図面 (/)

この項目の情報は公開日時点(2005年8月11日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (7)

課題

電気泳動分離稼働率を上げるとともに、分離バッファ液電気泳動条件試料ごとに設定できるようにする。

解決手段

分注部2は共通に設けられて分離バッファ液と試料をマイクロチップ電気泳動流路注入し、電気泳動流路の一端に注入された分離バッファ液は分離バッファ充填・排出部16により電気泳動流路に充填される。電気泳動用高圧電源部26は電気泳動流路のそれぞれに独立して泳動電圧印加する。1つの電気泳動流路への分離バッファ液充填及び試料注入が終了すると次の電気泳動流路への分離バッファ液充填及び試料注入に移行し、試料注入が終了した電気泳動流路では泳動電圧が印加されて電気泳動分離と蛍光測定部31による検出動作が開始される。

概要

背景

マイクロチップ電気泳動では、板状部材の内部に分離用流路を含む電気泳動流路を有するマイクロチップを使用し、その分離用流路の一端側に導入されたDNA、RNA又はタンパク質などの試料をその分離用流路の両端間印加した電圧によりその分離用流路の他端方向に電気泳動させることにより分離させて検出する。
マイクロチップ電気泳動において、1つの電気泳動流路を有する単一のマイクロチップを繰り返し使用して、バッファ液充填試料分注、電気泳動及び分離された試料成分の検出を自動で行う装置が開発されている(特許文献1参照。)。

分析稼働率を上げるために、複数の流路を備えた電気泳動装置も提案されている。その1つの装置は、12個の流路を備え、分離バッファ液の充填と試料分注を手動で行なった後、12個の流路から順次電泳動を起こさせて分離してデータを得ている(非特許文献1参照。)。

他の装置ではキャピラリによる12個の流路を備え、分離バッファ液の充填、試料分注、電気泳動分離及びデータ取得を自動で行なうようになっている(非特許文献2参照。)。

微量液体クロマトグラフィでは、マイクロチップは分離用カラムを含む送液流路を備えており、分離用カラムの一端側に導入された試料をその分離用カラムの他端方向に移動させることにより分離させて分析する(非特許文献3参照。)。
特開平10−246721号公報
「ぶんせき」誌、No.5,267−270頁(2002年)
Electrophoresis 2003, 24, 93-95
Anal. Chem., 70, 3790 (1998)

概要

電気泳動分離の稼働率を上げるとともに、分離バッファ液や電気泳動条件を試料ごとに設定できるようにする。分注部2は共通に設けられて分離バッファ液と試料をマイクロチップの電気泳動流路に注入し、電気泳動流路の一端に注入された分離バッファ液は分離バッファ充填・排出部16により電気泳動流路に充填される。電気泳動用高圧電源部26は電気泳動流路のそれぞれに独立して泳動用電圧を印加する。1つの電気泳動流路への分離バッファ液充填及び試料注入が終了すると次の電気泳動流路への分離バッファ液充填及び試料注入に移行し、試料注入が終了した電気泳動流路では泳動電圧が印加されて電気泳動分離と蛍光測定部31による検出動作が開始される。

目的

そこで、本発明は電気泳動や液体クロマトグラフィによる分離の稼働率を上げるとともに、電気泳動における分離バッファ液や電気泳動条件、液体クロマトグラフィにおける移動相の種類や送液条件といった分析条件を試料ごとに設定できるようにすることを目的とするものである。

効果

実績

技術文献被引用数
7件
牽制数
4件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

板状部材の内部に溶液が移動しつつ分析が行なわれる主流路を少なくとも備えたマイクロチップを使用し、前記主流路における分析工程に先立って前処理工程を含んでいる処理方法において、前記主流路を複数個用意し、前記前処理工程を複数の主流路に共通の分注装置で行なうとともに、1つの主流路における前処理工程が終了すると次の主流路用の前処理工程に移行するように前処理工程を進め、前記処理工程は主流路ごとに独立して行なうことにより、複数の主流路で並行して分析工程を実行するようにしたことを特徴とするマイクロチップ処理方法。

請求項2

前記マイクロチップは主流路としての分離用流路を含む電気泳動流路を備えており、前記分析工程は前記分離用流路の一端側に導入された前記溶液としての試料をその分離用流路の両端間印加した電圧によりその分離用流路の他端方向に電気泳動させることにより分離させて検出する電気泳動工程であり、前記前処理工程は、前記電気泳動流路への分離バッファ液充填試料注入を少なくとも含んでいる請求項1に記載のマイクロチップ処理方法。

請求項3

前記前処理工程は、分離バッファ液を充填しようとする電気泳動流路が先に別の試料を分析したものである場合には、分離バッファ液の充填に先立ってその分離バッファ液でその電気泳動流路を洗浄する工程を含んでいる請求項2に記載のマイクロチップ処理方法。

請求項4

前記電気泳動流路は分離用流路に交差して試料導入用流路が設けられたクロスインジェクション方式の流路であり、前記電気泳動工程は試料導入用流路の一端に導入された試料を分離用流路との交差部に導入する工程と、交差部に導入された試料を分離用流路で分離して検出する工程とを含んでいる請求項2又は3に記載のマイクロチップ電気泳動方法

請求項5

前記マイクロチップは主流路として分離用カラムを含む送液流路を備えており、前記分析工程は前記分離用カラムの一端側に導入された前記溶液としての試料をその分離用カラムの他端方向に移動させることにより分離させて検出する液体クロマトグラフィ工程であり、前記前処理工程は、前記分離用カラムへの試料注入を少なくとも含んでいる請求項1に記載のマイクロチップ処理方法。

請求項6

前記マイクロチップには前記主流路は1つだけ設けられている請求項1から5のいずれかに記載のマイクロチップ処理方法。

請求項7

板状部材の内部に溶液が移動しつつ分析が行なわれる主流路を少なくとも備えたマイクロチップを保持して主流路の数が複数個となるようにする保持部と、前記主流路における分析工程に先立って前処理工程を行なうための共通の前処理部と、前記主流路における分析を主流路のそれぞれで独立して行なわせるための処理部と、1つの主流路における前処理工程が終了すると次の主流路用の前処理工程に移行するように前処理工程の動作を制御し、前処理工程が終了した主流路で分析を行なわせるように前記処理部の動作を制御する制御部とを備えたマイクロチップ処理装置

請求項8

前記マイクロチップは主流路としての分離用流路を含む電気泳動流路を備えたものであり、前記前処理部は前記電気泳動流路への分離バッファ液充填と試料注入を少なくとも行なう分注部であり、前記処理部は前記電気泳動流路のそれぞれに独立して泳動用電圧を印加することのできる電気泳動用高圧電源部と、前記電気泳動流路で分離された試料成分を検出する検出部とを含んでおり、前記制御部は、1つの電気泳動流路への前処理工程が終了すると次の電気泳動流路の前処理工程に移行するように前記分注部の動作を制御し、前処理工程が終了した電気泳動流路で泳動電圧を印加して電気泳動を起こさせるように前記電気泳動用高圧電源部の動作を制御するものである請求項7に記載のマイクロチップ処理装置。

請求項9

前記マイクロチップは主流路として分離用カラムを含む送液流路を備え、前記分離用カラムの一端側に導入された前記溶液としての試料をその分離用カラムの他端方向に移動させることにより分離させて検出する処理を行なう液体クロマトグラフィを行なうものであり、前記前処理部は前記分離用カラムへの試料注入を少なくとも行なう分注部であり、前記処理部は前記分離用カラムのそれぞれに独立して移動相を供給することのできる移動相供給機構と、前記分離用カラムで分離された試料成分を検出する検出部とを含んでおり、前記制御部は、1つの分離用カラムへの前処理工程が終了すると次の分離用カラムの前処理工程に移行するように前記分注部の動作を制御し、前処理工程が終了した分離用カラムで移動相を供給して分離を起こさせるように前記移動相供給機構の動作を制御するものである請求項7に記載のマイクロチップ処理装置。

請求項10

前記検出部は蛍光を測定する蛍光測定装置である請求項7から9のいずれかに記載のマイクロチップ処理装置。

技術分野

0001

本発明はマイクロチップ電気泳動方法微量液体クロマトグラフィなどの分析を行なうマイクロチップ処理方法とその装置に関するものである。
本発明は板状部材の内部に分離用流路を含む電気泳動流路を有するマイクロチップを使用し、その分離用流路の一端側に導入されたDNA、RNA又はタンパク質などの試料をその分離用流路の両端間印加した電圧によりその分離用流路の他端方向に電気泳動させることにより分離させて分析するマイクロチップ電気泳動方法と装置に関するものである。

背景技術

0002

マイクロチップ電気泳動では、板状部材の内部に分離用流路を含む電気泳動流路を有するマイクロチップを使用し、その分離用流路の一端側に導入されたDNA、RNA又はタンパク質などの試料をその分離用流路の両端間に印加した電圧によりその分離用流路の他端方向に電気泳動させることにより分離させて検出する。
マイクロチップ電気泳動において、1つの電気泳動流路を有する単一のマイクロチップを繰り返し使用して、バッファ液充填試料分注、電気泳動及び分離された試料成分の検出を自動で行う装置が開発されている(特許文献1参照。)。

0003

分析の稼働率を上げるために、複数の流路を備えた電気泳動装置も提案されている。その1つの装置は、12個の流路を備え、分離バッファ液の充填と試料分注を手動で行なった後、12個の流路から順次電泳動を起こさせて分離してデータを得ている(非特許文献1参照。)。

0004

他の装置ではキャピラリによる12個の流路を備え、分離バッファ液の充填、試料分注、電気泳動分離及びデータ取得を自動で行なうようになっている(非特許文献2参照。)。

0005

微量液体クロマトグラフィでは、マイクロチップは分離用カラムを含む送液流路を備えており、分離用カラムの一端側に導入された試料をその分離用カラムの他端方向に移動させることにより分離させて分析する(非特許文献3参照。)。
特開平10−246721号公報
「ぶんせき」誌、No.5,267−270頁(2002年)
Electrophoresis 2003, 24, 93-95
Anal. Chem., 70, 3790 (1998)

発明が解決しようとする課題

0006

稼働率の向上という点から考えると、上に紹介した非特許文献1,2の装置は有効であるが、いずれもバッチ処理であり、上の例では12の試料について同じ分離バッファ液で、しかも同じ電気泳動条件でしか分析することができないので、試料ごとに分離バッファ液を異ならせたり、電気泳動条件を個別に設定したりすることができない。
また、試料数が12より少ない場合は使用されない電気泳動流路ができるため、無駄が生じ、コスト高となる。
液体クロマトグラフィについても同じ問題がある。

0007

そこで、本発明は電気泳動や液体クロマトグラフィによる分離の稼働率を上げるとともに、電気泳動における分離バッファ液や電気泳動条件、液体クロマトグラフィにおける移動相の種類や送液条件といった分析条件を試料ごとに設定できるようにすることを目的とするものである。

課題を解決するための手段

0008

本発明は、板状部材の内部に溶液が移動しつつ分析が行なわれる主流路を少なくとも備えたマイクロチップを使用し、前記主流路における分析工程に先立って前処理工程を含んでいる処理方法において、前記主流路を複数個用意し、前記前処理工程を複数の主流路に共通の分注装置で行なうとともに、1つの主流路における前処理工程が終了すると次の主流路用の前処理工程に移行するように前処理工程を進め、前記処理工程は主流路ごとに独立して行なうことにより、複数の主流路で並行して分析工程を実行するようにしたことを特徴とするマイクロチップ処理方法である。
ここで、「分析」の語は、マイクロチップ電気泳動における電気泳動分離及び検出、液体クロマトグラフィにおけるカラムでの分離・溶出及び検出、並びに反応装置における反応及び反応生成物の検出を含む意味で使用している。

0009

そのようなマイクロチップ処理方法の一例はマイクロチップ電気泳動方法である。その場合、マイクロチップは主流路としての分離用流路を含む電気泳動流路を備えており、前記処理工程は分離用流路の一端側に導入された前記溶液としての試料をその分離用流路の両端間に印加した電圧によりその分離用流路の他端方向に電気泳動させることにより分離させて検出する電気泳動工程であり、前記前処理工程は、電気泳動流路への分離バッファ液充填と試料注入を少なくとも含んでいる。

0010

マイクロチップ電気泳動方法における分析工程としての電気泳動工程は、電気泳動分離と検出を含んでいる。電気泳動分離はゾーン電気泳動、及び分離ポリマーもしくはゲルの存在下での分離を含んでいる。検出は光学的検出電気化学的検出などを含んでいる。光学的検出としては、分離された試料成分に励起光照射して発生する蛍光を測定する蛍光測定測定光を照射してその吸光度を測定する吸光測定のほか、電気分離された試料成分による化学発光生物発光を測定するものであってもよい。

0011

前処理工程には、さらにサイズマーカの添加、蛍光試薬の添加などを含むことができる。
前処理工程はまた、分離バッファ液を充填しようとする電気泳動流路が先に別の試料を処理したものである場合には、分離バッファ液の充填に先立ってその分離バッファ液でその電気泳動流路を洗浄する工程を含むことができる。

0012

電気泳動流路は分離用流路のみであってもよく、分離用流路に交差して試料導入用流路が設けられたクロスインジェクション方式の流路であってもよい。クロスインジェクション方式の流路の場合は、電気泳動工程は試料導入用流路の一端に導入された試料を分離用流路との交差部に導入する工程と、交差部に導入された試料を分離用流路で分離して検出する工程とを含んでいる。

0013

そのようなマイクロチップ処理方法の他の例は液体クロマトグラフィである。その場合、マイクロチップは主流路として分離用カラムを含む送液流路を備えており、前記分析工程は分離用カラムの一端側に導入された前記溶液としての試料をその分離用カラムの他端方向に移動させることにより分離させて検出する液体クロマトグラフィ工程であり、前記前処理工程は分離用カラムへの試料注入を少なくとも含んでいる。

0014

液体クロマトグラフィ工程は分離・溶出と検出を含んでいる。分離・溶出はオープンチューブカラム又は充填カラムでの分離・溶出を含んでおり、充填カラムにはピラーなどのナノ構造体も含んでいる。また、溶出は移動相の組成を時間的に変化させるグラジエント溶出も含んでいる。

0015

液体クロマトグラフィにおける検出も光学的検出や電気化学的検出などを含んでいる。光学的検出としては、分離された試料成分に励起光を照射して発生する蛍光を測定する蛍光測定、測定光を照射してその吸光度を測定する吸光測定のほか、電気分離された試料成分による化学発光や生物発光を測定するものであってもよい。

0016

本発明はマイクロチップに形成された流路を繰り返し使用するものである。本発明で処理の対象となる複数の流路は1つの基板に形成されていてもよく、複数の基板に分かれて形成されていてもよい。取り扱いの容易さから、マイクロチップには主流路は1つだけ設けられているようにすることができ、その場合、主流路の数に等しい数のマイクロチップが配置されて処理が行なわれる。

0017

本発明のマイクロチップ処理装置は、板状部材の内部に溶液が移動しつつ分析が行なわれる主流路を少なくとも備えたマイクロチップを保持して主流路の数が複数個となるようにする保持部と、主流路における分析工程に先立って前処理工程を行なうための共通の前処理部と、主流路における分析を主流路のそれぞれで独立して行なわせるための処理部と、1つの主流路における前処理工程が終了すると次の主流路用の前処理工程に移行するように前処理工程の動作を制御し、前処理工程が終了した主流路で分析を行なわせるように処理部の動作を制御する制御部とを備えている。
このマイクロチップ処理装置はマイクロチップ電気泳動装置とマイクロチップ液体クロマトグラフを含んでいる。

0018

このマイクロチップ処理装置をマイクロチップ電気泳動装置として実現する場合には、マイクロチップは主流路としての分離用流路を含む電気泳動流路を備えたものであり、前記前処理部は前記電気泳動流路への分離バッファ液充填と試料注入を少なくとも行なう分注部であり、前記処理部は電気泳動流路のそれぞれに独立して泳動用電圧を印加することのできる電気泳動用高圧電源部と、電気泳動流路で分離された試料成分を検出する検出部とを含んでおり、前記制御部は、1つの電気泳動流路への前処理工程が終了すると次の電気泳動流路の前処理工程に移行するように前記分注部の動作を制御し、前処理工程が終了した電気泳動流路で泳動電圧を印加して電気泳動を起こさせるように電気泳動用高圧電源部の動作を制御するものである。

0019

このマイクロチップ処理装置をマイクロチップ液体クロマトグラフとして実現する場合には、マイクロチップは主流路として分離用カラムを含む送液流路を備え、分離用カラムの一端側に導入された前記溶液としての試料をその分離用カラムの他端方向に移動させることにより分離させて検出する分析を行なう液体クロマトグラフィを行なうものであり、前記前処理部は分離用カラムへの試料注入を少なくとも行なう分注部であり、前記処理部は分離用カラムのそれぞれに独立して移動相を供給することのできる移動相供給機構と、分離用カラムで分離された試料成分を検出する検出部とを含んでおり、前記制御部は、1つの分離用カラムへの前処理工程が終了すると次の分離用カラムの前処理工程に移行するように前記分注部の動作を制御し、前処理工程が終了した分離用カラムで移動相を供給して分離を起こさせるように移動相供給機構の動作を制御するものである。

0020

これらのマイクロチップ処理装置において、検出部は光学的検出部や電気化学的検出部とすることができる。光学的検出部としては、電気泳動流路の一部に励起光を照射して発生する蛍光を測定する蛍光測定装置、電気泳動流路の一部に測定光を照射してその吸光度を測定する吸光光度計のほか、電気泳動流路の一部における化学発光や生物発光を測定するものであってもよい。

発明の効果

0021

本発明の方法では、電気泳動や液体クロマトグラフィといった分析を複数の流路で並行して実行できるので、1つの流路での前処理と分析を行なった後に次の流路での前処理及び分析を行なうというような直列的な処理に比べると、稼働率が向上する。
本発明を電気泳動分離に適用した場合には、分離バッファ液の充填を分注装置で行なうため、複数の分離バッファ液から試料に適したものを選択して分注することができる。
また泳動電圧の印加は電気泳動流路ごとに独立して設定できるので、試料ごとに電気泳動分離条件を設定することができる。
本発明を液体クロマトグラフィに適用した場合には、移動相である溶出液の種類と、移動相の送液条件を試料ごとに選択できる効果がある。
また、バッチ処理ではないので、試料数によらず無駄が生じない。

発明を実施するための最良の形態

0022

図1は本発明をマイクロチップ電気泳動装置に適用した一実施例における制御部に関する部分を概略的に示すブロック図である。
2は分注部で、シリンジポンプ4により、分離バッファ液と試料を吸入しマイクロチップの電気泳動流路の一端に注入するものであり、複数の電気泳動流路について共通に設けられている。16は電気泳動流路の一端に注入された分離バッファ液を空気圧により電気泳動流路に充填し、不用な分離バッファ液を吸引ポンプ部23により排出する分離バッファ充填・排出部であり、分離バッファ充填・排出部16も処理しようとする複数の電気泳動流路について共通に設けられている。26は電気泳動流路のそれぞれに独立して泳動用電圧を印加する電気泳動用高圧電源部である。31は電気泳動流路で分離された試料成分を検出する検出部の一例としての蛍光測定部である。38は制御部で、1つの電気泳動流路への分離バッファ液充填及び試料注入が終了すると次の電気泳動流路への分離バッファ液充填及び試料注入に移行するように分注部2の動作を制御し、試料注入が終了した電気泳動流路で泳動電圧を印加して電気泳動を起こさせるように電気泳動用高圧電源部26の動作を制御し、蛍光測定部31による検出動作を制御するものである。40はこのマイクロチップ電気泳動装置の動作を指示したり、蛍光測定部31が得たデータを取り込んで処理したりするための外部制御装置としてのパーソナルコンピュータである。

0023

図2に一実施例のマイクロチップ電気泳動装置の要部を概略的に示す。マイクロチップ5−1〜5−4は保持部(図示略)に4個が保持される。マイクロチップ5−1〜5−4は後で詳しく説明するように、それぞれ1試料を処理するための1つの電気泳動流路が形成されたものである。

0024

それらのマイクロチップ5−1〜5−4に分離バッファ液と試料を分注するための分注部2は、吸引吐出を行なうシリンジポンプ4と、分注ノズルを備えたプローブ8と、洗浄液用容器10とを備えており、プローブ8と洗浄液用の容器10は三方電磁弁6を介してシリンジポンプ4に接続されている。分離バッファ液と試料はマイクロタイタプレート12上の穴にそれぞれ収容されて、分注部2によりマイクロチップ5−1〜5−4に分注される。なお、分離バッファ液は専用の容器に収容してマイクロタイタプレート12の近くに配置してもよい。14はプローブ8を洗浄するための洗浄部であり、洗浄液溢れている。この分注部2は、三方電磁弁6をプローブ8とシリンジポンプ4が接続される方向に接続して分離バッファ液又は試料をプローブ8に吸引し、シリンジポンプ4によりマイクロチップ5−1〜5−4のいずれかの電気泳動流路に吐出する。プローブ8を洗浄する際は三方電磁弁6をシリンジポンプ4と洗浄液用の容器10を接続する方向に切り替え、シリンジポンプ4に洗浄液を吸引した後、プローブ8を洗浄部14の洗浄液に浸し、三方電磁弁6をシリンジポンプ4とプローブ8を接続する側に切り替えてプローブ8の内部から洗浄液を吐出することにより洗浄を行なう。

0025

マイクロチップ5−1〜5−4の電気泳動流路の一端のリザーバに分注された分離バッファ液を流路内に充填するために、4つのマイクロチップ5−1〜5−4についてバッファ充填・排出ユニット16が共通に備えられている。バッファ充填・排出ユニット16はマイクロチップ5−1〜5−4のいずれかの電気泳動流路の一端のリザーバ上に空気吐出口18を気密を保って押し付け、他のリザーバに吸引ノズル22を挿入し、空気吐出口18から空気を吹き込んで分離バッファ液を電気泳動流路に押し込むとともに、他のリザーバから溢れた分離バッファ液をノズル22から吸引ポンプにより吸引して外部へ排出する。

0026

各マイクロチップ5−1〜5−4の電気泳動流路に独立して泳動用の電圧を印加するために、マイクロチップ5−1〜5−4ごとに独立した電気泳動用高圧電源26(26−1〜26−4)が設けられている。

0027

マイクロチップ5−1〜5−4の分離流路55で電気泳動分離された試料成分を検出するための蛍光測定部31は、マイクロチップ5−1〜5−4ごとに設けられてそれぞれの電気泳動流路の一部に励起光を照射するLED(発光ダイオード)30−1〜30−4と、電気泳動流路を移動する試料成分がLED30−1〜30−4からの励起光により励起されて発生した蛍光を受光する光ファイバ32−1〜32−4と、それらの光ファイバ32−1〜32−4からの蛍光から励起光成分を除去し、蛍光成分のみを透過させるフィルタ34を介して蛍光を受光する光電子増倍管36とを備えている。LED30−1〜30−4を互いに時間をずらして発光させることにより、1つの光電子増倍管36で4つの蛍光を識別して検出することができる。なお、励起光の光源としては、LEDに限らずLD(レーザダイオード)を用いてもよい。

0028

図3図4はこの実施例におけるマイクロチップの一例を示したものである。本発明におけるマイクロチップは基板内に電気泳動流路が形成されたこのような電気泳動装置を指しており、必ずしもサイズの小さいものに限定される意味ではない。

0029

図3に示されるように、このマイクロチップ5は一対の透明基板(石英ガラスその他のガラス基板樹脂基板)51,52からなり、一方の基板52の表面に、(B)に示されるように、互いに交差する泳動用キャピラリ溝54,55を形成し、他方の基板51には、(C)に示されるように、その溝54,55の端に対応する位置にリザーバ53を貫通穴として設け、両基板51,52を(C)に示すように重ねて接合し、キャピラリ溝54,55を試料の電気泳動分離用の分離流路55と、その分離流路に試料を導入するための試料導入流路54とする。

0030

マイクロチップ5は基本的には図3に示したものであるが、取扱いを容易にするために、図4に示されるように、電圧を印加するための電極端子を予めチップ上に形成したものを使用する。図4はそのマイクロチップ5の平面図を示したものである。リザーバ53は流路54,55に電圧を印加するためのポートでもある。ポート#1と#2は試料導入流路54の両端に位置するポートであり、ポート#3と#4は分離流路55の両端に位置するポートである。各ポートに電圧を印加するために、このチップ5の表面に形成された電極パターン61〜64がそれぞれのポートからマイクロチップ5の側端部に延びて形成されており、電気泳動用高圧電源部26−1〜26−4に接続されるようになっている。

0031

図5はバッファ充填・排出部16における空気供給口18とマイクロチップ5の接続状態を概略的に示したものである。空気供給口18の先端にはOリング20が設けられており、空気供給口18をマイクロチップ5の1つのリザーバ上に押し当てることにより、マイクロチップ5の電気泳動流路に対し、空気供給口18を機密を保って取り付けることができ、空気供給口18から空気を加圧して流路内に送り出すことができる。他のリザーバにはノズル22が挿入され、流路から溢れ出した不用な分離バッファ液を吸入して排出する。

0032

図6は一実施例における動作を詳細に示したものである。ここでは1つのマイクロチップに1つの電気泳動流路が形成されているものを使用する。したがって、この場合には1つのマイクロチップから次のマイクロチップに処理が移行することは1つの電気泳動流路から次の電気泳動流路に処理が移行することと同義である。

0033

(A)は前処理工程と電気泳動・測光工程が4つのマイクロチップで一部並行しながら順次行なわれていく実施例の動作を示している。
各工程は時間で設定され、前処理工程は40秒、電気泳動・測光工程は120秒に設定されており、1つのマイクロチップについての1サイクルは160秒である。

0034

1つのマイクロチップについての前処理工程が終わると、そのマイクロチップでの電気泳動・測光工程の終了を待つことなく次のマイクロチップの前処理工程へと移行していく。すなわち、1番目のマイクロチップでの前処理工程の終了に伴って電気泳動が開始され、測光も開始されるとともに、2番目のマイクロチップでの前処理工程が開始される。2番目のマイクロチップでの前処理工程が終わると2番目のマイクロチップでの電気泳動が開始され、測光も開始されるとともに、3番目のマイクロチップでの前処理工程が開始される。このようにして、前処理工程はマイクロチップごとに順次行なれていき、それとは別に前処理工程の終わったマイクロチップでは電気泳動と測光が順次開始されていき、結果として電気泳動と測光は複数のマイクロチップで並行して実行される。4番目のマイクロチップまで前処理工程が行われると、1番目のマイクロチップでは分析が終了しているので、1番目のマイクロチップを再度利用して同様の処理が繰り返されていく。

0035

電気泳動工程では、試料を試料導入流路から分離用流路との交差位置まで導くための電圧印加が行なわれ、続いて分離用流路での電圧印加による電気泳動分離が行なわれる。それとともに、検出位置ではLEDから光照射がなされ、蛍光測定が開始される。

0036

前処理工程を(B)に詳細に示す。
上段数値は時間(秒)を表わしている。「マイクロチップ」の欄は1つのマイクロチップにおける処理の内容を示したものである。「分注部」欄はシリンジポンプ4により行なわれるプローブ8からの分離バッファ液と試料の吸引と吐出動作を示している。

0037

「分離バッファ充填・排出部」の欄は、マイクロチップに分注された分離バッファ液を流路に押し込む充填操作と溢れ出た分離バッファ液を吸引して排出する吸引工程を吸引ポンプにより行なう操作を示している。

0038

「マイクロチップ」の欄において、最初の分離バッファ液吸引(B吸引)は先の分析で使用した分離バッファ液を吸引して排出する工程である。次の「W4B分注」工程で4番目のリザーバへ分離バッファ液を分注し、次の「充填・吸引」工程で分離バッファ充填・排出部から加圧空気を供給してその分離バッファ液を電気泳動流路に押し込むとともに、他のリザーバから不要な分離バッファ液を吸引して排出することにより流路を新たな分離バッファ液で洗浄する。

0039

次の「W1B分注」工程により1番目のリザーバを洗浄するために1番目のリザーバに新たな分離バッファ液を分注し、次の「充填・吸引」工程で分離バッファ充填・排出部から4番目のリザーバに加圧空気を供給してその分離バッファ液を電気泳動流路に押し込むとともに、他のリザーバから不要な分離バッファ液を吸引して排出することにより分離バッファ液を流路に充填する。その後、次の「W2,3,4バッファ分注」工程により他の2,3,4番目のリザーバからも分離バッファ液を分注する。これで電気泳動流路への分離バッファ液の充填が完了する。

0040

次に、試料の分注のために分注部のプローブに試料が吸引され、「W1S分注」工程により1番目のリザーバにその試料が吐出されて試料分注が行われる。試料分注後、分注部のプローブは洗浄された後、次の試料のための分離バッファ液の吸入に備える。これでそのマイクロチップの電気泳動流路での前処理工程が終了する。

0041

実施例のマイクロチップではクロスインジェクション方式の電気泳動流路を採用しているが、これに限らず、流路が分離流路だけのマイクロチップであってもよい。

0042

また、実施例のマイクロチップでは1つのマイクロチップに電気泳動流路が1つだけ設けられたものを使用しているが、1つのマイクロチップに電気泳動流路が複数形成されていてもよく、その場合には電気泳動流路を単位として本発明を適用すればよい。

0043

検出部として蛍光を測定するものを使用しているが、蛍光を測定する以外に、吸光度を測定したり、化学発光又は生物発光を利用した検出方法を用いたりすることもできる。
検出部に関してはそれぞれのマイクロチップで独立して励起光を照射するものでなくても、全てのマイクロチップに共通に使用される測光系を用意し、その光学系を全てのマイクロチップの検出位置の間で移動させるように走査する方式のものであってもよい。

0044

本発明の方法と装置は、DNA、RNA又はタンパク質などの試料を分析するのに有効なマイクロチップ電気泳動や液体クロマトグラフィに利用することができる。

図面の簡単な説明

0045

本発明をマイクロチップ電気泳動装置に適用した一実施例における制御部に関する部分を概略的に示すブロック図である。
同実施例の要部を概略的に示す斜視図である。
マイクロチップの一例を示す図であり、(A)と(B)はマイクロチップを構成する透明板状部材を示す平面図、(C)はマイクロチップの正面図である。
同実施例で使用するマイクロチップを示す平面図である。
同実施例におけるバッファ充填・排出部における空気供給口とマイクロチップの接続状態を概略的に示す断面図である。
同実施例の動作を示すタイムチャート図である。

符号の説明

0046

2分注部
4シリンジポンプ
5,5−1〜5−4マイクロチップ
8プローブ
16分離バッファ充填・排出部
26(26−1〜26−4)電気泳動用高圧電源部
30−1〜30−4LED
31蛍光測定部
36光電子増倍管
38 制御部

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • パナソニック株式会社の「 化学物質濃縮器および化学物質検出装置」が 公開されました。( 2019/09/12)

    【課題・解決手段】化学物質濃縮器は、気体試料に含まれる化学物質を濃縮する。この化学物質濃縮器は、気体試料が流れる中空部分を構成する流路と、流路の内壁上に設けられた第1と第2の電極と、第1と第2の電極に... 詳細

  • シスメックス株式会社の「 検体測定装置、電力供給の遮断方法」が 公開されました。( 2019/09/12)

    【課題】複数のモジュールへの電力供給を確実に一括して遮断する。【解決手段】検体測定装置(200)は、第1モジュール(62)および第2モジュール(61)を備え、第1接続部(511)と第1モジュール(62... 詳細

  • 森永乳業株式会社の「 フィトステロールの検出及び/又は測定方法」が 公開されました。( 2019/09/12)

    【課題】 脂質及びフィトステロールを含む疎水性成分を含有する飲食品組成物中のフィトステロールを精度よく検出若しくは測定するための技術を提供すること。【解決手段】 脂質及びフィトステロールを含む疎水... 詳細

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ