図面 (/)

技術 燃料経済性が改善された油組成物

出願人 シェブロン・オロナイト・カンパニー・エルエルシー
発明者 アレキサンダー・ビー・ボーファ
出願日 2003年11月20日 (17年1ヶ月経過) 出願番号 2003-391082
公開日 2004年6月17日 (16年6ヶ月経過) 公開番号 2004-169036
状態 特許登録済
技術分野 潤滑剤
主要キーワード 単分子薄膜 多分子膜 酸性副生成物 作動段階 基準運転 さび止め 添加剤ブレンド 参照油
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2004年6月17日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (1)

課題

燃料経済性の改善を示す潤滑油組成物を提供する。

解決手段

主要量の潤滑粘度の油と全塩基価が約450〜550の油溶性過塩基性アルカリ土類金属アルキルアリールスルホネート清浄剤及び平均分子量が450〜3000のポリアルキレンから誘導されたアルケニルコハク酸イミド分散剤を含む潤滑油組成物。

概要

背景

自動車製造業者が、エンジン設計によって燃料経済性を改善するべく探求し続けている一方で、エンジン油の配合における新しい試みが、燃料経済性の改善に重要な役割を果たし、その結果として自動車排気特性の改善がもたらされた。燃料効率の点で単位当りコストが相対的に低くなり、また古いエンジンとの適合性が悪くなる可能性があるために、エンジンのハードウェアの変更以上に潤滑剤を最適化することが特に好ましい。従って、従来の配合物以上により優れた燃料効率、酸化安定性揮発性、および改善された粘度指数(幾つかの特性を挙げれば)を示す新しい性能の基油原料添加剤ブレンドを利用したエンジン油や添加剤パッケージを開発することを、潤滑油配合者は継続的に強いられている。燃料効率を改善するためには、粘度の低いエンジン油を使用することが考えられるが、それはしばしば新しい添加剤パッケージ配合物を要求している。これらの新規な配合エンジン油規格書に対する要求リストの主要部には、潤滑油組成物摩擦特性を改善する成分を用いるものがある。この場合に、添加剤系統だった設計は重要な因子であり、添加剤/添加剤および添加剤/基油相互作用に、細心の注意を集中しなければならない。

エンジン油は、荷重、速度および温度の様々な条件で可動エンジン部分間の潤滑剤として作用する。よって、各種のエンジン構成部分は、潤滑の境界層的、混合的および(弾性流体力学的支配の種々の組合せに遭遇し、そしてピストンライナピストンリング界面およびベアリング動弁装置近傍の小部分では、最大の摩擦損失が生じている。各種部分の摩擦によるエネルギー損失を低減するために、またエンジン摩耗を防止するために、エンジン油には摩擦調整剤耐摩耗剤および酸化防止剤などの添加剤が混合され、これらの添加剤は、上述した添加剤の効果を持続させる傾向がある。また、ピストン/シリンダの流体力学的摩擦を低減するためにエンジン油の粘度を低くしているが、これは、新しい境界層支配を相殺するために摩擦調整剤への依存を増大させている。よって、燃料経済性を改善するために、油粘度と各種の摩擦調整剤との相互作用に多大な努力を集中している。

摩擦調整剤は何年間にもわたって、すべり止めギヤ油自動変速機液、摺動面潤滑剤および多目的トラクタ液に適用するためにある。燃料経済性向上の要望に応じて、摩擦調整剤が自動車のクランクケース潤滑剤に添加されており、幾つかは当該分野でも知られている。摩擦調整剤は一般に、境界層条件で耐摩耗添加剤および極圧添加剤がまだ反応しない温度で、一般的な耐摩耗剤または極圧剤に比べて著しく低い摩擦を示す物理吸着した極性油溶性生成物単分子薄膜または反応層を形成することによって作用する。しかしながら、もっと苛酷な条件下や混合潤滑支配下では、これらの摩擦調整剤は、耐摩耗剤または極圧剤と一緒に添加される。最も一般的な種類はジチオリン酸亜鉛(ZnDTP、またはZDDP)であり、排気を考慮して、最近の多数の配合物では濃度を低くしている。

摩耗、極圧、腐食防止および摩擦調整剤、並びに清浄剤および分散剤はいずれも、金属表面に対して親和性を有する極性の添加剤であり、活性な金属表面部位競合しうる、あるいは互いに相互作用しうるものである。例えば、ZnDTPやZnDTCなどの耐摩耗剤は、金属表面に非常に接近してざらざらした箇所が反対側の表面を損傷させるのを防ぐ。これらの薄膜は、半塑性で剪断し難いので、剪断条件下ではそれら薄膜の摩擦係数は一般に高い。反対に、摩擦調整剤は一般に、その極性頭部により金属表面に結合し、ファンデルワールス力により互いに並んだ多分子膜規則的で密に充填された配列を組み立てることによって作用する。従って、耐摩耗剤ZnDTP、摩擦調整剤、分散剤または清浄剤などの界面活性剤を潤滑油に添加すると、耐摩耗剤の吸着は他の添加剤の競合する吸着によって減少する。その結果、保護膜の形成が妨害されるか、あるいは保護膜が除去されてしまい、これにより総体的に得られる動力およびエンジン効率が減少する。

分散剤および清浄剤は、当該分野では広く知られていて、一般には、燃料または潤滑油の部分的な酸化から誘導されたスラッジ炭素および他の堆積物前駆体を、油中に懸濁させておくために用いられる。さらに、清浄剤は、電位的に腐食性の酸を中和して、清浄性に寄与するべく機能する。エンジン油では、これは主に、燃焼、酸化または分解の生成物によって酸を中和し、それにより腐食性摩耗の量を減らし、またピストンや他の高温表面を堆積物の無いようにすることである。しかしながら、上述したように、分散剤や清浄剤は一般に、他の機能性添加剤と悪く相互作用しうる極性分子である。例えば、過塩基性スルホネートも、酸化促進剤として作用して酸化防止性能下げることが知られている。清浄剤の過塩基性の程度が、最終潤滑油組成物の粘度への寄与以外に、燃料経済性に関する何らかの効果を持つとは考えらていなかった。

従って、各成分の選択およびそれらの間の相互作用は主要な関心事であり、そしてそこから得られた有益な相互作用もしくは新たな特性や改善は、予期しえないか、あるいは期待できなかったものである。このため、当該分野で認識されていなかった二重の利益を示す添加剤が発見され、特に実際に使用されたとき、当該分野は明らかに前進するのである。燃料経済性における顕著な改善は、1987年以来(EC−I、GF−1、GF−2及びGF−3に従う潤滑剤をもって)遂行されているが、一方、提案されたGF−4油および将来的な標準規格は、更なる開発が必要であり、新たな添加剤配合物移行することが必要となる。本発明において、驚くほど著しい燃料経済性の向上の効果は清浄剤/分散剤の選択に帰するものである。

概要

燃料経済性の改善を示す潤滑油組成物を提供する。主要量の潤滑粘度の油と全塩基価が約450〜550の油溶性の過塩基性アルカリ土類金属アルキルアリールスルホネート清浄剤及び平均分子量が450〜3000のポリアルキレンから誘導されたアルケニルコハク酸イミド分散剤を含む潤滑油組成物。 なし

目的

エンジン油では、これは主に、燃焼、酸化または分解の生成物によって酸を中和し、それにより腐食性摩耗の量を減らし、またピストンや他の高温表面を堆積物の無いようにすることである

効果

実績

技術文献被引用数
3件
牽制数
3件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

下記の成分を含む潤滑油組成物:主要量の潤滑粘度の油、全塩基価(TBN)が約450乃至550の油溶性過塩基性アルカリ土類アルキルアリールスルホネート清浄剤、および平均分子量が450乃至3000のポリアルキレンから誘導されたアルケニルコハク酸イミド分散剤

請求項2

TBNが475より高い請求項1に記載の潤滑油組成物。

請求項3

TBNが480乃至500の範囲にある請求項2に記載の潤滑油組成物。

請求項4

アルカリ土類金属カルシウムである請求項1に記載の潤滑油組成物。

請求項5

スルホネート清浄剤が、C14-40の炭素原子を含む線状ノルマルアルファオレフィンであって、少なくとも13モル%のアルキル基がアルキル基の1位又は2位でアリール基に結合しているアルファオレフィンから誘導されたものである請求項4に記載の潤滑油組成物。

請求項6

ポリアルキレン基が、平均分子量が900乃至2300のポリイソブテニルである請求項1に記載の潤滑油組成物。

請求項7

ポリイソブテニルコハク酸イミドエチレンカーボネートで後処理されている請求項6に記載の潤滑油組成物。

請求項8

さらに、摩擦調整剤を含む請求項1に記載の潤滑油組成物。

請求項9

摩擦調整剤がホウ酸グリセロールモノオレエートエステルである請求項8に記載の潤滑油組成物。

請求項10

さらに、リン成分を含む請求項1に記載の潤滑油組成物。

請求項11

リン成分がジアルキルジチオリン酸塩であり、そして組成物の全リン量リン元素として0.10質量%以下である請求項10に記載の潤滑油組成物。

請求項12

下記の成分からなる内燃機関用潤滑油組成物:(a)主要量の潤滑粘度の基油、(b)0.5%〜10%の全塩基価(TBN)が約450乃至550の過塩基性カルシウムアルキルアリールスルホネート清浄剤、(c)1%〜20%の平均分子量450乃至3000のポリアルキレンから誘導されたカーボネート処理したアルケニルコハク酸イミド分散剤、(d)0.05%〜1.0%の摩擦調整剤、および(e)0.25%〜1.2%のジアルキルジチオリン酸亜鉛、[ただし、添加剤の%は潤滑油組成物全体の重量に基づく重量%である]。

請求項13

約10%〜80%の全塩基価(TBN)が約450乃至550の過塩基性カルシウムアルキルアリールスルホネート清浄剤、および約10%〜60%の平均分子量450乃至3000のポリアルキレンから誘導されたアルケニルコハク酸イミド分散剤、および約1%〜10%の混合性有機液体希釈剤からなる濃縮物

請求項14

ガソリン内燃機関燃料経済を改善する方法であって、主要量の潤滑粘度の油、および燃料節約量のTBNが450より高い油溶性のアルカリ土類アルキルアリールスルホネート清浄剤と、平均分子量が450乃至3000のポリアルキレンから誘導されたアルケニルコハク酸イミド分散剤とを含む潤滑油組成物を用いて、該内燃機関を作動させることからなる方法。

請求項15

清浄剤のTBNが460乃至550である請求項14に記載の方法。

請求項16

TBNが475乃至500である請求項15に記載の方法。

請求項17

アルカリ土類金属がカルシウムである請求項14に記載の方法。

請求項18

スルホネート清浄剤が、C14-40の炭素原子を含む線状ノルマルアルファオレフィンであって、少なくとも13モル%のアルキル基がアルキル基の1位又は2位でアリール基に結合しているアルファオレフィンから誘導されたものである請求項14に記載の方法。

請求項19

ポリアルキレン基が、平均分子量が900乃至2300の範囲のポリイソブテニルである請求項14に記載の方法。

請求項20

ポリイソブテニルコハク酸イミドがエチレンカーボネートで後処理されている請求項14に記載の方法。

請求項21

さらに、摩擦調整剤を含む請求項14に記載の方法。

請求項22

摩擦調整剤がホウ酸化グリセロールモノオレエートエステルである請求項21に記載の方法。

請求項23

さらに、リン成分を含む請求項14に記載の方法。

請求項24

リン成分がジアルキルジチオリン酸塩であり、そして組成物の全リン量がリン元素で0.10質量%以下である請求項23に記載の方法。

技術分野

0001

本発明は、燃料経済性の改善を示す潤滑油組成物に関するものである。燃料を節約するこれらの潤滑剤は、全塩基価が約450より高い過塩基性スルホネート清浄剤、およびコハク酸イミド分散剤を含む少なくとも一種のその他の添加剤を用いる。

背景技術

0002

自動車製造業者が、エンジン設計によって燃料経済性を改善するべく探求し続けている一方で、エンジン油の配合における新しい試みが、燃料経済性の改善に重要な役割を果たし、その結果として自動車排気特性の改善がもたらされた。燃料効率の点で単位当りコストが相対的に低くなり、また古いエンジンとの適合性が悪くなる可能性があるために、エンジンのハードウェアの変更以上に潤滑剤を最適化することが特に好ましい。従って、従来の配合物以上により優れた燃料効率、酸化安定性揮発性、および改善された粘度指数(幾つかの特性を挙げれば)を示す新しい性能の基油原料添加剤ブレンドを利用したエンジン油や添加剤パッケージを開発することを、潤滑油配合者は継続的に強いられている。燃料効率を改善するためには、粘度の低いエンジン油を使用することが考えられるが、それはしばしば新しい添加剤パッケージ配合物を要求している。これらの新規な配合エンジン油規格書に対する要求リストの主要部には、潤滑油組成物の摩擦特性を改善する成分を用いるものがある。この場合に、添加剤の系統だった設計は重要な因子であり、添加剤/添加剤および添加剤/基油相互作用に、細心の注意を集中しなければならない。

0003

エンジン油は、荷重、速度および温度の様々な条件で可動エンジン部分間の潤滑剤として作用する。よって、各種のエンジン構成部分は、潤滑の境界層的、混合的および(弾性流体力学的支配の種々の組合せに遭遇し、そしてピストンライナピストンリング界面およびベアリング動弁装置近傍の小部分では、最大の摩擦損失が生じている。各種部分の摩擦によるエネルギー損失を低減するために、またエンジン摩耗を防止するために、エンジン油には摩擦調整剤耐摩耗剤および酸化防止剤などの添加剤が混合され、これらの添加剤は、上述した添加剤の効果を持続させる傾向がある。また、ピストン/シリンダの流体力学的摩擦を低減するためにエンジン油の粘度を低くしているが、これは、新しい境界層支配を相殺するために摩擦調整剤への依存を増大させている。よって、燃料経済性を改善するために、油粘度と各種の摩擦調整剤との相互作用に多大な努力を集中している。

0004

摩擦調整剤は何年間にもわたって、すべり止めギヤ油自動変速機液、摺動面潤滑剤および多目的トラクタ液に適用するためにある。燃料経済性向上の要望に応じて、摩擦調整剤が自動車のクランクケース潤滑剤に添加されており、幾つかは当該分野でも知られている。摩擦調整剤は一般に、境界層条件で耐摩耗添加剤および極圧添加剤がまだ反応しない温度で、一般的な耐摩耗剤または極圧剤に比べて著しく低い摩擦を示す物理吸着した極性油溶性生成物単分子薄膜または反応層を形成することによって作用する。しかしながら、もっと苛酷な条件下や混合潤滑支配下では、これらの摩擦調整剤は、耐摩耗剤または極圧剤と一緒に添加される。最も一般的な種類はジチオリン酸亜鉛(ZnDTP、またはZDDP)であり、排気を考慮して、最近の多数の配合物では濃度を低くしている。

0005

摩耗、極圧、腐食防止および摩擦調整剤、並びに清浄剤および分散剤はいずれも、金属表面に対して親和性を有する極性の添加剤であり、活性な金属表面部位競合しうる、あるいは互いに相互作用しうるものである。例えば、ZnDTPやZnDTCなどの耐摩耗剤は、金属表面に非常に接近してざらざらした箇所が反対側の表面を損傷させるのを防ぐ。これらの薄膜は、半塑性で剪断し難いので、剪断条件下ではそれら薄膜の摩擦係数は一般に高い。反対に、摩擦調整剤は一般に、その極性頭部により金属表面に結合し、ファンデルワールス力により互いに並んだ多分子膜規則的で密に充填された配列を組み立てることによって作用する。従って、耐摩耗剤ZnDTP、摩擦調整剤、分散剤または清浄剤などの界面活性剤を潤滑油に添加すると、耐摩耗剤の吸着は他の添加剤の競合する吸着によって減少する。その結果、保護膜の形成が妨害されるか、あるいは保護膜が除去されてしまい、これにより総体的に得られる動力およびエンジン効率が減少する。

0006

分散剤および清浄剤は、当該分野では広く知られていて、一般には、燃料または潤滑油の部分的な酸化から誘導されたスラッジ炭素および他の堆積物前駆体を、油中に懸濁させておくために用いられる。さらに、清浄剤は、電位的に腐食性の酸を中和して、清浄性に寄与するべく機能する。エンジン油では、これは主に、燃焼、酸化または分解の生成物によって酸を中和し、それにより腐食性摩耗の量を減らし、またピストンや他の高温表面を堆積物の無いようにすることである。しかしながら、上述したように、分散剤や清浄剤は一般に、他の機能性添加剤と悪く相互作用しうる極性分子である。例えば、過塩基性スルホネートも、酸化促進剤として作用して酸化防止性能下げることが知られている。清浄剤の過塩基性の程度が、最終潤滑油組成物の粘度への寄与以外に、燃料経済性に関する何らかの効果を持つとは考えらていなかった。

0007

従って、各成分の選択およびそれらの間の相互作用は主要な関心事であり、そしてそこから得られた有益な相互作用もしくは新たな特性や改善は、予期しえないか、あるいは期待できなかったものである。このため、当該分野で認識されていなかった二重の利益を示す添加剤が発見され、特に実際に使用されたとき、当該分野は明らかに前進するのである。燃料経済性における顕著な改善は、1987年以来(EC−I、GF−1、GF−2及びGF−3に従う潤滑剤をもって)遂行されているが、一方、提案されたGF−4油および将来的な標準規格は、更なる開発が必要であり、新たな添加剤配合物移行することが必要となる。本発明において、驚くほど著しい燃料経済性の向上の効果は清浄剤/分散剤の選択に帰するものである。

発明が解決しようとする課題

0008

本発明は、燃料経済性の改善を示す潤滑油組成物に関するものである。

課題を解決するための手段

0009

本発明は、主要量の潤滑粘度の油、全塩基価(TBN)が約450乃至550の油溶性の過塩基性アルカリ土類アルキルアリールスルホネート清浄剤、および平均分子量450乃至3000のポリアルキレンから誘導されたアルケニルコハク酸イミド分散剤を含む潤滑油組成物を提供するものである。そのような高TBNの過塩基性スルホネートを用いた配合潤滑油は、従来の過塩基性金属清浄剤と比較したときに、特に燃料経済に関して改善された特性を示す。従って、そのような潤滑剤の使用は、燃料経済を改善するために、エンジン油配合物、クランクケース配合物およびギヤ油配合物に適用することができる。

0010

従って、一つの態様は配合潤滑油組成物に関する。そのような内燃機関用の一配合物は、(a)主要量の潤滑粘度の基油、(b)全塩基価(TBN)が約450乃至550の過塩基性アルカリ土類金属、好ましくはカルシウム、アルキルアリールスルホネート清浄剤0.5%〜10%、(c)平均分子量450乃至3000のポリアルキレンから誘導されたアルケニルコハク酸イミド分散剤、好ましくはカーボネート処理したアルケニルコハク酸イミド1%〜20%、(d)摩擦調整剤0.05%〜1.0%、および(e)ジアルキルジチオリン酸亜鉛0.1%〜2.0%からなる、ただし、添加剤の%は潤滑油組成物全体の重量に基づく%である。

0011

別の観点では、本発明は、全塩基価(TBN)が約450乃至550の過塩基性アルカリ土類金属、好ましくはカルシウム、アルキルアリールスルホネート清浄剤約10%〜80%、および平均分子量450乃至3000のポリアルキレンから誘導されたアルケニルコハク酸イミド分散剤、好ましくはカーボネート処理したアルケニルコハク酸イミド約20%〜60%、および混合性有機液体希釈剤約1%〜10%からなる濃縮物に関する。

0012

全塩基価が約450より高い過塩基性スルホネート清浄剤、およびコハク酸イミド型分散剤を含む少なくとも一種の他の添加剤を用いた潤滑油組成物は、従来の清浄剤以上に改善された燃料経済性を示す。従って、本発明は、内燃機関、好ましくはガソリン内燃機関の燃料経済性を改善する方法であって、主要量の潤滑粘度の油、および燃料節約量のTBNが450より高い油溶性の過塩基性アルカリ土類アルキルアリールスルホネート清浄剤と、平均分子量450乃至3000のポリアルキレンから誘導されたアルケニルコハク酸イミド分散剤とを含む潤滑油組成物を用いて、該内燃機関を作動させることからなる方法に関する。燃料経済性を決定するそのような方法における効果は、参照油を用いたシーケンスVIB試験により測定することができる。

発明の効果

0013

数ある因子のうちでも、本発明は、高過塩基性(TBNが450より高い)のアルキルアリールスルホネート清浄剤が、低過塩基性アルキルアリールスルホネート清浄剤以上に、また他の従来の清浄剤製品と比較しても、燃料経済性の改善をもたらすという驚くべき発見に基づいている。つまり、ポリアルキレンコハク酸イミド分散剤とTBNが約450より高いスルホネート清浄剤を用いた潤滑油組成物および配合エンジン油は、燃料経済性を改善することを示している。従って、潤滑を必要とするエンジン油用途、ギヤ油用途またはその他の用途にそのような潤滑油組成物を使用することは、総体的な燃料経済性の改善をもたらすことができる。

発明を実施するための最良の形態

0014

従来の内燃機関系統に関係する問題は、燃焼生成物の潤滑油への混入である。これは、排気ガス後処理装置(例えば、触媒コンバータ粒子トラップ触媒トラップ等)を備えたエンジンにおいてより顕著であり、該エンジンではそのようなエンジン用の潤滑油が、クランクケースと動弁装置など高摩耗領域の両方で使用されている。エンジン作動中に、油中の添加剤は分解されて後処理装置入りうる、そしてこれは以前から、触媒リン被害および極圧添加剤として使用したジチオリン酸亜鉛とみられている。さらに、クランクケースで発生した吹き抜け排気ガスは一般に、動弁装置と接触するようになり、しばしば燃焼室再循環されて多量のスス生成、酸性ガスの増加、酸化の増大を招き、そしてそれゆえに添加剤パッケージの選択を大いに束縛している。しかしながら、この極度使用状況を考えても、添加剤の組合せは潤滑剤の使用可寿命を延ばし、更には燃料経済性を改善するために、ますます頼りにされてきている。

0015

これまでに内燃機関用潤滑油を節約する燃料の研究が強化されているが、それはしばしば摩擦調整剤を用いることに集中している。これらの摩擦調整剤はしばしば、新鮮な潤滑油では最初は効果的であるが、一方エンジン作動中における分解のために早急に、その効果を失う。例えば、モリブデンジチオカルバメート等のモリブデン化合物は、燃料経済性を改善するものの、経時変化によって分解されやすいことも示している。この化合物は酸化防止剤として作用する傾向にあるので、摩擦調整剤の分解は、低レベルのジチオリン酸亜鉛でより顕著である。従って、単に粘度または従来の摩擦調整剤に起因しない燃料経済性を改善する新たな試みを開発する必要がある。よって、優れた燃料経済性を有するエンジン油配合物および方法、並びに燃料経済性の改善を示す高TBNスルホネートの使用について、以下に記述する。

0016

[清浄剤]
金属清浄剤は、燃焼過程および/または潤滑剤酸化の酸性副生成物を中和し、そして石鹸効果を与えてピストンや他の高温表面を清浄に保ち、それによりスラッジを防止するために、エンジン油用潤滑油配合物に広く用いられている。多数の異なる界面活性剤の種類が、種々の潤滑剤清浄剤を製造するのに使用されている。金属清浄剤の一般的な例としては次のものが挙げられる:スルホネート、アルキルフェネート硫化アルキルフェネートカルボキシレートサリチレートホスホネート、およびホスフィネート。市販品では、一般に中性または過塩基性である。過塩基性金属スルホネートは一般に、炭化水素スルホン酸金属酸化物又は水酸化物(例えば、酸化カルシウムまたは水酸化カルシウム)、およびキシレンメタノールおよび水などの促進剤の混合物炭酸塩化することにより製造される。例えば過塩基性カルシウムスルホネートを製造するには、炭酸塩化に際して、酸化又は水酸化カルシウムをガス状二酸化炭素と反応させて炭酸カルシウムを生成させる。スルホン酸を過剰のCaOまたはCa(OH)で中和し、スルホネートを生成させる。カルシウムスルホネートを過塩基化するための公知の先行技術方法は一般に、TBNが300乃至400mgKOH/gmかそれ以上の高アルカリ性前駆体を生成させる。市販のTBN約400までの高TBNスルホネートは、配合者が酸中和添加剤をより少量で使用することを可能にする一方で、同等の清浄性を維持し、これにより燃焼過程で高酸生成条件下でエンジンを充分に保護している。しかしながら、高TBNスルホネート製造の難しさは、何らかの公知の付加的な利益もなく、結果として許容できない水分許容度、不充分な混合性および高い清浄剤粘度に関係していて、配合者にこれら高TBN清浄剤を用いた潤滑油組成物を実験および/または開発することを止めさせている。本発明により、非常に高TBNのスルホネート(TBNが450より高い)をコハク酸イミド分散剤と一緒に、例えば自動車のクランクケース用エンジン油配合物に用いることが、燃料経済性の改善をもたらすことができることが明らかになった。

0017

TBNが450より高いスルホネート清浄剤は、炭素原子数8〜200の炭化水素スルホン酸アルカリ土類金属塩であることが好ましい。「スルホネート」は、石油製品から誘導されたスルホン酸の塩を包含することが好ましい。そのような酸は当該分野ではよく知られている。石油製品を硫酸または三酸化硫黄で処理することにより得ることができる。こうして得られた酸は石油スルホン酸として、またその塩は石油スルホネートまたは天然スルホネートとして知られる。スルホン化される石油製品の大部分は、油溶化炭化水素基を含み、本発明に使用することができる。

0018

また、「スルホネート」の意味には、合成アルキルアリール化合物のスルホン酸の塩も含まれ、これらも往々にして好ましいものである。これらの酸もまた、アルキルアリール化合物を硫酸または三酸化硫黄で処理することにより合成される。アリール環の少なくとも1個のアルキル置換基は、上記のように油溶化基である。こうして得られた酸は合成アルキルアリールスルホン酸として、またその塩はアルキルアリールスルホネートとして知られる。アルキルが直鎖であるスルホネートは、公知の線状アルキルアリールスルホネートである。一般にこれらは、エチレンオリゴマー化してC14〜C40の炭化水素とした後、アリール炭化水素のフリーデルクラフツ反応によりアルキル化することにより得られる。分枝鎖オレフィンは、例えばプロピレンをオリゴマー化してC15〜C42の炭化水素、特にはプロピレンの四元共重合体二量化したC24オレフィンにすることから、あるいは芳香族炭化水素をアルキル化してノルマルアルファオレフィンにすることから得ることができる。好ましいアリール基フェニル基および置換フェニル基であり、好ましくはトリルキシリル、特にはオルソキシリル、エチルフェニルおよびクメニル等である。

0019

スルホン化により得られた酸を、塩基性反応性アルカリ又はアルカリ土類金属化合物で中和することにより金属塩に変換して、I族又はII族金属スルホネートを生成させる。一般に、酸はアルカリ金属塩基で中和する。アルカリ土類金属塩はアルカリ金属塩から複分解することにより得られる。あるいは、スルホン酸をアルカリ土類金属塩基で直接に中和することもできる。これにより、スルホネートは過塩基化されるが、そのような過塩基性物質およびそのような物質の製造方法は当該分野の熟練者には知られている。例えば、米国特許第3496105号(ルスール)、1970年2月17日発行、特に第3及び4欄を参照されたい。

0020

スルホネートは、潤滑油組成物中ではアルカリ土類金属塩またはそれらの混合物の形で存在する。アルカリ土類金属としては、マグネシウム、カルシウムおよびバリウムが挙げられ、そのうちでもカルシウムが好ましい。過剰のアルカリ金属塩基と二酸化炭素または他の適当な塩基原料を用いて、スルホネートを過アルカリ化する。不適当な過塩基化は、高粘性のスルホネートまたは所望より低い過塩基性を招くことになるので、しばしばこれは、過塩基化工程に特別の注意を払いながら、促進剤を用いて、または用いることなく連続的または段階的に添加される。油溶性の過塩基性アルカリ土類アルキルアリールスルホネート清浄剤は、適当な条件下では過塩基性であり、実質的にはTBNが約450乃至550の清浄剤、好ましくはTBNが475より高い、より好ましくはTBNが約480乃至500の清浄剤が生じる。TBNはASTMD2896に従って測定することができる。過塩基化に特に好ましいのは、二酸化炭素と酸化カルシウムおよび/または水酸化カルシウムであり、過塩基性カルシウムスルホネートが生成する。さらに、これらの好ましいTBN範囲では、スルホネート清浄剤の100℃動粘度は500cSt以下であることが好ましく、好ましくは350cSt以下、好ましくは250cSt以下、より好ましくは200cSt以下、そして更に好ましくは180cSt以下である。

0021

しかしながら、特に好ましいのは、その広い入手可能性ゆえに、石油スルホン酸の塩、特には、潤滑油留分などの各種の炭化水素留分、および炭化水素油を選択した溶剤で抽出して得られた芳香族に富んだ抽出物をスルホン化して得られた石油スルホン酸の塩であり、その抽出物は所望により、スルホン化前にアルキル化触媒を用いてオレフィンまたは塩化アルキルと反応させてアルキル化してもよい。また、ベンゼンジスルホン酸などの有機ポリスルホン酸の塩等であり、これはアルキル化してあっても、していなくてもよい。

0022

本発明で使用するのに好ましい塩は、アルキル基(類)が炭素原子を少なくとも約8個、例えば炭素原子を約8〜40個を含むアルキル化芳香族スルホン酸の塩である。スルホネートの出発物質として好ましい別のグループは、脂肪族置換基(類)が全部で炭素原子を少なくとも約12個含む脂肪族置換環状スルホン酸であり、例えば、脂肪族基(類)が全部で炭素原子を少なくとも約12個含むアルキルアリールスルホン酸、アルキル脂環式スルホン酸、アルキル複素環式スルホン酸および脂肪族スルホン酸である。これら油溶性スルホン酸の特定の例としては、石油スルホン酸、ペトロラタムスルホン酸、モノ及びポリワックス置換ナフタレンスルホン酸、置換スルホン酸、例えばセチルベンゼンスルホン酸およびセチルフェニルスルホン酸等、脂肪族スルホン酸、例えばパラフィンワックススルホン酸、ヒドロキシ置換パラフィンワックススルホン酸等、脂環式スルホン酸、石油ナフタレンスルホン酸、セチルシクロペンチルスルホン酸、およびモノ及びポリワックス置換シクロヘキシルスルホン酸等を挙げることができる。「石油スルホン酸」は、石油製品から直接的に誘導される全ての天然スルホン酸を包含することを意味する。本発明の組成物での使用に適した代表的なII族金属スルホネートとしては、以下に例示する金属スルホネートを挙げることができる:カルシウムホワイトオイルベンゼンスルホネート、バリウムホワイトオイルベンゼンスルホネート、マグネシウムホワイトオイルベンゼンスルホネート、カルシウムジポリプロペンベンゼンスルホネート、バリウムジポリプロペンベンゼンスルホネート、マグネシウムジポリプロペンベンゼンスルホネート、カルシウムマホガニー石油スルホネート、バリウムマホガニー石油スルホネート、マグネシウムマホガニー石油スルホネート、カルシウムトリアコンチルスルホネート、マグネシウムトリアコンチルスルホネート、カルシウムラウリルスルホネート、バリウムラウリルスルホネート、マグネシウムラウリルスルホネート等。

0023

合成アルキルアリールスルホネートもまた好ましい。特に有用なものは、アルキル基の1位又は2位に結合したアリールスルホネートを有する合成アルキルアリールスルホネートであり、好ましくは5モル%より多く、より好ましくは13モル%より多く、そして更に好ましくは20モル%より多く有するものである、というのはこれらは、良好な混合性および溶解性を示す一方で、これらの過塩基性レベルでは皮膜を形成しないからである。線状のモノアルキルスルホネートも好ましい。アルキル鎖が炭素原子を14〜40個の間で含むことが好ましく、そしてアルキルアリールスルホネートがC14−C40のノルマルアルファオレフィンから誘導されることがより好ましく、特にはC20−C28またはC20−C24のノルマルアルファオレフィンから誘導される。

0024

高TBNスルホネートの混合物も用いることができ、天然スルホネートと合成スルホネートの混合物、合成スルホネートの混合物、例えばモノアルキルとジアルキルスルホネートの混合物、モノアルキルとポリアルキルスルホネートの混合物、またはジアルキルとポリアルキルスルホネートの混合物が挙げられる。

0025

過塩基性アルカリ土類金属アルキルアリールスルホネート清浄剤は通常、潤滑油組成物の0.5乃至10重量%を占め、約0.8乃至5重量%を占めることが好ましい。

0026

[実施例A]
アリール基への1又は2アルキル結合を29モル%有するTBN500のアルキルアリールスルホネートの製造:連続反応器内で、ベンゼンとノルマルアルファオレフィンから誘導したC20−C24の線状オレフィンとを、弗化水素の存在下で反応させてこの生成物を生成させた。アルキレート蒸留し、そして同時にそのアルキレート流中で、酸素二酸化硫黄の混合物を酸化バナジウムを含む触媒炉に通すことにより生成した三酸化硫黄(SO3)を用いて、スルホン化を行う。スルホン化反応を、温度50−60℃の間、三酸化硫黄の流速76グラム/時、SO3:アルキレートのモル比0.8:1乃至1.2:1で、SO3を4容量%に希釈するのにベクターガスとして窒素を用いて行う。10%の100N油で希釈したのち熱処理して窒素を通気することにより、残留硫酸を取り除く。キシレンとメタノールキャリヤ中の水和石灰を過剰に加えることにより、この生成物を過塩基化し、そして温度20〜55℃で二酸化炭素を加えることにより炭酸塩化する。任意に、遠心分離に先立ってメタノール/水の除去中に水を79℃で導入する。高過塩基性の1又は2アルキル結合したアルキルアリールスルホネートの製造法については、PCT第WO 00/77015号公報に開示され、その開示内容も参照として本明細書の記載とする。得られた生成物は、全Ca18.8%、100℃粘度172cStを有するTBN502(ASTMD2896)のアルキルベンゼンスルホネートとみなされる。

0027

[実施例A1]
アリール基への1又は2アルキル結合を29モル%有するTBN500のアルキルアリールスルホネートの製造:実施例1と同じ操作を行うが、過塩基性については、遠心分離に先立ってメタノール/水の除去中に続く水の添加をしない。

0028

[実施例B]
TBN500のアルキルベンゼンスルホネートの製造:油中の線状モノアルキル(名目はC18-20アルキル)ベンゼンスルホン酸(酸87%)19.71グラムを、1リットルの四ツ口反応フラスコに入れた。そのような酸は、ミックス・オイルS.P.A.社からミックスオイル1245として市販されている。これに、100Pペール油17.0グラム、ウィトコ社からペントロネートC-50Nとして市販されている線状ジアルキル(名目はドデシル)ベンゼンスルホネート52.66グラム、n−ヘプタン182.0グラム、メタノール18.96グラム、および水酸化カルシウム2.40グラムをフラスコに加えた。混合物を50℃で撹拌しながら1時間加熱する。次に、CaO42.64グラム、Ca(OH)237.56グラムを添加し、反応温度を60℃に上げることにより、混合物を過塩基化する。直ちに炭酸塩化の前に水3.6グラムを加える。混合物にCO2を188ml/分で135分間吹込むことにより、炭酸塩化を行う。粗生成物濾過し、そして溶媒ストリッピングする前に、粗生成物200mlに100Pペール油15グラムを加える。線状アルキルベンゼンスルホネートのTBNは、TBN507である。

0029

[実施例C]
TBN500の合成及び天然スルホネートの製造:ジアルキルベンゼンスルホネート(合成カルシウムスルホネート)18.67重量部を含むブレンド、石油スルホネート6.9部、ヘプタン91部、メタノール8部、塩化カルシウム0.1部、酸化カルシウム10.82部、および水酸化カルシウム9.53部を、500mlの四ツ口反応フラスコ内で還流させ(60℃)、そして10分間反応させる。直ちに炭酸塩化の前に水0.9部を加える。CO2を速度40ml/分で導入し、135分後に止める。生成物を濾過し、そして低分子量ペール油4.3部を加える。この合成及び天然スルホネートは、TBN505、100℃動粘度334cSt、全Ca18%で、カルシウムスルホネート19.3%を含むことに特徴がある。

0030

[実施例D]
TBN500+の合成モノ/ジアルキルスルホネートの製造:合成モノアルキルベンゼンスルホン酸(エニモント社からMAPSとして入手できるC16-26アルキル)7.55グラム、合成ジアルキルベンゼンスルホネート(C10-18アルキル)15.44グラム、ペール油5.89グラム、n−ヘプタン91.0グラム、メタノール7.9グラム、および塩化カルシウム0.086グラムを含むブレンドを生成させる。混合物を、500mL(ミリリットル)の反応フラスコ内で15分間加熱して還流する。水酸化カルシウム0.88グラムを加え、そして50℃で30分間混合して混合物を中和する。中和後に、酸化カルシウム12.79グラム、および水酸化カルシウム11.27グラムを加えて混合物を過塩基化し、そして反応温度を60℃に上げる。この時点で、水1.10mLを加え、そして直ちに二酸化炭素を速度40mL/分で135分間導入する。生成物を濾過し、溶媒をストリッピングする。得られた合成モノ/ジアルキルスルホネートは、TBN値509/513に特徴がある。

0031

[実施例E]
TBN500+の混合合成スルホネートの製造:合成モノアルキルベンゼンスルホン酸(エニモント社からMAPSとして入手したC16-26アルキル)45.30グラム、合成ジアルキルベンゼンスルホネート(C10-18アルキル)92.64グラム、ペール油35.34グラム、n−ヘプタン798.00mL、メタノール47.40グラム、および塩化カルシウム0.516グラムを含むブレンドを生成させる。混合物を、3リットルの反応フラスコ内で15分間加熱して還流する。水酸化カルシウム5.28グラムを加え、そして50℃で30分間混合して混合物を中和する。中和後に、酸化カルシウム76.74グラム、および水酸化カルシウム67.62グラムを加えて混合物を過塩基化し、そして反応温度を60℃に上げる。この時点で、水6.6mLを加え、そして直ちに二酸化炭素を速度250mL/分で135分間導入する。生成物を濾過し、溶媒をストリッピングする。得られた合成スルホネートは、TBN値528およびカルシウム20.9%に特徴がある。

0032

[実施例F]
TBN500+の混合合成スルホネートの製造:合成モノアルキルベンゼンスルホン酸(エニモント社からMAPSとして入手したC16-26アルキル)3.1ポンド(lbs)、合成ジアルキルベンゼンスルホネート(C10-18アルキル)8.7ポンド(lbs)、ヘプタン38ポンド(lbs)、100Pペール油2.2ポンド(lbs)、メチルアルコール5.6ポンド(lbs)、および水酸化カルシウム0.56ポンド(lb)を含むブレンドを生成させる。この混合物を10ガロン反応器内で還流し(57℃)、55〜60℃で1時間撹拌してスルホン酸を中和する。中和後に、反応混合物を40℃まで冷却する。酸化カルシウム6.4ポンド(lbs)、水酸化カルシウム5.6ポンド(lbs)、塩化カルシウム25グラム、および水0.5ポンド(lb)を加えて混合物を過塩基化する。反応混合物の温度を60℃に上げ、そして二酸化炭素全部でCO26.6ポンド(lbs)を3時間に渡って一定速度で加える。得られた粗生成物を40℃で濾過し、次いで溶媒を120℃でストリッピングする。ストリッピングした濾液は、TBNがTBN575を有するとみなされ、これに100Pペール油を適量加えて、TBN値500、100℃動粘度82cStに特徴がある合成スルホネートを得る。

0033

[分散剤]
本発明の組成物に用いられる分散剤は、アルケニルコハク酸イミド、アルケニルコハク酸無水物およびアルケニルコハク酸エステルなどの無灰分散剤、またはこのような分散剤の混合物である。

0034

無灰分散剤は、大まかには数グループに分類される。そのようなグループの一つは、アミンアミドイミンイミドおよびヒドロキシルカルボキシル等を含む一以上の付加的極性機能を持つカルボン酸エステルを含む共重合体に関する。これらの生成物は、長鎖アルキルアクリレート又はメタクリレートと上記機能の単量体とを共重合させることにより製造することができる。このようなグループとしては、アルキルメタクリレートビニルピロリジノン共重合体、およびアルキルメタクリレート−ジアルキルアミノエチルメタクリレート共重合体等を挙げることができる。さらに、高分子量のアミドおよびポリアミド、またはエステルおよびポリエステル、例えばテトラエチレンペンタアミン、ポリビニルポリステアレート、および他のポリステアラミドも用いることができる。好ましい分散剤は、N−置換長鎖アルケニルコハク酸イミドである。

0035

モノ及びビスアルケニルコハク酸イミドは通常、アルケニルコハク酸又は無水物とアルキレンポリアミンの反応から誘導される。これらの化合物は一般に、下記式を有すると考えられる。

0036

0037

ただし、R1は、実質的に分子量が約400乃至約3000の炭化水素基、すなわちR1は、炭素原子約30〜約200個を含む炭化水素基、好ましくはアルケニル基であり;Alkは、炭素原子数2〜10、好ましくは2〜6のアルキレン基であり;R2、R3およびR4は、C1−C4のアルキル又はアルコキシまたは水素から選ばれ、好ましくは水素であり;そしてxは、0〜10、好ましくは0〜3の整数である。アルキレン又はアルケニレンコハク酸又は無水物とアルキレンポリアミンとの実際の反応生成物は、コハク酸およびコハク酸イミドを含む化合物の混合物からなる。しかしながら、この反応生成物を上記式のコハク酸イミドとして表すことは慣例である、というのはこれは混合物の主成分だからである。生成するモノアルケニルコハク酸イミドとビスアルケニルコハク酸イミドは、ポリアミンとコハク酸基の充填モル比、特に使用したポリアミンに依存しうる。ポリアミンとコハク酸基の充填モル比が約1:1では、主としてモノアルケニルコハク酸イミドが生成する。ポリアミンとコハク酸基の充填モル比が約1:2では、主としてビスアルケニルコハク酸イミドが生成する。

0038

これらのN−置換アルケニルコハク酸イミドは、無水マレイン酸オレフィン炭化水素を反応させた後、得られたアルケニルコハク酸無水物とアルキレンポリアミンを反応させることにより製造することができる。上記式のR1基、すなわちアルケニル基は、炭素原子2〜5個を含むオレフィン単量体から合成した重合体から誘導することが好ましい。よって、アルケニル基は、炭素原子2〜5個を含むオレフィン単量体を重合させて、分子量が約450乃至3000の炭化水素を生成させることにより得られる。そのようなオレフィン単量体としては、エチレン、プロピレン、1−ブテン、2−ブテン、イソブテン、およびそれらの混合物が例示される。

0039

好ましい観点では、アルケニルコハク酸イミドは、ポリアルキレンコハク酸無水物とアルキレンポリアミンを反応させることにより製造することができる。ポリアルキレンコハク酸無水物は、ポリアルキレン(好ましくは、ポリイソブテン)と無水マレイン酸の反応生成物である。そのようなポリアルキレンコハク酸無水物の合成には、従来のポリイソブテン、または高メチルビニリデンポリイソブテンを使用することができる。この合成には、熱的方法塩素化法、遊離基法、酸触媒法、あるいはその他任意の方法を使用することができる。好適なポリアルキレンコハク酸無水物の例としては、米国特許第3361673号に記載の熱的PIBSA(ポリイソブテニルコハク酸無水物)、米国特許第3172892号に記載の塩素化PIBSA、米国特許第3912764号に記載の熱的及び塩素化PIBSAの混合物、米国特許第4234435号に記載の高コハク酸比PIBSA、米国特許第5112507号及び第5175225号に記載のポリPIBSA、米国特許第5565528号及び第5616668号に記載の高コハク酸比ポリPIBSA、米国特許第5286799号、第5319030号及び第5625004号に記載の遊離基PIBSA、米国特許第4152499号、第5137978号及び第5137980号に記載の高メチルビニリデンポリブテンから合成したPIBSA、欧州特許出願公開第EP355895号に記載の高メチルビニリデンポリブテンから合成した高コハク酸比PIBSA、米国特許第5792729号に記載の三元共重合体PIBSA、米国特許第5777025号及び欧州特許出願公開第EP542380号に記載のスルホン酸PIBSA、および米国特許第5523417号及び欧州特許出願公開第EP602863号に記載の精製PIBSAがある。これらの各文書の開示内容は全て参照として本明細書の記載とする。ポリアルキレンコハク酸無水物は、ポリイソブテニルコハク酸無水物であることが好ましい。好ましい一態様では、ポリアルキレンコハク酸無水物は、数平均分子量が少なくとも450、より好ましくは少なくとも900乃至約3000、そして更に好ましくは少なくとも約900乃至約2300であるポリイソブテニルコハク酸無水物である。

0040

別の好ましい態様では、ポリアルキレンコハク酸無水物の混合物が用いられる。この態様では、混合物は低分子量のポリアルキレンコハク酸無水物成分と、高分子量のポリアルキレンコハク酸無水物成分とからなることが好ましい。より好ましくは、低分子量成分の数平均分子量は約450乃至1000未満であり、高分子量成分の数平均分子量は1000乃至約3000である。更に好ましくは、低分子量成分も高分子量成分も共にポリイソブテニルコハク酸無水物である。あるいは、様々な分子量のポリアルキレンコハク酸無水物成分を、上記に明らかにした他の上記分散剤の混合物と同様に、分散剤として組み合わせることができる。

0041

また、ポリアルキレンコハク酸無水物は、清浄剤混合物の安定性および混合性を改善すると予測される清浄剤と組み合わせることができる。清浄剤と一緒に用いるとき、ポリアルキレンコハク酸無水物は、清浄剤混合物の0.5乃至5重量%、好ましくは約1.5乃至4重量%を占めることができる。

0042

コハク酸イミドを製造するのに使用される好ましいポリアルキレンアミンは、下記式を有する:

0043

0044

ただし、zは0〜10の整数であり、そしてAlk、R2、R3およびR4は前に定義した通りである。

0045

アルキレンアミンとしては主に、メチレンアミン、エチレンアミンブチレンアミン、プロピレンアミン、ペンチレンアミン、ヘキシレンアミン、ヘプチレンアミン、オクチレンアミン、その他のポリメチレンアミン、またピペラジンおよびアミノアルキル置換ピペラジンのようなアミンの環状物及び高次類似物も挙げることができる。それらの例示としては、エチレンジアミントリエチレンテトラアミンプロピレンジアミンデカメチルジアミンオクタメチレンジアミン、ジヘプタメチレントリアミントリプロピレンテトラアミン、テトラエチレンペンタアミン、トリメチレンジアミン、ペンタエチレンヘキサアミン、ジトリメチレントリアミン、2−ヘプチル−3−(2−アミノプロピル)−イミダゾリン、4−メチルイミダゾリン、N,N−ジメチル−1,3−プロパンジアミン、1,3−ビス(2−アミノエチル)イミダゾリン、1−(2−アミノプロピル)−ピペラジン、1,4−ビス(2−アミノエチル)ピペラジン、および2−メチル−1−(2−アミノブチル)ピペラジンがある。このような高次類似物は、二以上の上記アルキレンアミンを縮合することにより得られ、同様に使用できる。

0046

エチレンアミンは特に有用である。それらは、化学技術大辞典(Encyclopedia of Chemical Technology)、カーク・オスマー(Kirk-Othmer)著、第5巻、p.898−905の「エチレンアミン」の項目インターサイエンス出版ニューヨーク、1950年)に詳細に記載されている。「エチレンアミン」は、包括的な意味で使用され、その大部分が下記構造に当てはまるポリアミンの部類を意味する。ただし、aは1〜10の整数である。

0047

H2N(CH2CH2NH)aH

0048

従って、その例としては、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラアミン、テトラエチレンペンタアミン、およびペンタエチレンヘキサアミン等を挙げることができる。

0049

本発明のアルケニルコハク酸イミド組成物に使用される個々のアルケニルコハク酸イミドは、米国特許第2992708号、第3018250号、第3018291号、第3024237号、第3100673号、第3172892号、第3202678号、第3219666号、第3272746号、第3361673号、第3381022号、第3912764号、第4234435号、第4612132号、第4747965号、第5112507号、第5241003号、第5266186号、第5286799号、第5319030号、第5334321号、第5356552号、第5716912号に開示されているような従来法により製造することができ、その開示内容も全てあらゆる目的で参照技術として本明細書の記載とする。

0050

また、「アルケニルコハク酸イミド」には、米国特許第4612132号(ウォレンベルグ、外)及び第4746446号(ウォレンベルグ、外)等に開示のホウ酸またはエチレンカーボネートを含む後処理法、並びにその他の後処理法で後処理したコハク酸イミドが含まれ、そしてその各開示内容も全て本明細書の記載とする。カーボネート処理したアルケニルコハク酸イミドは、分子量が450乃至3000、好ましくは900乃至2500、より好ましくは1300乃至2300、そして好ましくは2000乃至2400のポリブテン、並びにこれら分子量の混合物から誘導されたポリブテンコハク酸イミドであることが好ましい。米国特許第5716912号に教示されているように、反応性条件下で、ポリブテンコハク酸誘導体不飽和酸性試薬とオレフィンの不飽和酸性試薬共重合体およびポリアミンを反応させることより製造することが好ましく、その内容も参照として本明細書の記載とする。

0051

アルケニルコハク酸イミド成分は、潤滑剤組成物の重量の1乃至20重量%、好ましくは2乃至12重量%、そしてより好ましくは4乃至8重量%を占めることが好ましい。

0052

[潤滑油および潤滑油組成物]
本発明の潤滑油組成物は、高TBNスルホネート清浄剤および分散剤と潤滑粘度の油(基油)とを単にブレンドまたは混合することにより、都合よく製造することができる。また、本発明の化合物は、所望の濃度の添加剤を含む潤滑油組成物のブレンドを容易にするために、濃縮物またはパッケージとして、その他各種の添加剤と一緒に適当な比率プレブレンドすることもできる。本発明の化合物は、所望の完成潤滑油において燃料経済性の改善をもたらし、油に可溶性で、かつ他の添加剤と混合性がある濃度で、基油とブレンドされる。この場合の混合性は一般に、本化合物が、適用可能な処理速度で油溶性であるのと同じように、他の添加剤も標準条件下で沈殿させないことを意味する。潤滑油配合物のある化合物に対する好適な油溶性/混合性の範囲は、当該分野の一般的な熟練者によって日常溶解度試験法を用いて決定することができる。例えば、周囲条件(約20℃−25℃)での配合潤滑油組成物からの沈殿は、油組成物からの実際の沈殿、あるいは不溶性ワックス状粒子の形成の証拠となる「濁った」溶液の配合によって測定することができる。

0053

本発明の潤滑油組成物に使用される潤滑油または基油は一般に、特定の使用、例えばエンジン油、ギヤ油、工業油、切削油等のために製造されたものである。例えば、クランクケースエンジン油として所望されるとき、基油は一般には、ガソリンエンジンおよび船舶用エンジンを含むディーゼルエンジンなどの内燃機関のクランクケースでの使用に適した粘度の鉱油または合成油である。クランクケース潤滑油は通常、0°F粘度約1300cStから210°F(99℃)粘度約24cStを示す。潤滑油は合成または天然の原料から誘導することができる。天然油としては、動物油および植物油(例えば、ヒマシ油ラード油)、並びに鉱油を挙げることができる。本発明で基油として使用される鉱油としては、パラフィン系、ナフテン系、および溶剤処理油、水素化処理油またはフィッシャートロプシュ法による油を含む、通常潤滑油組成物に使用されるその他の油を挙げることができる。本発明に使用される好ましい潤滑粘度の油は、粘度指数が少なくとも95、好ましくは少なくとも100を示すべきである。好ましいものはAPI分類油I種乃至IV種から選ばれ、好ましくはII、III及びIV種、またはそれらとI種とを任意にブレンドした混合物から選ばれる。合成油としては、炭化水素合成油と合成エステルの両方を挙げることができる。使用できる合成炭化水素油としては、適正な粘度を有するアルファオレフィンの液体重合体が挙げられる。特に有用なものはC6〜C12のアルファオレフィンの水素化液体オリゴマー、例えば1−デセン三量体である。同様に、適正な粘度のアルキルベンゼン、例えばジドデシルベンゼンも使用することができる。使用できる合成エステルとしては、モノカルボン酸およびポリカルボン酸と、モノヒドロキシアルカノールおよびポリオールとのエステルが挙げられる。代表的な例としては、ジドデシルアジペートペンタエリトリトールテトラカプロエート、ジ−2−エチルヘキシルアジペート、およびジラウリルセバケート等がある。モノ及びジカルボン酸とモノ及びジヒドロキシアルカノールとの混合物から合成された複合エステルも使用することができる。各種の鉱油、合成油および鉱油と合成油のブレンドも、例えば、ある一定の粘度または粘度範囲を与えるので有利である。一般に、エンジン油用の基油または基油混合物は、本発明に係る燃料経済添加剤組成物を含めて種々の添加剤を含む最終潤滑油の100℃粘度が、4乃至22センチストークス、好ましくは10乃至17センチストークス、そしてより好ましくは13乃至17センチストークスとなるように、予備選択される。

0054

一般に潤滑油組成物は、特別な最終用途や使用した基油に応じて、完成潤滑油組成物(配合潤滑油組成物)に、様々な特性を付与するべく望まれた各種の混合性添加剤を含有するものである。そのような添加剤としては、補助的な中性及び塩基性清浄剤、例えば天然及び過塩基性有機スルホネート、および中性及び過塩基性フェネート及びサリチレート、分散剤、および/または無灰分散剤を挙げることができる。また、その他の添加剤、例えば耐摩耗剤、摩擦調整剤、さび止め添加剤、消泡剤流動点降下剤、酸化防止剤、分散剤型VI向上剤を含むいわゆる粘度指数(VI)向上剤、および前述したようにその他腐食防止剤、または摩耗防止剤

0055

少量の耐摩耗剤、金属二炭化水素ジチオリン酸塩を潤滑油組成物に添加することが好ましい。金属は亜鉛であることが好ましい。二炭化水素ジチオリン酸塩は、0.1乃至2.0質量%の量で存在することができるが、一般には低リン量組成物が望ましく、よって二炭化水素ジチオリン酸塩は0.25乃至1.2、好ましくは0.5乃至0.7質量%で潤滑油組成物に用いられる。好ましくは、ジアルキルジチオリン酸亜鉛(ZDDP)が使用される。これは、潤滑油組成物に酸化防止および耐摩耗特性をもたらす。そのような化合物は、公知技術に従って、まず普通はアルコールまたはフェノールとP2S5の反応によりジチオリン酸を生成させた後、ジチオリン酸を適当な亜鉛化合物で中和することにより製造することができる。第一級第二級アルコールの混合物を含めてアルコールの混合物も使用できる。そのようなアルコールの例としては、このリストに限定されるものではないが、次のものを挙げることができる:イソプロパノール、イソ−オクタノール、イソ−ブタノールメチルイソブチルカルビノール(4−メチル−1−ペンタン−2−オール)、1−ペンタノール、2−メチルブタノール、および2−メチル−1−プロパノール。炭化水素基は、第一級、第二級またはそれらの混合物等であってよく、化合物は、第一級又は第二級炭素原子から誘導された第一級及び/又は第二級アルキル基を含んでいてもよい。さらに、第二級アルキル基を用いるときには、好ましくは少なくとも50、より好ましくは75、最も好ましくは85乃至100質量%であり、一例は、第二級アルキル基が85質量%で第一級アルキル基が15質量%であるZDDPであり、例えば、ブタン−2−オール85質量%とイソ−オクタノール15質量%から製造されたZDDPである。更に好ましいのは、sec−ブタノールとメチルイソブチルカルビノールから誘導されたZDDPであり、そして最も好ましいのはsec−ブタノールが75モル%のものである。

0056

金属二炭化水素ジチオリン酸塩は、潤滑油組成物のリン量の全部ではないとしても大部分を供給するものである。その量は潤滑油組成物において、リン元素の質量%で表して0.10以下、好ましくは0.08以下、そしてより好ましくは0.075以下、例えば0.025乃至0.07の範囲のリン量を与える量である。

0057

酸化防止剤は、基油原料がサービス中劣化する傾向を低減するものであり、金属表面のスラッジやワニス状堆積物などの酸化生成物および粘度増加がその劣化の証拠となる。そのような酸化防止剤としては、ヒンダードフェノール、好ましくはC5〜C12のアルキル側鎖を持つアルキルフェノールチオエステルのアルカリ土類金属塩、カルシウムノニルフェノールスルフィド、油溶性無灰フェネート及び硫化フェネート、リン硫化又は硫化炭化水素アルキル置換ジフェニルアミン、アルキル置換フェニル及びナフチルアミン、リンエステル、金属チオカルバメート、無灰チオカルバメートを挙げることができ、好ましくはジチオカルバメートであり、メチレンビスジブチルジチオカルバメート)、エチレンビス(ジブチルジチオカルバメート)、およびイソブチルジスルフィド−2,2’−ビス(ジブチルジチオカルバメート)である。好ましいフェノール型酸防止剤は以下からなる群より選ばれる:4,4’−メチレン−ビス(2,6−ジ−tert−ブチルフェノール)、4,4’−ビス(2,6−ジ−tert−ブチルフェノール)、4,4’−ビス(2−メチル−6−tert−ブチルフェノール)、2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノール)、4,4’−ブチレンビス(3−メチル−6−tert−ブチルフェノール)、4,4’−イソプロピレンビス(2,6−ジ−tert−ブチルフェノール)、2,2’−メチレンビス(4−メチル−6−ノニルフェノール)、2,2’−イソブチレンビス(4,6−ジメチルフェノール)、2,2’−メチレンビス(4−メチル−6−シクロヘキシルフェノール)、2,6−ジ−tert−ブチル−4−メチルフェノール、2,6−ジ−tert−ブチル−4−エチルフェノール、2,4−ジメチル−6−tert−ブチルフェノール、2,6−ジ−tert−4−(N,N’−ジメチルアミノメチルフェノール)、4,4’−チオビス(2−メチル−6−tert−ブチルフェノール)、2,2’−チオビス(4−メチル−6−tert−ブチルフェノール)、ビス(3−メチル−4−ヒドロキシ−5−tert−ブチルベンジル)−スルフィド、およびビス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)−スルフィド。ジフェニルアミン型酸化防止剤アルキル化ジフェニルアミン、フェニル−アルファ−ナフチルアミン、およびアルキル化アルファ−ナフチルアミン。

0058

ある種の潤滑油配合物では、高TBNスルホネート清浄剤とコハク酸イミド分散剤を含む潤滑剤組成物の燃料経済の量が所望されたよりも低く、そのような場合に摩擦調整剤を用いてもよい。得られた潤滑油組成物の燃料経済を測定するには、各種の方法を使用することができる。好ましい一観点では、シーケンスVIB試験を用いて、種々の速度/荷重/温度条件で測定し、基準の油との比較を行う。そのような試験は、ILSAC GF−3およびSLに関係するエネルギー保護のために明示されている。潤滑油組成物は、最小評価よりも少なくとも10%、より好ましくは少なくとも20%越えることが好ましい。これらの大きな改善を遂行するために、場合によっては摩擦調整剤が必要になる。

0059

そのような摩擦調整剤は、油溶性の有機摩擦調整剤であることが好ましく、潤滑油組成物中に、潤滑油組成物の約0.02乃至2.0重量%の量で混合される。好ましくは0.05乃至1.0、より好ましくは0.1乃至0.5重量%の摩擦調整剤が使用される。

0060

摩擦調整剤(あるいは摩擦緩和剤)としては、脂肪族アミン、またはエトキシル化脂肪族アミン、脂肪族脂肪酸アミド、脂肪族カルボン酸、ポリオールの脂肪族カルボン酸エステル、例えばグリセロールオレエートで例示される脂肪酸グリセロールエステルグリセロール脂肪酸モノエステルホウ酸エステル、脂肪族カルボン酸エステル−アミド、脂肪族ホスホン酸塩、脂肪族リン酸塩、脂肪族チオホスホン酸塩、脂肪族チオリン酸塩等の化合物を挙げることができるが、ただし、化合物を好適に油溶性にするために、脂肪族基は通常は炭素原子約8個以上を含む。

0061

好適な摩擦調整剤の代表的な例は、脂肪酸エステル及びアミドを開示する米国特許第3933659号;二量化脂肪酸のグリセロールエステルを開示する米国特許第4105571号;カルボン酸及び無水物とアルカノールのエステルを開示する米国特許第4702859号;グリセロール、脂肪酸およびホウ酸からなるエステルを含み、好ましくはホウ酸グリセロールモノオレエートであり、そして該エステルが、カルボン酸とグリセロールの両者を単独または組合せで用いたホウ酸エステルを平均してホウ酸残留物の単位モル当りで、炭素原子数8〜24の飽和又は不飽和アルキル基を含むカルボン酸残留物2.0モルと、グリセロール残留物1.5乃至2.0モルまでの正量を有し、該カルボン酸残留物とグリセロール残留物のモル比が、カルボン酸残留物1モルに基づいてグリセロール残留物1.2モル以上である米国特許第4530771号;アルカンホスホン酸塩を開示する米国特許第3779928号;ホスホン酸塩とオレアミドの反応生成物を開示する米国特許第3778375号;およびジ−(低級アルキル)亜リン酸塩エポキシドの反応生成物を開示する米国特許第3932290号に見られる。上記参照文献の開示内容も参照として本明細書の記載とする。窒素含有摩擦調整剤の例としては、これらに限定されるものではないが、イミダゾリン、アミド、アミン、アルコキシル化アミンアルコキシル化エーテルアミン、酸化アミン、アミドアミンニトリルベタイン第四級アミン、イミン、アミン塩アミノグアナジン、およびアルカノールアミド等を挙げることができる。そのような摩擦調整剤は、直鎖、分枝鎖または芳香族炭化水素基またはそれらの混合物から選ばれ、飽和でも不飽和でもよい炭化水素基を含むことができる。炭化水素基は、主として炭素と水素とからなるが、1個以上の硫黄または酸素などのヘテロ原子を含んでもよい。好ましい炭化水素基は、炭素原子数が12〜25の範囲にあるが、飽和でも不飽和でもよい。より好ましいのは線状炭化水素基を持つものである。

0062

本発明の潤滑油組成物はまた、粘度指数向上剤(VII)を含んでいてもよい。粘度指数向上剤の例としては、ポリ−(アルキルメタクリレート)、エチレン−プロピレン共重合体スチレンブタジエン共重合体、およびポリイソプレンを挙げることができる。分散剤型(分散性の増大した)または多機能型の粘度指数向上剤も用いられる。これらの粘度指数向上剤は、単独で、あるいは組み合わせて使用することができる。エンジン油に混合される粘度指数向上剤の量は、配合エンジン油の所望とする粘度と共に変化するが、一般にはエンジン油の全量当り0.5〜20重量%の範囲にある。

0063

また、本発明は、添加剤パッケージまたは濃縮物を提供するものであり、それらは、単一の添加剤としてあるいは他の添加剤と組み合わせて潤滑粘度の油に添加することができる。(粘度指数向上剤は、所望されたときですら、一般に潤滑剤配合者によって基油に添加されるので、一般には添加剤パッケージに粘度指数向上剤は含まれない。)よって、好ましい添加剤濃縮物は、TBNが約60乃至180、好ましくは60乃至120の濃縮物となるように、本発明に用いられるアルケニルコハク酸イミドと充分な塩基性物質である過塩基性清浄剤、すなわちTBN450乃至550のアルキルアリールスルホネート清浄剤を約10乃至75重量%、好ましくは10乃至60重量%、そしてより好ましくは35乃至60重量%、および希釈油または他の混合性不活性有機液体希釈剤を約1乃至10重量%、好ましくは2乃至6重量%含有する。一般にVI向上剤以外には、濃縮物はまたしばしば、意図する使用から望ましいと考えられるその他各種の添加剤を含み、一般にはしばしば過塩基性清浄剤に加えて中性又は若干アルカリ性の清浄剤も含む。必要なTBNを与えるのに要求される過塩基性清浄剤の量は、勿論過塩基性清浄剤のTBNと共に変化するが、一般には濃縮物の10乃至80重量%である。濃縮物はまた、アルケニルコハク酸イミドとTBN450乃至550のアルキルアリールスルホネート清浄剤の混合物を約85乃至95重量%、および不活性有機液体希釈剤を約5乃至15重量%含有し、添加剤パッケージにあるいは直接基油に配合されるように設計された独立の濃縮物として供されてもよい。添加剤パッケージまたは濃縮物はまたグリース用に供することもできる、ただし、そのようなパッケージは一般には、本発明の化合物を殆ど同様に少なく含み、そしておそらくは他の耐摩耗剤および極圧剤を含む。

0064

本発明について、以下の実施例により更に説明するが、これらは本発明の範囲を限定するものとみなされるべきではない。

0065

基油原料配合物として、潤滑油および添加剤を特別の目的では一般的な量で用いた配合油を使用した。これには次のものが含まれた:粘度グレード5W20のII種基油;エチレンカーボネートで後処理したビスコハク酸イミド分散剤であって、アルケニル基の分子量を分子量2300のポリイソブチレンから誘導し、そしてアルキレンポリアミンは重質ポリアミン分子当り平均約6.5個の窒素原子を含み、Mnが250乃至340である、好適な重質ポリアミンはユニオンカーバイド社からHPA-Xとして市販されている)であり、これを次にエチレンカーボネートを用いて、コハク酸イミドの塩基性窒素1モルに対してエチレンカーボネート約2モルの比で後処理した分散剤3.0重量%;第二級アルコールZnDTP(sec−ブタノールとメチルイソブチルカルビノールから誘導した)0.6重量%;アルキルジフェニルアミン0.5重量%;米国特許第5629272号に開示のホウ酸グリセロールモノオレエート0.5重量%;および粘度指数向上剤、流動点降下剤および消泡剤。この基油原料に種々の灰分清浄剤を55.0ミリモルキログラムの濃度で添加し、そしてエンジン試験にかけ、その結果を以下に、および図1グラフとして表示する。

0066

清浄剤1:実施例A−1に従って製造した高過塩基性TBN500のカルシウムアルキルアリールスルホネート。

0067

清浄剤B:実施例Aと同様の条件下でベンゼンとC20−C24のノルマルアルファオレフィンから誘導した高過塩基性TBN426のカルシウムアルキルアリールスルホネート。この清浄剤は、全カルシウム約16.0重量%および100℃動粘度110cStを有することに特徴がある。

0068

清浄剤C:全カルシウム9.25重量%および100℃動粘度230cStを有することに特徴があるTBN250のアルキルフェネートである。そのようなアルキルフェネートは、米国特許第3178368号に従って製造することができる。

0069

清浄剤D:全カルシウム6.0重量%を有することに特徴があるTBN170のカルシウムサリチレート。

0070

[実施例1]
TBN500のカルシウムアルキルアリールスルホネート清浄剤(清浄剤1)55.0ミリモル/キログラムを、基準配合物(前述したものであり、完全配合の乗用車クランクケース用エンジン油の代表的なものである)にブレンドした。シーケンスVIBスクリーナーという名称のシーケンスVIB試験の短縮型を使用してエンジン試験を行うことによって、燃料経済性を求めた。シーケンスVIB(ASTMD6837)は、乗用車および低摩擦エンジンを備えた軽量トラックの燃料経済性を改善する潤滑剤の能力を測定する、エンジン動力計試験である。その方法は、五つの異なる作動段階にわたって試験潤滑剤の性能を基準潤滑剤の性能と比較する。標準シーケンスVIB試験は、基準油(BC)における2回の五段階燃料経済性測定、試験の開始時(I相)に1回、終了時(II相)に1回からなる各試験と、フラッシ及び運転型操作とを組み合わせたものである。2回の基準運転試験油の評価を行う。1500r/分および油温度125℃でのエンジン作動16時間の間に試験油が最初に経時変化した後、候補試験油の1相燃料経済性を算出する。次いで、エンジン速度2250r/分および油温度135℃で80時間。試験油をもう一度五段階燃料経済性測定にかける。基準油の燃料経済と比較した候補油の1相及び2相燃料経済改善性を算出する。短縮したシーケンスVIBスクリーナーでは、I相燃料経済性のみを厳密な調整無しで求める。算出した燃料経済性改善は、現在製造されている車両のうちの代表的な車両を、現在のEPA(環境保護局)試験サイクルの下で運転して得られた燃料経済性の結果に等しい。合格判定基準は、ここで使用するとき、ASTM基準(参照油BC)に対する燃料経済性改善の最小%に関係し、SAE0W−20および5W−20粘度グレードではI相(16時間経過)後で少なくとも最小2.4%であり、SAE0W−30および5W30粘度グレードでは最小2.0%であり、そしてその他全てのSAE多粘度グレードでは少なくとも1.3%である。本発明の場合には、実施例1の潤滑油組成物は燃料経済性改善2.65%で、合格の結果を与えた。

0071

実施例2は、実施例1の繰返し試験であり、燃料経済性改善2.46%で、合格の結果を与えた。

0072

比較例3では、清浄剤Bとして記載したTBN426のカルシウムアルキルアリールスルホネート55.0ミリモル/キログラムを用いたが、燃料経済性改善2.29%で、不合格の結果を与えた。

0073

比較例4−6では、清浄剤Cとして記載したTBN250のアルキルフェネート55.0ミリモル/キログラムを用いたが、燃料経済性改善2.22、2.18および1.83%で、いずれも不合格の結果を与えた。

0074

比較例7では、清浄剤Dとして記載したTBN170のサリチレート55.0ミリモル/キログラムを用いたが、燃料経済性改善1.58%で、不合格の結果を与えた。

図面の簡単な説明

0075

各種の灰分型清浄剤に関する燃料経済性改善のグラフである。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ