図面 (/)

技術 付着解析方法

出願人 横河電機株式会社
発明者 手塚信一郎
出願日 2001年3月26日 (19年9ヶ月経過) 出願番号 2001-087294
公開日 2002年10月3日 (18年2ヶ月経過) 公開番号 2002-286626
状態 特許登録済
技術分野 耐候試験、機械的方法による材料調査 複合演算
主要キーワード 付着エネルギー 各荷重値 数値微分 構造解析ソフト 薄板側 接触解析 各座標間 使用価値
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2002年10月3日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (5)

課題

梁、円形薄板以外の形状の薄板の付着形状を最適化手法により求め、その結果に基づいて付着判定を行う付着解析方法を実現すること。

解決手段

汎用数値解析手段に複数のパラメータを有し薄板の付着形状を近似する所定の補間関数が組込まれた解析用基本モデルを入力する工程と、複数の付着面積のそれぞれが一定となる条件でパラメータを変化させ、各付着面積について数値解析手段により薄板の弾性エネルギー付着エネルギーを求める工程と、弾性エネルギーと前記付着エネルギーの和として構造物の全エネルギーを求める工程と、数値解析手段に組込まれた最適化手法により全エネルギーが極小となるパラメータを探索して各付着面積に対応するパラメータと全エネルギーを求める工程、とを有し、全エネルギーに極小値が存在する場合に薄板は基板永久的に付着すると判定することを特徴とする付着解析方法。

概要

背景

マイクロマシニング技術を使用して、例えば図4に示すように基板1上に変形可能な薄板2を基板1に近接させて設けた構造物を作成した場合、薄板2と基板1とが接触して、永久的に付着してしまうことがある。そして、一度基板1に接触した薄板2が再び基板1から離れるか否かは、接触した薄板2の復元力弾性エネルギー)と、基板1との接触部における付着力付着エネルギー)との大小関係に依存している。

従来、微小構造物の付着問題に関しては、Mastrangeloらによる解析的手法を用いた付着判定法報告されている。(C.H.Mastrangelo and C.H.Hsu,”Mechanical Stability and Adhesion of Microstructures under Capillary Forces-Part IandII,”J.Microelectromechanical Syst.,vol.2,1993,pp.33-55.)

彼らは、付着形状が明らかな梁と円形薄板について付着解析を行っている。円形薄板の場合、付着形状は円とみなせるので、円形薄板が基板に付着している場合の全エネルギー(円形薄板の弾性エネルギーと付着部の付着エネルギーの和)を解析的に導くことができる。

これにより仮想的に付着面積を0から円形薄板の面積まで変化させた時、全エネルギーが極小値を持つ条件をNpというパラメータ表現し、全エネルギーが極小値を持つか否かで、薄板の付着判定を行った。また、梁や円形薄板を用いると、付着判定を行うための基本的な物性値である、薄板と基板間の単位面積あたりの付着エネルギー(gs)を実験的に求めることができる。

概要

梁、円形薄板以外の形状の薄板の付着形状を最適化手法により求め、その結果に基づいて付着判定を行う付着解析方法を実現すること。

汎用数値解析手段に複数のパラメータを有し薄板の付着形状を近似する所定の補間関数が組込まれた解析用基本モデルを入力する工程と、複数の付着面積のそれぞれが一定となる条件でパラメータを変化させ、各付着面積について数値解析手段により薄板の弾性エネルギーと付着エネルギーを求める工程と、弾性エネルギーと前記付着エネルギーの和として構造物の全エネルギーを求める工程と、数値解析手段に組込まれた最適化手法により全エネルギーが極小となるパラメータを探索して各付着面積に対応するパラメータと全エネルギーを求める工程、とを有し、全エネルギーに極小値が存在する場合に薄板は基板に永久的に付着すると判定することを特徴とする付着解析方法。

目的

しかし、上述のような付着解析方法においては、梁、円形薄板以外の形状の場合は、付着形状が推定できないために解析的な手法を用いて付着判定ができないという問題点があった。本発明は上述した問題点を解決するためになされたものであり、梁、円形薄板以外の付着形状を推定できない薄板の付着形状をスプライン関数で近似し、系の全エネルギーが極小になるという条件で最適化手法を用いてスプライン関数のパラメータを探索することにより、薄板の付着形状(スプライン関数のパラメータ)を求め、その結果に基づいて付着判定を行う付着解析方法を実現することを目的とする。

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

変形可能な薄板とこの薄板に近接して設けられる基板とからなる構造物の前記薄板と前記基板との付着を解析する付着解析方法において、複数のパラメータを有し前記薄板の付着形状を近似する所定の補間関数が組込まれた解析用基本モデル汎用数値解析手段に入力する工程と、複数の付着面積のそれぞれが一定となる条件で前記パラメータを変化させ、各付着面積について前記数値解析手段により前記薄板の弾性エネルギー付着エネルギーを求める工程と、前記弾性エネルギーと前記付着エネルギーの和として前記構造物の全エネルギーを求める工程と、前記数値解析手段に組込まれた最適化手法により前記全エネルギーが極小となる前記パラメータを探索して各付着面積に対応する前記パラメータと前記全エネルギーを求める工程、とを有し、前記全エネルギーに極小値が存在する場合に前記薄板は前記基板に永久的に付着すると判定することを特徴とする付着解析方法。

請求項2

請求項1記載の付着解析方法において、前記補間関数はスプライン関数であることを特徴とする付着解析方法。

請求項3

請求項1記載の付着解析方法において、前記最適化手法は、遺伝的アルゴリズムまたは一次導関数法を使用することを特徴とする付着解析方法。

請求項4

変形可能な薄板とこの薄板に近接して設けられる基板とからなる構造物の前記薄板と前記基板との付着を解析する付着解析方法において、汎用の数値解析手段に解析用の基本モデルを入力する工程と、前記薄板のほぼ全面が前記基板に接触するまでの荷重値を所定の間隔で設定し、設定された荷重値毎に前記薄板の弾性エネルギー及び付着面積を前記数値解析手段により求める工程と、前記荷重値毎に前記付着面積に基づいて前記薄板の付着エネルギーを求める工程と、前記荷重値毎に前記弾性エネルギーと前記付着エネルギーの和を前記薄板の全エネルギーとして求める工程、とを有し、前記全エネルギーに極小値が存在する場合に前記薄板は付着すると判定することを特徴とする付着解析方法。

請求項5

請求項1から請求項4記載の付着解析方法において、前記数値解析手段は有限要素法を使用することを特徴とする付着解析方法。

技術分野

0001

本発明は、変形可能な薄板とこの薄板に近接して設けられる基板とが付着するか否かの判定を行うと共にその付着形状の解析を行う付着解析方法に関するものである。

背景技術

0002

マイクロマシニング技術を使用して、例えば図4に示すように基板1上に変形可能な薄板2を基板1に近接させて設けた構造物を作成した場合、薄板2と基板1とが接触して、永久的に付着してしまうことがある。そして、一度基板1に接触した薄板2が再び基板1から離れるか否かは、接触した薄板2の復元力弾性エネルギー)と、基板1との接触部における付着力付着エネルギー)との大小関係に依存している。

0003

従来、微小構造物の付着問題に関しては、Mastrangeloらによる解析的手法を用いた付着判定法報告されている。(C.H.Mastrangelo and C.H.Hsu,”Mechanical Stability and Adhesion of Microstructures under Capillary Forces-Part IandII,”J.Microelectromechanical Syst.,vol.2,1993,pp.33-55.)

0004

彼らは、付着形状が明らかな梁と円形薄板について付着解析を行っている。円形薄板の場合、付着形状は円とみなせるので、円形薄板が基板に付着している場合の全エネルギー(円形薄板の弾性エネルギーと付着部の付着エネルギーの和)を解析的に導くことができる。

0005

これにより仮想的に付着面積を0から円形薄板の面積まで変化させた時、全エネルギーが極小値を持つ条件をNpというパラメータ表現し、全エネルギーが極小値を持つか否かで、薄板の付着判定を行った。また、梁や円形薄板を用いると、付着判定を行うための基本的な物性値である、薄板と基板間の単位面積あたりの付着エネルギー(gs)を実験的に求めることができる。

発明が解決しようとする課題

0006

しかし、上述のような付着解析方法においては、梁、円形薄板以外の形状の場合は、付着形状が推定できないために解析的な手法を用いて付着判定ができないという問題点があった。本発明は上述した問題点を解決するためになされたものであり、梁、円形薄板以外の付着形状を推定できない薄板の付着形状をスプライン関数近似し、系の全エネルギーが極小になるという条件で最適化手法を用いてスプライン関数のパラメータを探索することにより、薄板の付着形状(スプライン関数のパラメータ)を求め、その結果に基づいて付着判定を行う付着解析方法を実現することを目的とする。

課題を解決するための手段

0007

本発明の請求項1においては、変形可能な薄板とこの薄板に近接して設けられる基板とからなる構造物の前記薄板と前記基板との付着を解析する付着解析方法において、複数のパラメータを有し前記薄板の付着形状を近似する所定の補間関数が組込まれた解析用基本モデル汎用数値解析手段に入力する工程と、複数の付着面積のそれぞれが一定となる条件で前記パラメータを変化させ、各付着面積について前記数値解析手段により前記薄板の弾性エネルギーと付着エネルギーを求める工程と、前記弾性エネルギーと前記付着エネルギーの和として前記構造物の全エネルギーを求める工程と、前記数値解析手段に組込まれた最適化手法により前記全エネルギーが極小となる前記パラメータを探索して各付着面積に対応する前記パラメータと前記全エネルギーを求める工程、とを有し、前記全エネルギーに極小値が存在する場合に前記薄板は前記基板に永久的に付着すると判定することを特徴とする付着解析方法である。

0008

また、本発明の請求項2においては、請求項1記載の付着解析方法において、前記補間関数はスプライン関数であることを特徴とする付着解析方法である。

0009

また、本発明の請求項3においては、請求項1記載の付着解析方法において、前記最適化手法は、遺伝的アルゴリズムまたは一次導関数法を使用することを特徴とする付着解析方法である。

0010

また、本発明の請求項4においては、変形可能な薄板とこの薄板に近接して設けられる基板とからなる構造物の前記薄板と前記基板との付着を解析する付着解析方法において、汎用の数値解析手段に解析用の基本モデルを入力する工程と、前記薄板のほぼ全面が前記基板に接触するまでの荷重値を所定の間隔で設定し、設定された荷重値毎に前記薄板の弾性エネルギー及び付着面積を前記数値解析手段により求める工程と、前記荷重値毎に前記付着面積に基づいて前記薄板の付着エネルギーを求める工程と、前記荷重値毎に前記弾性エネルギーと前記付着エネルギーの和を前記薄板の全エネルギーとして求める工程、とを有し、前記全エネルギーに極小値が存在する場合に前記薄板は付着すると判定することを特徴とする付着解析方法である。

0011

また、本発明の請求項5においては、請求項1から請求項4記載の付着解析方法において、前記数値解析手段は有限要素法を使用することを特徴とする付着解析方法である。

発明を実施するための最良の形態

0012

一般的につりあいにある系(薄板が基板に永久的に付着している状態)は、その全エネルギーが最小となっている。図4において、系の全エネルギーは薄板2の弾性エネルギーと薄板2と基板1との間の付着エネルギーの和(但し付着エネルギーは負の値)であるので、この全エネルギーが最小となる状態を探せば良い。

0013

薄板2と基板1が付着した場合の付着領域3の形状(付着形状)は、系の全エネルギーが最小となるような形状となっているが、薄板2の形状が円以外の一般的な形状の場合はその付着形状を推定することはできない。(形状を表す関数を解析的に求めることができない。)

0014

従って、付着形状をいくつかのパラメータで表された曲線(スプライン関数)で近似し、この曲線の下で系の全エネルギーを計算し、全エネルギーが最小となるように曲線のパラメータを最適化手法によって探索すれば、付着形状(スプライン関数のパラメータ)を求めることができ、その結果に基づいて得られる付着面積と全エネルギーの関係から付着判定を行うことができる。

0015

次に、本発明の実施例について図面を用いて説明する。図1は本発明による最適化手法を用いた付着解析方法を示すフローチャートである。図1において、まず、ステップ(以下、STと記す)1において、数値解析手段として例えば有限要素法(Finite Element Method、以下、FEMと記す)を用いた例えば、Swanson Analysis Inc.製のANSYS(登録商標)等の汎用構造解析ソフトウエア解析対象とする構造物の形状、寸法、材料などに基づいた物性値を初期設定として入力する。この物性値は、構造物のヤング率(E)、ポアソン比(ν)、実験から求めた薄板と基板との単位面積あたりの付着エネルギー(γs)等である。

0016

次にST2において、薄板と基板との付着現象を解析可能な形式に薄板と基板の両方をモデル化要素分割)した基本モデルを汎用構造解析ソフトウエアに入力する。この場合、付着が問題となる薄板側は形状等の正確なモデリングを必要とし、その付着形状を補間関数として、例えば数個のパラメータc1,c2,,,cnを含むスプライン関数で近似表現し、薄板の基本モデルに組込む

0017

スプラインとはデータを滑らかな曲線で近似する方法の一つであり、スプライン関数とは、節点と称される点と点との間に滑らかな曲線を形成するための関数であり、付着形状は、与えられた複数の点(節点)の間を、スプライン関数を用いて求めた複数の座標補完し、各座標間を直線で結ぶことによって近似される。

0018

次にST3において、薄板の任意の初期付着形状(領域)を汎用構造解析ソフトウエアに入力(パラメータc1,c2,,,cnの初期値を例えば乱数により入力)し、薄板を基板方向に垂直に強制変位させた時の薄板の弾性エネルギー(Ue)を汎用構造解析ソフトウエアによる計算によって求める。この場合、強制変位の境界条件を上記のスプライン関数の表す曲線上の節点に対して設定すれば良い。

0019

次にST4において、初期付着形状の面積(S)をスプライン関数から計算で求め、初期設定で入力した薄板と基板との単位面積あたりの付着エネルギー(γs)をかけて付着領域に生じる付着エネルギー(Us)を求める.(Us=γs×S)

0020

次にST5において、弾性エネルギー(Ue)から付着エネルギー(Us)を引いて構造物全体の系の全エネルギー(Ut)を求める。(Ut=Ue−Us)

0021

次にST6において、付着面積を0から薄板の面積まで何点かに分割し、その各面積値について、その面積値が一定となる条件でパラメータc1,c2,,,cnを先に設定した初期値より変化させ、再び系の全エネルギーを汎用構造解析ソフトウエアによって計算して求め、最終的に系の全エネルギーが極小となるパラメータc1,c2,,,cnの探索(付着形状の特定)を汎用構造解析ソフトウエアに組込まれた最適化手法により行う。そして、ST7において、付着形状が特定できない場合は、薄板は付着しないと判定される。

0022

この探索は、汎用構造解析ソフトウエアに組込まれた例えば遺伝的アルゴリズム、一次導関数法等による最適化手法を用いて先に求めた初期付着形状の全エネルギーに基づいて行われ、その結果としてST8において、各付着面積の大きさに対してスプライン関数のパラメータc1,c2,,,cnの値(付着形状)と系の全エネルギー(Ut)の大きさが求められ、例えば図2に示すような付着面積と全エネルギーとの関係を示すグラフが作成される。

0023

最適化手法とは、一つ以上の変数が、不等式または等式で与えられる制約式を満たしつつ、目的関数と呼ばれる式の値を最小化または最大化するような変数の組を求める問題に定式化して、所与の目的を達成しようとする方法であり、遺伝的アルゴリズムとは,生物進化過程における自然淘汰や遺伝子の交叉突然変異などのメカニズムまね考案された計算機による処理アルゴリズムであって,例えば工学的に組み合わせ最適化問題等を解くための方法をとして用いられるものである。

0024

次にST9において、求められた全エネルギー(Ut)を付着面積(S)で数値微分し、もし微分値に0あるいは負の値となる場合(全エネルギーに極小値が存在する場合)があれば、薄板は基板に永久的に付着すると判定し、常に微分値が正である場合は永久的には付着しないと判定する。例えば、図2においては、(a)は付着せず、(b),(c)は付着すると判定される。

0025

次に、FEMによる接触解析を使用した付着解析方法について説明する。図3は本発明のFEMによる接触解析を使用した付着解析方法を示すフローチャートである。図3において、図1に示した場合と同様に、まずST11において、FEMを用いた汎用構造解析ソフトウエアに解析対象とする構造物の形状、寸法、材料などに基づいた物性値(構造物のヤング率(E)、ポアソン比(ν)、実験から求めた薄板と基板との単位面積あたりの付着エネルギー(γs)等)を初期設定として入力する。

0026

次にST12において、薄板と基板との付着現象を解析可能な形式に薄板と基板の両方をモデル化(要素分割)した基本モデルを汎用構造解析ソフトウエアに入力する。この場合、付着が問題となる薄板側は形状等の正確なモデリングを必要とする。

0027

次にST13において、汎用構造解析ソフトウエアにより、薄板に基板方向に一様分布荷重印加した場合について接触解析を行い、薄板が基板にほぼ1点で接触する荷重値(印加圧力値)とほぼ全面が接触する荷重値(印加圧力値)を求める。

0028

次に、ST14において、ST13で得られた2つの荷重値の間を任意に分割し、汎用構造解析ソフトウエアにより各荷重値において接触解析を行い、各荷重値における弾性エネルギー(Ue)と接触面積(S)を求める。

0029

次に、ST15において、ST14で得られた各荷重値に対する接触面積と初期設定で入力した単位面積当たりの付着エネルギー(γs)との積を取ることにより接触領域に生じる付着エネルギー(Us)を求める。(Us=γs×S)

0030

次に、ST16において、弾性エネルギー(Ue)から付着エネルギー(Us)を引いて構造物全体の系の全エネルギー(Ut)を求め(Ut=Ue−Us)、結果として例えば図2に示すような付着面積と全エネルギーとの関係を示すグラフが作成される。

0031

次にST17において、求められた全エネルギー(Ut)を付着面積(S)で数値微分し、もし微分値に0あるいは、負から正、正から負のように符号の変化がある場合(全エネルギーに極小値が存在する場合)があれば、薄板は基板に永久的に付着すると判定し、常に微分値が正である場合は永久的には付着しないと判定する。例えば、図2においては、(a)は付着せず、(b),(c)は付着すると判定される。

0032

この場合、最適化手法を使用しなくても付着判定を行うことができるという点で、近似的な解法としての使用価値は高い。

発明の効果

0033

以上説明したように、本発明によれば、付着形状をスプライン関数で近似し、系の全エネルギーが極小になるという条件で最適化手法を用いてスプライン関数のパラメータを探索することによって、薄板の付着形状(スプライン関数のパラメータ)を求めたので、その結果に基づいて付着判定を行う付着解析方法を実現することができる。

0034

図面の簡単な説明

0035

図1本発明の最適化手法を用いた付着解析方法を示すフローチャートである。
図2付着面積と全エネルギーとの関係を示すグラフである。
図3本発明のFEMによる接触解析を用いた付着解析方法を示すフローチャートである。
図4薄板と基板とからなる構造物の縦断面図である。

--

0036

1基板
2薄板
3付着領域(付着形状)

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • カンブリコン テクノロジーズ コーポレーション リミテッドの「 チップ装置および関連製品」が 公開されました。( 2020/10/29)

    【課題・解決手段】本開示は、チップ装置および関連製品を提供する。チップ装置は、メインユニットと、メインユニットと通信する複数の基本ユニットとを備える。メインユニットの機能は、計算予定データブロックと演... 詳細

  • ダイキン工業株式会社の「 着氷防止治具」が 公開されました。( 2020/10/29)

    【課題】空気調和装置で処理された空気の温度及び湿度の少なくとも一方を測定するセンサーが低温時に着氷を生じることを抑制する。【解決手段】0℃以下を含む所定の範囲で空気の温度を調節する温度調節部(10)と... 詳細

  • 大成建設株式会社の「 剥離試験機」が 公開されました。( 2020/10/29)

    【課題】簡易かつ短時間で試験を行うことができ、また、異なる試験担当者が試験を行う場合であっても試験片に対して同等の条件にて引張力を作用させることができる剥離試験機を提案する。【解決手段】融着された遮水... 詳細

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ