図面 (/)

技術 生分解性樹脂組成物

出願人 ダイトーエムイー株式会社
発明者 川口三夫日比野猛竹中誠吾
出願日 2002年1月16日 (19年1ヶ月経過) 出願番号 2002-007805
公開日 2003年2月26日 (17年11ヶ月経過) 公開番号 2003-055470
状態 特許登録済
技術分野 高分子物質の処理方法 高分子組成物 プラスチック等の成形材料の処理、取扱一般 生分解性ポリマー
主要キーワード 一定基準値 強制押込み カラリング 多条ネジ 透き間 回収コンテナ ベント穴 プラスチック原材料
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2003年2月26日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (4)

目的

変性剤変性澱粉を使用しなくとも、汎用生分解性樹脂と均一化させることが可能であって、また、系内の水の多少にかかわらず、良質な生分解性樹脂組成物を提供すること。

構成

未加工澱粉と、熱可塑性を有する生分解性樹脂とを必須成分とする混合物を加熱・溶融して得られる生分解性樹脂組成物であって、混合物の加熱・溶融を、ベント穴及び機械的剪断力を付与可能なフライトねじ山)を有する剪断押出機を使用して行うことにより、混合物の加熱・溶融混合物から発生する水蒸気を除去しつつ、混合物に機械的剪断力を加えて、前記未加工澱粉の分子間水素結合分断して、均一化させたことを特徴とする生分解性樹脂組成物。

概要

背景

近年、地球環境保護の観点から、天然高分子を利用した生分解性プラスチックの分野が注目されてきている。天然高分子である澱粉とその他の合成樹脂複合化した生分解性組成物に関しても、いくつかの発明がなされている。

澱粉とその他の合成樹脂とを複合化(ブレンド)する場合、通常、澱粉と合成樹脂とからなる混合物を加熱・溶融し、必要により水を添加して押出成形機等を使用してコンパウンドとされることが多い。しかし、押出成形機を使用する方法では加熱時に発生する水蒸気の影響により、良質なコンパウンドを得難いという問題があった。

すなわち、均一なコンパウンドを得るためには、澱粉及び樹脂が充分に分散又は相溶するような温度まで加熱する必要がある。なお、未加工澱粉溶融温度は約120℃以上と非常に高い。そのため樹脂の溶融温度においては、水蒸気が発生し、押出成形機の押出圧に抗する水蒸気圧により押出成形性が悪くなる。また、発生した水蒸気により、成形品気泡混入してしまう。

そのため、従来、水の添加量をできるかぎり少なくして上記問題を解決する方法が提案されている。例えば、水を添加せず、かつ含水率の少ない変性(denaturated)澱粉と特定の生分解性樹脂とを使用して、生分解樹脂組成物を得る方法(特開平11−228736号公報参照)や、水の代わりに尿素等の変性剤(denaturant)及び可塑剤を加えて生分解性樹脂組成物を得る方法(特開平11−335401号公報参照)等が提案されている。

概要

変性剤や変性澱粉を使用しなくとも、汎用の生分解性樹脂と均一化させることが可能であって、また、系内の水の多少にかかわらず、良質な生分解性樹脂組成物を提供すること。

未加工澱粉と、熱可塑性を有する生分解性樹脂とを必須成分とする混合物を加熱・溶融して得られる生分解性樹脂組成物であって、混合物の加熱・溶融を、ベント穴及び機械的剪断力を付与可能なフライトねじ山)を有する剪断押出機を使用して行うことにより、混合物の加熱・溶融混合物から発生する水蒸気を除去しつつ、混合物に機械的剪断力を加えて、前記未加工澱粉の分子間水素結合分断して、均一化させたことを特徴とする生分解性樹脂組成物。

目的

本発明は、変性剤や変性澱粉を使用しなくとも、汎用の生分解性樹脂と均一化させることが可能であって、また、系内の水の多少にかかわらず、良質な生分解性樹脂組成物を提供すること、及び該生分解性樹脂組成物を製造可能な生分解性樹脂製造プラントを提供することを課題とする。

効果

実績

技術文献被引用数
6件
牽制数
5件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

未加工澱粉と、熱可塑性を有する生分解性樹脂とを必須成分とする混合物を加熱・溶融して得られる生分解性樹脂組成物であって、前記混合物の加熱・溶融を、ベント穴及び機械的剪断力を付与可能なフライトねじ山)を有する剪断押出機を使用して行うことにより、混合物から発生する水蒸気を除去しつつ、混合物に機械的剪断力を加えて、前記未加工澱粉の分子間水素結合分断して、均一化させたことを特徴とする生分解性樹脂組成物。

請求項2

前記混合物の質量組成比が、未加工澱粉(乾燥澱粉基準):約30〜70%、生分解性樹脂:約30〜70%、混合物の溶融温度以上の沸点を有する可塑剤:約0〜20%、滑剤:約0〜1%であることを特徴とする請求項1記載の生分解性樹脂組成物。

請求項3

前記可塑剤として、多価アルコールを使用することを特徴とする請求項2記載の生分解性樹脂組成物。

請求項4

前記多価アルコールとして、グリセリンエチレングリコールプロピレングリコールトリメチレングリコールテトラメチレングリコールポリエチレングリコールポリプロピレングリコールエリトリットアラビットソルビットの中から単独又は2種以上選択されることを特徴とする請求項3記載の生分解性樹脂組成物。

請求項5

前記滑剤が、脂肪酸アミドであることを特徴とする請求項2記載の生分解性樹脂組成物。

請求項6

前記脂肪酸アミドが、ステアリン酸アミドであることを特徴とする請求項5記載の生分解性樹脂組成物。

請求項7

請求項1〜6記載の生分解性樹脂組成物を製造するための生分解性樹脂製造プラントであって、未加工澱粉と、熱可塑性を有する生分解性樹脂とを必須成分とする混合物を均一混合可能なヘンシェルミキサと、前記混合物を混練・剪断するために使用する、ベント穴及び機械的剪断力を付与可能なフライト(ねじ山)を有する剪断押出機と、前記剪断押出機から押し出された生分解性樹脂組成物をペレット化するペレット成形機と、前記ペレット成形機により成形されたペレットの大きさを選別するペレット選別機と、を備えてなることを特徴とする生分解性樹脂製造プラント。

技術分野

0001

本発明は、生分解性樹脂組成物に関する。より詳しくは、未加工澱粉と、熱可塑性を有する生分解性樹脂生分解性ポリマー)とを必須成分とする混合物を加熱・溶融して得られる生分解性樹脂組成物に関する。

背景技術

0002

近年、地球環境保護の観点から、天然高分子を利用した生分解性プラスチックの分野が注目されてきている。天然高分子である澱粉とその他の合成樹脂複合化した生分解性組成物に関しても、いくつかの発明がなされている。

0003

澱粉とその他の合成樹脂とを複合化(ブレンド)する場合、通常、澱粉と合成樹脂とからなる混合物を加熱・溶融し、必要により水を添加して押出成形機等を使用してコンパウンドとされることが多い。しかし、押出成形機を使用する方法では加熱時に発生する水蒸気の影響により、良質なコンパウンドを得難いという問題があった。

0004

すなわち、均一なコンパウンドを得るためには、澱粉及び樹脂が充分に分散又は相溶するような温度まで加熱する必要がある。なお、未加工澱粉の溶融温度は約120℃以上と非常に高い。そのため樹脂の溶融温度においては、水蒸気が発生し、押出成形機の押出圧に抗する水蒸気圧により押出成形性が悪くなる。また、発生した水蒸気により、成形品気泡混入してしまう。

0005

そのため、従来、水の添加量をできるかぎり少なくして上記問題を解決する方法が提案されている。例えば、水を添加せず、かつ含水率の少ない変性(denaturated)澱粉と特定の生分解性樹脂とを使用して、生分解樹脂組成物を得る方法(特開平11−228736号公報参照)や、水の代わりに尿素等の変性剤(denaturant)及び可塑剤を加えて生分解性樹脂組成物を得る方法(特開平11−335401号公報参照)等が提案されている。

発明が解決しようとする課題

0006

しかし、上記公報記載の方法では、ともに水分含有量が少ないため、得られる生分解性樹脂組成物の透明性が低かった。さらに、溶融物は水分含有量が低いため、高粘度であって均一に相溶又は分散(均一化)し難かった。

0007

また、系内から完全に水を排除することは不可能であるため、圧力上昇や、気泡混入の問題を完全に解決することはできなかった。

0008

系内から完全に水を排除することができない理由は下記の如くである。澱粉粒は、分子無秩序集合したものではなく、部分的に微小結晶状の構造が発達した微結晶構造であるとされている。澱粉分子は相互に水素結合したり、若しくは水分子と水素結合したりして安定化しているものと考えられる。

0009

上記構造により、澱粉粒は水素結合による強固な核で自らの含水率をコントロールしようとする性質を有する。そのため、乾燥澱粉であっても通常は平衡水分として一定量の水分子を含んでいるからである。

0010

本発明は、変性剤や変性澱粉を使用しなくとも、汎用の生分解性樹脂と均一化させることが可能であって、また、系内の水の多少にかかわらず、良質な生分解性樹脂組成物を提供すること、及び該生分解性樹脂組成物を製造可能な生分解性樹脂製造プラントを提供することを課題とする。

課題を解決するための手段

0011

本発明者らは、上記課題を解決するために、鋭意研究・開発に努力する過程で、下記構成の生分解性樹脂組成物、及び生分解性樹脂製造プラントに想到した。

0012

本発明の生分解性樹脂組成物は、未加工澱粉と、熱可塑性を有する生分解性樹脂とを必須成分とする混合物を加熱・溶融して得られるものであって、混合物の加熱・溶融を、ベント穴及び機械的剪断力を付与可能なフライトねじ山)を有する剪断押出機を使用して行うことにより、混合物から発生する水蒸気を除去しつつ、混合物に機械的剪断力を加えて、未加工澱粉の分子間水素結合分断して、均一化させたことを特徴とする。

0013

上記構成において、混合物の質量組成比は、未加工澱粉(乾燥澱粉基準):約30〜70%、生分解性樹脂:約30〜70%、混合物の溶融温度以上の沸点を有する可塑剤:約0〜20%、滑剤:約0〜1%とすることができる。

0014

上記可塑剤としては、多価アルコールを使用することができる。特に、グリセリンエチレングリコールプロピレングリコールトリメチレングリコールテトラメチレングリコールポリエチレングリコールポリプロピレングリコールエリトリットアラビットソルビットの中から単独又は2種以上選択されると、良質なコンパウンドが得られる。

0015

上記滑剤としては、脂肪酸アミド脂肪酸アマイド)を好適に使用することができ、特に、ステアリン酸アミドを使用すると良質のコンパウンドを得ることができる。

0016

また、本発明の生分解性樹脂製造プラントは、上記生分解性樹脂組成物を製造するために使用されるものであって、未加工澱粉と、熱可塑性を有する生分解性樹脂とを必須成分とする混合物を均一混合可能なヘンシェルミキサと、混合物を混練・剪断するために使用する、ベント穴及び機械的剪断力を付与可能なフライト(ねじ山)を有する剪断押出機と、剪断押出機から押し出された生分解性樹脂組成物をペレット化するペレット成形機と、ペレット成形機により成形されたペレットの大きさを選別するペレット選別機と、を備えてなることを特徴とする。

発明を実施するための最良の形態

0017

以下、本発明の実施形態について、詳細に説明を行う。なお、本明細書中において、配合比率を表す「%」は、特に断らない限り、「質量%」を示すものである。また、水分は湿量基準含水率:w[kg/ kg(wet stock)] を意味する。

0018

本発明の生分解性樹脂組成物は、コンパウンドであって、各種生分解性樹脂製品向けに使用が可能である。

0019

ここで、コンパウンドとは、「合成樹脂あるいはゴムに、必要に応じて可塑剤、硬化剤充填剤着色剤、安定剤、強化剤など各種配合剤を加えて混合し、そのままの状態で成形加工することができるようにした材料」(「図解プラスチック用語辞典第2版」 日刊工業新聞社(1994) p.297 )のことであって、粉末状、粒状、ペレット状、ペースト状、顆粒状、小球状等、形状はいずれでもよい。

0020

そして、本発明の生分解性樹脂組成物は、未加工澱粉と、熱可塑性を有する生分解性樹脂とを必須成分とする混合物を加熱・溶融して得られる生分解性樹脂組成物であることを基本的特徴とする。

0021

未加工澱粉とは、植物中に存在する天然澱粉そのものであって、変性処理が施されていない澱粉のことをいう。

0022

なお、変性には、主原料に他の単量体を加え共重合共縮合したり、ある高分子化合物に他の高分子化合物を結合(ブロック共重合グラフト共重合)したり混合する変性(modification) :いわゆる化学的変性と、イオン結合、水素結合、疎水結合等の分子内非共有性結合により保持している固有立体構造を、加熱などの物理的処理や、pHの変化などの化学的処理によって切断する、化学組成変化をほとんど伴わない変性(denaturation) :いわゆる物理的変性とがある(「図解プラスチック用語辞典第2版」 日刊工業新聞社(1994) p.741参照)。

0023

未加工澱粉としては、天然又は植物起源の、本質的にアミロース及び/又はアミロペクチンからなる澱粉全てが好適に使用可能である。具体的には、トウモロコシ澱粉ジャガイモ澱粉コメ澱粉タピオカ澱粉穀類ライムギカラスムギ小麦等)由来の澱粉等を例示することができ、これらの中から単独又は2種以上を選択して使用することができる。特にトウモロコシ澱粉(コーンスターチ)が入手し易く望ましい。

0024

また、未加工澱粉は、含水率の制限なく使用することができ、乾燥澱粉(平衡水分(RH:81%のときの)として約13.5%以下の水分を含有するもの)から、湿潤状態の澱粉まで使用可能である。乾燥状態の未加工澱粉を使用すれば、後述の如く、加熱時における蒸気の発生を少なくすることができる。一方、含水率が高い未加工澱粉を使用すれば、生分解性樹脂組成物の透明性が良好となる。よって、含水率は、目的物に応じて適宜設定可能である。なお、含水率の上限は特に規定しないが、約60%前後で効果(透明性に関して)が飽和する。

0025

なお、トウモロコシ澱粉を原料とした精製後の未加工乾燥澱粉の平衡水分は、RH:約81%の際、約12〜13%である。

0026

一方、生分解性樹脂としては、熱可塑性を有するものであれば、現在市販されているあらゆる生分解性樹脂を好適に使用することができる。澱粉との相溶性が高い樹脂を使用すれば、均一に相溶した生分解性樹脂組成物が得られ、また、澱粉との相溶性が低い樹脂であっても、均一に分散した生分解性樹脂組成物を得ることが可能である。

0027

例えば、酢酸セルロース、(キトサンセルロース/澱粉)重合系、(澱粉/化学合成グリーンプラ(R))重合系、(脂肪族ポリエステル芳香族ポリエステル)重合系(copolymer of aliphatic and aromatic polyester)等の天然高分子由来のものや、ポリ乳酸ポリカプロラクトンポリブチレンサクシネートポリブチレンサクシネートアジペート)、ポリ(ブチレンサクシネート/カーボネート)、ポリエチレンサクシネート、ポリ(ブチレンサクシネート/テレフタレート)、ポリビニルアルコール、ポリ(グリコールジカルボン酸)(Glycols and dicarboxylic acid) 等の合成高分子、ポリ(ヒドロキシブチレートヒドロキシバリデート)等の微生物産生系高分子等の中から単独又は2種以上選択して使用することができる。

0028

より具体的には、化学合成グリーンプラ(R)として市販されている、「ビオノーレ(R)」(昭和高分子(株)・昭和電工(株)製)、「セルグリーン(R)PH」(ダイセル化学工業(株)製)、「ラクティ(R)」((株)島津製作所製)、「テラマック(R)」(ユニチカ(株)製)、「ユーペック(R)」(三菱ガス化学(株)製)、「レイシア(R)」(三井化学(株)製)、「エコフレックス(R)」(BASFジャパン(株)製)、「エンポル(TM)」(IReCHEMICAL社製)等が使用可能である。

0029

ここで、グリーンプラ(R)とは、有害重金属等を基本的に含まず、生分解性と安全性が一定基準値以上にあることが確認された材料だけから構成される生分解性プラスチックの総称である(登録商標第3364196号)。グリーンプラ(R)と澱粉とを使用した生分解性樹脂組成物は、生分解性が非常に良好である。

0030

さらに、上記混合物には必然的ではないが、その他の添加剤を添加することができる。例えば、混合物の溶融温度以上の沸点を有する可塑剤を添加して可塑性を改善することができる。なお、澱粉の溶融温度は、トウモロコシ澱粉で、約120℃以上である。

0031

上記可塑剤としては、多価アルコールを使用することができる。具体的には、グリセリン(bp. 290℃) 、エチレングリコール(bp. 197.7℃) 、プロピレングリコール(bp. 188.2℃) 、トリメチレングリコール(bp. 214.2℃) 、テトラメチレングリコール(bp. 235℃) 、ポリエチレングリコール、ポリプロピレングリコール、エリトリット(bp. 329〜 331℃)、アラビット、ソルビットから単独又は二種以上選択して使用することができる(「化学便覧基礎編I」日本化学会編(S.41・9・25)丸善 参照)。

0032

さらに、上記混合物には、滑剤を添加して溶融速度溶融粘度、安定性等を改善することができる。

0033

滑剤としては、脂肪酸アミド系、脂肪酸系、アルコール系、脂肪酸エステル系、炭化水素系、金属石けん系等があるが、使用する樹脂との兼ね合いで脂肪酸アミド系を好適に使用することができる。

0034

脂肪酸アミド系滑剤としては、ステアリン酸アミド、ラウリン酸アミドパルミチン酸アミド、ベニン酸アミド、メチレンビスステアラアミド、エチレン−ビス−ステアラアミド、エチレン−ビス−ヒドロキシ−ステアラアミド、ヒドロキシステアラアミド、メチロールアミド、エルカ酸アミドレシチンモノリン酸アルキル、レシチン−ジ−リン酸アルキル等があるが、特にステアリン酸アミドが好適に使用できる。

0035

上記混合物にはさらに、滑剤以外の添加剤として、カーボンブラック等の紫外線安定剤難燃剤ホルムアルデヒドパラホルムアルデヒド等の架橋剤、抗菌剤除草剤酸化防止剤肥料乳白剤、安定剤等を含有することもできる。

0036

そして、上記混合物の質量組成比は、例えば、未加工澱粉(乾燥澱粉基準):約30〜70%、望ましくは約40〜60%、さらに望ましくは約50%前後、生分解性樹脂:約30〜70%、望ましくは約40〜60%、さらに望ましくは約50%前後、可塑剤:約0〜20%、滑剤:約0〜1%とすると、澱粉及び生分解性樹脂の双方の特徴を生かした生分解性樹脂組成物を得ることができる。

0037

上記の質量組成比以外にも、種々の設計変更が可能である。すなわち、未加工澱粉と生分解性樹脂との混合比は任意であって、未加工澱粉ベースであっても、生分解性樹脂ベースであってもよい。当然、未加工澱粉の相対量が多くなれば、未加工澱粉の特性が強まり、逆に生分解性樹脂の相対量が多くなれば、生分解性樹脂の特性が強く現れる。

0038

可塑剤の混合比が多すぎると、相対的に生分解性樹脂や未加工澱粉の量が減るため、望ましくない。また、滑剤の混合比が多すぎても、それ以上の効果が期待できず効果が飽和してしまう。可塑剤及び滑剤は、上述の如く必須成分ではない。

0039

上記混合物は、均一に混合されていることが望ましい。後工程での加熱・溶融の際、より均一な生分解性樹脂組成物を得るためである。なお、混合は手作業等で行ってもよいが、後述の如く、通常の混合に使用されるヘンシェルミキサ、フラッシュミキサ等を使用することができる。

0040

そして上記混合物の加熱・溶融を、ベント穴及び機械的剪断力を付与可能なフライト(ねじ山)を有する剪断押出機を使用して行うことにより、混合物から発生する水蒸気を除去しつつ、混合物に機械的剪断力を加えて、前記未加工澱粉の分子間水素結合を分断して、均一化させることが本発明の最大の特徴である。

0041

水蒸気を除去するのは、剪断押出機を使用して上記混合物を加熱・攪拌する場合、剪断押出機の押出圧力に抗する水蒸気圧が加わるのを防止するため、及び水蒸気により、生分解性樹脂組成物内に気泡が混入するのを防止するためである。

0042

上記でも述べた如く、加熱時においては、平衡水分のみを含んだ乾燥状態の澱粉であっても、澱粉中に含有されている水分の蒸発が起こる。そのため、乾燥澱粉を使用する場合であっても水蒸気の除去は必要である。

0043

水蒸気の除去は、剪断押出機の途中などにベント穴を設けて大気開放とするか、若しくは、発生する水蒸気の量が多い場合は必要により吸引真空吸引等)により排除すればよい。

0044

このように、水蒸気を加熱・溶融時に除去する構成としたため、最初から含水率の少ない澱粉を使用する必然性がない。そのため、生分解性樹脂組成物に透明性を付与するために、別途水分を添加しても押出成形性を低下させることはない。よって、澱粉の前処理や、変性剤の添加を省略することができ、工程が簡略化する。

0045

また、上記混合物の加熱・溶融時に機械的剪断力を与えるのは、上記未加工澱粉分子間の水素結合を少なくとも部分的に分断するためである。機械的剪断力により水素結合を破壊すれば、澱粉粒を微粉化すると同時に、生分解性樹脂と澱粉とを均一に相溶又は分散させることができる。

0046

機械的剪断力のない条件下では、加熱したにもかかわらず、澱粉分子の水素結合が強いため、未破壊の澱粉粒が原料に残留することとなり、均一に分散又は相溶させることができない。

0047

加熱・溶融後の上記混合物は、高粘性であるが、機械的剪断力の働きで効率的に分散・相溶が行われる。すなわち、低粘性や低融点の変性澱粉を使用したり、変性剤を添加しなくても均一に分散・相溶した生分解性樹脂組成物を得ることができる。

0048

上記機械的剪断力は、剪断押出機において、ダルメージタイプ、その他ずれ変形を付与可能なフライト(ねじ山)を有する剪断押出機を使用して付与することができる。なお、フライトとは、スクリュー溝を加工した後に残された螺旋型の山の外面部分のことをいう。

0049

本発明の生分解性樹脂組成物の製造に使用可能な剪断押出機のモデル図を図1に示す。図1の剪断押出機12は、図示しない加熱手段を備えてなる単軸型の剪断押出機である。シリンダー14内部にスクリュー16を備えてなり、シリンダー14には、第1ベント穴18a、第2ベント穴18bが設けられている。第1ベント穴18a、第2ベント穴18bは、それぞれ真空ポンプ等に接続可能とされており、原料から発生する水蒸気を効率的に剪断押出機外へ除去可能とされている。

0050

なお、具体的なスクリュー形状は、図4に示すようなものとなる。

0051

ベント穴の径は130mm押出機シリンダ内径130mm)の場合、例えば40mm×90mmの角型ベント穴とすることができる。また、ベント穴の個数は最大3個設ければよい。

0052

スクリュー16には、フライト20、溝部22が形成されている。剪断押出機の投入口側原料投入口24から投入された原料は、スクリュー16の溝部22を黒矢印方向に移動して剪断押出機12から排出され、排出口側に備えられた造粒機26等により造粒される。

0053

上記原料は、第1ベント穴18aから第2ベント穴18bの区間では半溶融状態で存在しており、この区間が剪断・混練に効果的である。

0054

フライト20の排出口側は、溶融状態の原料が後退し、脈動するように透き間が設けられた構成とする。原料が後退しつつ、何度も剪断・混練を繰り返しながら原料を押し出すことができるため、混練性が向上し、より均一な混合が可能となるからである。

0055

図4に望ましい具体的態様の先端に造粒手段126を備えた剪断押出機112を示す。ここで、図1における対応部位については、2桁の図符号に頭に「1」を付して3桁図符号として、それらの説明の全部又は一部を省略する。

0056

スクリュー116は、第1ベント穴(水分吸入穴)118aの手前において第一剪断/圧縮混練区間が形成されている。この第一剪断/圧縮混練区間は、複数個(図例では3個)の谷部(溝部)122に渡り、ねじ山の両側部から所定角度(60〜180°戻し変位させて始まる複数個の混練隆起部スクリューネジ山より低い。)123a、123bが形成されている。この混練隆起部123a、123bの存在により谷部間の断面積が小さくなり圧縮作用を受けると共に、混練隆起部123a、123b間の変位により、溶融原料には、谷部122の戻し作用が発生して溶融原料の部分的に前後移動流動)が繰り返されて圧縮・剪断の流動現象が発生する。こうして原料は、半溶融であっても、この圧縮・剪断作用を受けながら、全体として本体スクリューにより前進移動をする。なお、この第一剪断/圧縮混練区間は、原料が半溶融状態にあり圧縮・剪断混練が最も効果的な区間である。また、混練隆起部123は谷部122の底面から逓増して形成されている。

0057

また、第二ベント穴(水分吸入穴)118bの手前において第二混練促進区間Bが形成されている。図例ではネジの始点移送を所定角度(60〜120°:図例では90°)ずつ戻し変位させることにより多条ネジ部(図例では4条)として形成されている。

0058

この変位させた多条ネジ部のねじ山(フライト)120b、120b・・・群の間で溶融原料には、部分的な前後移動(流動)を繰り返しながら圧縮・剪断の流動現象が発生する。溶融原料は、こうして圧縮・剪断の混練を受けながら、全体として本体スクリューにより前進移動をする。

0059

さらに、図例では押出しダイス125に面して、所定時間ごとモータ127で回転駆動されるカッタ129が配されて造粒可能とされている。こうして造粒されたペレットは、ペレット出口131から回収コンテナ(図示せず。)に落下するようになっている。図例中133は、スクリーンメッシュである。

0060

本発明の生分解性樹脂組成物は例えば、図2に示す工程図に沿って製造される。すなわち、原料をヘンシェルミキサ等で混合し、その後上記記載の剪断押出機12を使用して混練・剪断し、ペレット成形等の造粒を行う。

0061

この際、上記剪断押出機12を含んだ、図3に示す製造プラントを使用することができる。

0062

図3における製造プラントは、未加工澱粉と、熱可塑性を有する生分解性樹脂とを必須成分とする混合物を均一混合可能なヘンシェルミキサ28と、混合物を混練・剪断するために使用する、上記記載のベント穴18及び機械的剪断力を付与可能なフライト(ねじ山)20を有する剪断押出機12と、剪断押出機から押し出された生分解性樹脂組成物をペレット化する造粒機(ペレット成形機)26と、ペレット成形機により成形されたペレットの大きさを選別するペレット選別機30と、を備えてなることを特徴とする。

0063

以下、図3に基づいて、原料(被加工物)の流れに沿って製造プラントの説明を行う。なお、本発明の生分解性樹脂の製造は、下記製造プラントのみに限定されるものではない。

0064

まず、生分解性樹脂、生澱粉等の粉体原料を、ブレンダー32により混合する。ブレンダー32は、上部に粉体投入口34、34を備えてなるものであって、架台38上の回転槽36をモーター等により高速回転させて粉体混合を行う。粉体混合に通常使用されるブレンダーを使用することができ、例えば、ドラムブレンダー、バケットブレンダー等を例示できる。混合された粉体は、粉体定量供給機40を経て、一定量ずつヘンシェルミキサ28の混合槽48内に供給される。

0065

一方、必須成分ではないが、グリセリンや水等の液体原料は、液体タンク42、42から、液体ポンプ43、43により汲み上げられ液体流量計44、44を経て一定量ずつヘンシェルミキサ28の混合槽48内に供給される。

0066

その他必要な添加剤は、添加剤投入コンベア46を利用して同じくヘンシェルミキサ28の混合槽48内に供給される。

0067

ヘンシェルミキサ28では、上記材料の混合を行う。ヘンシェルミキサとは、プロペラミキサー式の高速混合機一種であって、主として粉粒体プラスチック原材料、着色剤及び添加剤などの均一混合、カラリング等に汎用されている(「図解プラスチック用語辞典第2版」 日刊工業新聞社(1994) p.741 参照)。本プラントにおいては、汎用のヘンシェルミキサを好適に使用可能である。

0068

通常、上記混合槽48内に設けられたプロペラ攪拌翼)が、駆動モーター50に接続されたVベルト52により回転し、均一混合を行う構造とされている。

0069

均一混合された混合物は、混合物排出口54から自重落下により排出され、フィーダー56を経て、予備加熱用押出機58に搬入される。フィーダー56としては、定量供給が可能なプロペラ式フィーダーを使用することが望ましい。

0070

予備加熱用押出機58内では、混合物が目的の溶融温度まで加熱され、次工程の上記で述べた剪断押出機12へと搬送される。予備加熱用押出機58としては、例えば、3軸型のスクリューを使用することができる。なお、図3においては、予備加熱用押出機58から剪断押出機12への供給を、供給装置60内の縦軸スクリューを使用して強制押込みにより行う。

0071

剪断押出機12内には、上述の特殊なフライト20を有するスクリュー16が備えられており、効率的に剪断・混練が行われる。剪断押出機12の構造は、すでに述べたため、ここでは詳しい説明を省略する。

0072

剪断押出機12から排出された混練後の樹脂は、造粒機(ペレット成形機)26によりペレット化される。ペレット成形機26においても、通常樹脂成形に使用される汎用のペレット成形機を使用できる。図3においては、剪断押出機12の出口で樹脂を切断するホットカット方式のペレット成形機を使用しているが、その他、コールドカット方式、アンダーウオーターカット方式シートカット方式、等のペレット成形機(ペレタイザ)を使用することもできる。

0073

成形されたペレットは、ペレット冷却槽62で冷却される。冷却は、水冷、空気冷等により容易に行うことができる。図3においては、水冷でペレットを冷却しているため、その後、ペレット乾燥機64でペレットを乾燥させた後、ペレット選別機30に搬送される。

0074

ペレット乾燥機64は、汎用の熱風送風手段等を備えたもので、ペレット及び熱風を供給して気流乾燥し、上部に設けられた捕集機66まで空気搬送されて回収される。回収されたペレットは、ペレット選別機30で大きさ毎に選別される。

0075

ペレット選別機30は、汎用品を使用することができる。具体的には、パンチングプレートメッシュ等で形成された振動状態スクリーン上をペレットが通過することにより大きさの選別を行う振動型選別機等を好適に使用することができる。

0076

選別されたペレットは、ブロア68等を使用して空気搬送によりペレット貯蔵用上部タンク70に搬送される。その後、ペレット排出口72から自動計量器76上に配された完成品ストックタンク74内にペレットが供給され、真空自動シーラ78等で包装され製品となり、完成品搬送コンベア79等で搬送される。

0077

上記の如く、本発明の生分解性樹脂製造プラントを使用することにより、生分解性樹脂製造において、完全自動化が実現可能となる。

0078

上記における生分解性樹脂組成物の製造条件としては、押出圧力:約60kg/cm2以上、押出温度約130〜160℃とする。押出温度が低過ぎると、澱粉や生分解性樹脂の溶融温度に到達せず、樹脂が溶融せずに残り、可塑化できない。また、押出温度が高すぎると、澱粉や生分解性樹脂の解重合がおこり、特性が失われる。

0079

上記加熱・溶融処理後は、未変性澱粉熱変性(denaturation) されて、α化澱粉となる。なお、未加工澱粉は、冷水に対して水不溶性である。溶融状態で機械的剪断力を加えて微粉化した澱粉は水難溶性と、若干溶解性が良好となる。

0080

なお、これまでの記載では、未加工澱粉を使用することを前提として説明を行ったが、該記載は、変性澱粉の使用を積極的に排除するものではない。本発明は、あくまでも低融点・低粘度の変性澱粉や、低含水率の変性澱粉を使用しなくても、植物由来の未加工澱粉を直接使用できることを示すにすぎず、当然変性澱粉を使用することも可能である。

0081

使用可能な変性澱粉としては、未加工澱粉の分解物である、デキストリン酸処理澱粉酸化澱粉、未加工澱粉の誘導体である架橋澱粉澱粉エステル澱粉エーテルグラフト共重合体等が挙げられる。

0082

例えば、澱粉エステルの例として、アセチル化澱粉があるが、アセチル化処理された澱粉を使用することにより、澱粉の耐老化性・透明性を改善することができる。アセチル化は上記に記載した本発明の混合物に無水酢酸酢酸無水イタコン酸酢酸ビニル塩化アセチルケテン等のアセチル化剤を添加するだけでよい。アセチル化剤の添加量は、例えば混合物全体の約0.05〜1%とすればよい。

発明の効果

0083

本発明の生分解樹脂組成物は、原料となる混合物の加熱・溶融時において、発生する水蒸気を除去しつつ、混合物に機械的剪断力を加えて、未加工澱粉の分子間水素結合を分断して、均一化させたことにより、従来の如く、変性剤や変性澱粉を使用しなくとも、汎用の生分解性樹脂と澱粉とを均一化させることが可能となった。また、系内の水の多少にかかわらず、良質な生分解性樹脂組成物を提供することが可能となった。

0084

以下、本発明の効果を確認するために行った実施例について説明を行う。実施例において混合物に使用した原料および混合量を記載する。

0085

・トウモロコシ澱粉(未加工澱粉:アメリカ産黄色デント種(歯種)):約45%
・生分解性樹脂(MFR:1.4g/10min (190℃、2.16kg荷重):約40%
・グリセリン(可塑剤:純度98.5%以上):約15%
・ステアリン酸アミド(滑剤:純度98%以上):約0.5%
上記各原料を使用して、発明の詳細な説明で詳述した生分解性樹脂製造プラントにより、加熱温度ダイス部分138℃、その他140℃、押出圧力:60kg/cm2、剪断用スクリュー直径:129.8mm、シリンダー内径:130mmの条件で押出成形し、ペレットを作成した。剪断押出機の剪断開始部分と、終了部分には、ベント穴を設けて水蒸気の除去が可能な構成とした。なお、水蒸気の除去は真空ポンプを使用して行った。

0086

その結果、トウモロコシ澱粉と生分解性樹脂が均一に分散した生分解性樹脂が得られることが確認でき、また押出し成形性も良好であった。

図面の簡単な説明

0087

図1本発明の生分解性樹脂組成物の製造に使用可能な剪断押出機のモデル図である。
図2本発明の生分解性樹脂組成物の製造工程図である。
図3図1の剪断押出機を含んだ本発明の生分解性樹脂製造プラント図である。
図4本発明の生分解樹脂組成物の製造に使用する剪断押出機の一例を示す概略断面図である。

--

0088

12…剪断押出機
14…シリンダー
16、…スクリュー
18a、18b…ベント穴
20…フライト(ねじ山)
22…溝部
26…造粒機
28…ヘンシェルミキサ
30…ペレット選別機
62…ペレット冷却槽
64…ペレット乾燥機

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い法人

関連性が強い法人一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ