にしても、ガスバリア性低下抑制効果は飽和し、それ以上の効果はあまり期待できなくなる。1価塩基性金属化合物(D)と塩基性有機化合物(E)は単独で使用してもよいし、複数を併用してもよい。

0084

次に得られたガスバリア性積層体(1)を1価塩基性金属化合物(D)及び/または塩基性有機化合物(E)を含有する水の存在下に加熱処理する方法を述べる。
ガスバリア性積層体(1)を1価塩基性金属化合物(D)及び/または塩基性有機化合物(E)を含有する水の存在下に加熱処理する方法としては、以下に示すような種々の方法が挙げられる。
(1) ガスバリア性積層体(1)を1価塩基性金属化合物(D)及び/または塩基性有機化合物(E)を含有する水(湯)に浸漬する。
(2) ガスバリア性積層体(1)に1価塩基性金属化合物(D)及び/または塩基性有機化合物(E)を含有する水(湯)を霧状、シャワー状にして吹き付ける。
(3) ガスバリア性積層体(1)を1価塩基性金属化合物(D)及び/または塩基性有機化合物(E)を含有する水蒸気さらす
(4) ガスバリア性積層体(1)に1価塩基性金属化合物(D)及び/または塩基性有機化合物(E)を含有する水蒸気を吹き付けつつ、熱ロールで加熱する。
(5) ガスバリア性積層体(1)のガスバリア層表面に、1価塩基性金属化合物(D)及び/または塩基性有機化合物(E)を含有する水(湯)を塗布する。
(6) ガスバリア性積層体(1)のガスバリ層表面に、1価塩基性金属化合物(D)及び/または塩基性有機化合物(E)を含有するコート剤を塗工する。
(7) ガスバリア性積層体(1)のガスバリア層表面が、1価塩基性金属化合物(D)及び/または塩基性有機化合物(E)を含有する水(湯)に触れるように、前記含有水上にガスバリア性積層体(1)を浮かせる。
これら複数の方法を組み合わせることもできる。
上記(1)〜(5)、(7)の含有水(湯)にはさらにアルコールを含有することもできる。また、上記(6)のコート剤の液状媒体としては、水以外にもアルコール、その他有機溶剤などを併用することができる。さらに、溶媒の他に樹脂等を含んでいても良い。
処理に使用する水の温度や環境温度は、40℃以上であることが好ましく、50℃以上であることがより好ましく、60〜140℃であることがさらに好ましくい。また、処理時間は、1秒以上であることが好ましく、5秒以上であるとさらに好ましい。水の温度や、処理時間はより長い方が好ましいが、生産性、経済性、省エネルギー等の観点から、温度は高くても140℃程度、時間は長くても1時間程度が現実的である。より具体的にはガスバリア性積層体(1)のガスバリア層を、1価塩基性金属化合物(D)及び/または塩基性有機化合物(E)を含有する70〜100℃の温水で1秒以上10分以内処理することが好ましく、80〜100℃の含有温水で5秒以上5分以内処理することがより好ましい。

0085

以下に実施例及び比較例を挙げて、本発明について具体的に説明するが、本発明は、これらの実施例のみに限定されるものではない。

0086

酸素透過度
Modern Control社製、酸素透過試験器OX−TRAN TWINを用い、25℃、80%RHにおける酸素透過度を求めた。具体的には、25℃、80%RHに加湿した酸素ガス及び窒素ガスキャリアーガス)を用いた。

0087

ポリアルコール系ポリマー(A)とポリカルボン酸系ポリマー(B)とを含有するガスバリア層形成用塗料(C)から形成されたガスバリア層の酸素透過度は以下の計算式により求めた。
1/Ptotal=1/Pfilm+1/PNy
但し、
Ptotal:ポリアルコール系ポリマー(A)とポリカルボン酸系ポリマー(B)とを含有するガスバリア層形成用塗料(C)から形成されたガスバリア層、及び基材フィルム(2軸延伸ナイロンフィルム)層とからなる積層フィルムの酸素透過度。UC層を有する場合には、ガスバリア層、UC層及び基材フィルムの酸素透過度。
Pfilm:ポリアルコール系ポリマー(A)とポリカルボン酸系ポリマー(B)とを含有するガスバリア層形成用塗料(C)から形成されたフィルム層の酸素透過度。
PNy:基材フィルム(2軸延伸ナイロンフィルム)層の酸素透過度。UC層を有する場合には、UC層及び基材フィルムの酸素透過度。

0088

[ガスバリア層形成用塗料の作成]
PVA(クラレ(株)製、ポバール105(ポリビニルケン化度98〜99%、平均重合度約500)を熱水に溶解後、室温に冷却することにより、PVA水溶液を得た。別途、EMA(重量平均分子量100000)を水に溶解し、カルボキシル基の10%(モル)が中和される量の水酸化ナトリウムを添加したEMA水溶液を調整した。PVAとEMAを固形分の重量比で40/60になるように混合し固形分10%のガスバリア層形成用塗料とした。

0089

[ガスバリア性積層体(1)の作成]
2軸延伸ナイロンフィルム(厚み15μm)上に、上記ガスバリア層形成用塗料をバーコーターNo.12を用いて塗工し、電気オーブンで80℃で2分乾燥した後、電気オーブンで180℃で2分乾燥及び熱処理を行い、厚さ1.5μmの皮膜を形成し、水の存在下に加熱処理する前のガスバリア性積層体(1)を得た。

0090

[実施例1]
上記、水の存在下に加熱処理する前のガスバリア性積層体(1)を95℃に加熱した水酸化ナトリウムの300ppm水溶液中に、30秒間浸漬し、その後蒸留水洗浄した。積層フィルムを25℃、湿度60%雰囲気下で24時間乾燥し、酸素透過度を測定した。また、乾燥後の積層フィルムを40℃、湿度90%の環境に7日間放置した後にガスバリア性積層体の酸素透過度を測定した。積層フィルム及びガスバリア層の酸素透過度を測定した結果を表1に示す。

0091

[実施例2〜7]
実施例1で用いた水酸化ナトリウム300ppm水溶液の代わりに、表1に示すように1価塩基性金属化合物(D)または塩基性有機化合物(E)の種類、濃度、浸漬温度等を変え、実施例1と同様にしてガスバリア性積層体(2)を得、酸素透過度を測定した。結果を表1に示す。

0092

[比較例1]
実施例1で用いた水酸化ナトリウム300ppm水溶液の代わりに蒸留水を用いた以外は実施例1と同様にしてガスバリア性積層体(2)を得、酸素透過度を測定した。結果を表1に示す。

0093

[比較例2]
実施例1で用いた水酸化ナトリウム300ppm水溶液の代わりに塩化ナトリウム1%水溶液を用いた以外は実施例1と同様にしてガスバリア性積層体(2)を得、酸素透過度を測定した。結果を表1に示す。

0094

[比較例3]
水の存在下に加熱処理する前のガスバリア性積層体(1)の酸素透過度の測定結果を表1に示す。

0095

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い法人

関連性が強い法人一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ