図面 (/)

技術 ダンパー機構

出願人 株式会社エクセディ
発明者 橋本恭行正木道友青木辰之
出願日 2001年3月9日 (20年3ヶ月経過) 出願番号 2001-067422
公開日 2002年9月18日 (18年8ヶ月経過) 公開番号 2002-266941
状態 特許登録済
技術分野 防振装置 機械的に作動されるクラッチ
主要キーワード 隙間範囲 隙間角度 衝突部分 クッショニング ストッパー面 弾性樹脂材料 摩擦機構 回転方向両端
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2002年9月18日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (20)

課題

所定角度範囲内で摩擦機構を作動させないダンパー機構において、前記所定角度の増加を抑制する。

解決手段

クラッチディスク組立体1は、入力回転体2と、スプラインハブ3と、ダンパー部4と、大摩擦機構13と、摩擦抑制機構と、弾性部材104とを備えている。スプラインハブ3は、入力回転体2と相対回転可能に配置され、入力回転体2からからトルクが入力される。ダンパー部4は、入力回転体2とスプラインハブ3とを回転方向に連結するための機構である。大摩擦機構13は入力回転体2とスプラインハブが相対回転するときに摩擦を発生可能である。摩擦抑制機構は、所定角度範囲内で大摩擦機構を作動させないための回転方向隙間θACpである。弾性部材104は、所定角度の端で互いに当接する部材の衝撃を緩和するための部材である。

概要

背景

車輌に用いられるクラッチディスク組立体は、フライホイールに連結・切断されるクラッチ機能と、フライホイールからの捩じり振動を吸収・減衰するためのダンパー機能とを有している。一般に車両の振動には、アイドル時異音(ガラ音)、走行時異音(加速減速ラトル,こもり音)及びティップイン・ティップアウト低周波振動)がある。これらの異音や振動を取り除くことがクラッチディスク組立体のダンパーとしての機能である。

アイドル時異音とは、信号待ち等でシフトニュートラルに入れ、クラッチペダルを放したときにトランスミッションから発生する「ガラガラ」と聞こえる音である。この異音が生じる原因は、エンジンアイドリング回転付近ではエンジントルクが低く、エンジン爆発時のトルク変動が大きいことにある。このときにトランスミッションのインプットギアカウンターギアとが歯打ち現象を起こしている。

ティップイン・ティップアウト(低周波振動)とは、アクセルペダルを急に踏んだり放したりしたときに生じる車体の前後の大きな振れである。駆動伝達系剛性が低いと、タイヤに伝達されたトルクが逆にタイヤに伝達されたトルクが逆にタイヤ側からトルクに伝わり、その揺り返しとしてタイヤに過大トルクが発生し、その結果車体を過渡的に前後に大きく振らす前後振動となる。

アイドリング時異音に対しては、クラッチディスク組立体の捩じり特性においてゼロトルク付近が問題となり、そこでの捩じり剛性は低い方がよい。一方、ティップイン・ティップアウトの前後振動に対しては、クラッチディスク組立体の捩じり特性をできるだけソリッドにすることが必要である。

以上の問題を解決するために、2種類のバネを用いることにより2段特性を実現したクラッチディスク組立体が提供されている。そこでは、捩じり特性における1段目(低捩じり角度領域)における捩じり剛性及びヒステリシストルクを低く抑えているために、アイドリング時の異音防止効果がある。また、捩じり特性における2段目(高捩じり角度領域)では捩じり剛性及びヒステリシストルクを高く設定しているため、ティップイン・ティップアウトの前後振動を十分に減衰できる。

さらに、捩じり特性2段目において例えばエンジンの燃焼変動に起因する微小振動が入力されたときに、2段目の大摩擦機構を作動させないことで、低ヒステリシストルクによって微小振動を効果的に吸収するダンパー機構も知られている。

概要

所定角度範囲内で摩擦機構を作動させないダンパー機構において、前記所定角度の増加を抑制する。

クラッチディスク組立体1は、入力回転体2と、スプラインハブ3と、ダンパー部4と、大摩擦機構13と、摩擦抑制機構と、弾性部材104とを備えている。スプラインハブ3は、入力回転体2と相対回転可能に配置され、入力回転体2からからトルクが入力される。ダンパー部4は、入力回転体2とスプラインハブ3とを回転方向に連結するための機構である。大摩擦機構13は入力回転体2とスプラインハブが相対回転するときに摩擦を発生可能である。摩擦抑制機構は、所定角度範囲内で大摩擦機構を作動させないための回転方向隙間θACpである。弾性部材104は、所定角度の端で互いに当接する部材の衝撃を緩和するための部材である。

目的

本発明の課題は、所定角度範囲内で摩擦機構を作動させないダンパー機構において、所定角度の増加を抑制することにある。

効果

実績

技術文献被引用数
1件
牽制数
1件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

第1回転体と、前記第1回転体と相対回転可能に配置された第2回転体と、前記第1回転体と前記第2回転体とを回転方向弾性的に連結するためのダンパー部と、前記第1回転体と前記第2回転体が相対回転するときに摩擦を発生可能な摩擦機構と、所定角度範囲内で前記摩擦機構を作動させないための摩擦抑制機構と、前記所定角度の端で互いに当接する部材の衝撃を緩和するための弾性部材と、を備えたダンパー機構

請求項2

前記弾性部材は前記所定角度範囲内で回転方向に圧縮可能に配置されている、請求項1に記載のダンパー機構。

請求項3

前記摩擦抑制機構は回転方向に並んだ2つの部材を有し、前記弾性部材は前記2つの部材の回転方向間に配置されている、請求項1又は2に記載のダンパー機構。

請求項4

前記2つの部材は、孔が形成された板状の第1部材と、前記孔内に回転方向に移動可能に配置された第2部材とからなり、前記弾性部材は、前記孔内で前記第2部材と回転方向に並んで配置され、前記第2部材と前記孔の縁部との間で圧縮可能である、請求項3に記載のダンパー機構。

請求項5

前記2つの部材は、複数の内周歯を有する第3部材と、前記複数の内周歯に対して回転方向に隙間をあけて配置された複数の外周歯を有する第4部材とからなり、前記弾性部材は前記内周歯と前記外周歯の回転方向間に配置されている、請求項3又は4に記載のダンパー機構。

技術分野

0001

本発明は、ダンパー機構、特に、動力伝達系における捩じり振動減衰するためのダンパー機構に関する。

背景技術

0002

車輌に用いられるクラッチディスク組立体は、フライホイールに連結・切断されるクラッチ機能と、フライホイールからの捩じり振動を吸収・減衰するためのダンパー機能とを有している。一般に車両の振動には、アイドル時異音(ガラ音)、走行時異音(加速減速ラトル,こもり音)及びティップイン・ティップアウト低周波振動)がある。これらの異音や振動を取り除くことがクラッチディスク組立体のダンパーとしての機能である。

0003

アイドル時異音とは、信号待ち等でシフトニュートラルに入れ、クラッチペダルを放したときにトランスミッションから発生する「ガラガラ」と聞こえる音である。この異音が生じる原因は、エンジンアイドリング回転付近ではエンジントルクが低く、エンジン爆発時のトルク変動が大きいことにある。このときにトランスミッションのインプットギアカウンターギアとが歯打ち現象を起こしている。

0004

ティップイン・ティップアウト(低周波振動)とは、アクセルペダルを急に踏んだり放したりしたときに生じる車体の前後の大きな振れである。駆動伝達系剛性が低いと、タイヤに伝達されたトルクが逆にタイヤに伝達されたトルクが逆にタイヤ側からトルクに伝わり、その揺り返しとしてタイヤに過大トルクが発生し、その結果車体を過渡的に前後に大きく振らす前後振動となる。

0005

アイドリング時異音に対しては、クラッチディスク組立体の捩じり特性においてゼロトルク付近が問題となり、そこでの捩じり剛性は低い方がよい。一方、ティップイン・ティップアウトの前後振動に対しては、クラッチディスク組立体の捩じり特性をできるだけソリッドにすることが必要である。

0006

以上の問題を解決するために、2種類のバネを用いることにより2段特性を実現したクラッチディスク組立体が提供されている。そこでは、捩じり特性における1段目(低捩じり角度領域)における捩じり剛性及びヒステリシストルクを低く抑えているために、アイドリング時の異音防止効果がある。また、捩じり特性における2段目(高捩じり角度領域)では捩じり剛性及びヒステリシストルクを高く設定しているため、ティップイン・ティップアウトの前後振動を十分に減衰できる。

0007

さらに、捩じり特性2段目において例えばエンジンの燃焼変動に起因する微小振動が入力されたときに、2段目の大摩擦機構を作動させないことで、低ヒステリシストルクによって微小振動を効果的に吸収するダンパー機構も知られている。

発明が解決しようとする課題

0008

捩じり特性2段目において所定角度範囲内で2段目の大摩擦機構を作動させないダンパー機構は、例えば、2つの部材の回転方向間に隙間を確保しており、その隙間範囲では2段目の大摩擦機構が作動しないようになっている。

0009

しかし、その隙間範囲内では摩擦抵抗が小さいため、エンジンの回転変動によって2つの部材は常に衝突して衝撃を受けている。そのため、長期間の使用によって、2つの部材が摩耗して隙間が初期設定時より大きくなることがある。この場合は、2段目の大摩擦機構を作動させない隙間が大きくなることで、音・振動吸収機能が低下してしまう。

0010

本発明の課題は、所定角度範囲内で摩擦機構を作動させないダンパー機構において、所定角度の増加を抑制することにある。

課題を解決するための手段

0011

請求項1に記載のダンパー機構は、第1回転体と、第2回転体と、ダンパー部と、摩擦機構と、摩擦抑制機構と、弾性部材とを備えている。第2回転体は、第1回転体と相対回転可能に配置されている。ダンパー部は、第1回転体と第2回転体とを回転方向に連結するための機構である。摩擦機構は第1回転体と第2回転体が相対回転するときに摩擦を発生可能である。摩擦抑制機構は、所定角度範囲内で摩擦機構を作動させないための機構である。弾性部材は、所定角度の端で互いに当接する部材の衝撃を緩和するための部材である。

0012

このダンパー機構では、弾性部材によって、所定角度の範囲内では摩擦機構が作動しないため、所定角度範囲内の端ではエンジンの燃焼変動によって部材間の衝突が生じうる。しかし、弾性部材を設けることで互いに当接する部材の衝撃を緩和しているため、部材の摩耗が少なくなり、所定角度が大きくなることが抑えられる。

0013

請求項2に記載のダンパー機構では、請求項1において、弾性部材は所定角度範囲内で回転方向に圧縮可能に配置されている。このダンパー機構では、弾性部材が所定角度範囲内で圧縮されることによって、所定角度範囲内では弾性部材の剛性が得られる請求項3に記載のダンパー機構では、請求項1又は2において、摩擦抑制機構は回転方向に並んだ2つの部材を有している。弾性部材は2つの部材の回転方向間に配置されている。

0014

このダンパー機構では、弾性部材は摩擦抑制機構の2つの部材間で衝撃を緩和する。請求項4に記載のダンパー機構では、請求項3において、2つの部材は、孔が形成された板状の第1部材と、孔内に回転方向に移動可能に配置された第2部材とからなる。弾性部材は、孔内で第2部材と回転方向に並んで配置され、第2部材と孔の縁部との間で圧縮可能である。

0015

このダンパー機構では、弾性部材は孔内に配置され、第2部材と孔の縁部との間で圧縮される。請求項5に記載のダンパー機構では、請求項3又は4において、2つの部材は、複数の内周歯を有する第3部材と、複数の内周歯に対して回転方向に隙間をあけて配置された複数の外周歯を有する第4部材とからなる。弾性部材は内周歯と外周歯の回転方向間に配置されている。

0016

このダンパー機構では、弾性部材は内周歯と外周歯の回転方向間に配置され、内周歯と外周歯との間で圧縮される。

発明を実施するための最良の形態

0017

(1)構成
図1に本発明の一実施形態のクラッチディスク組立体1の断面図を示し、図2にその平面図を示す。クラッチディスク組立体1は、車輌のクラッチ装置に用いられる動力伝達装置であり、クラッチ機能とダンパー機能とを有している。クラッチ機能とはフライホイール(図示せず)に連結及び離反することによってトルクの伝達及び遮断をする機能である。ダンパー機能とは、バネ等によりフライホイール側から入力されるトルク変動等を吸収・減衰する機能である。

0018

図1においてO−Oがクラッチディスク組立体1の回転軸すなわち回転中心線である。また、図1の左側にエンジン及びフライホイール(図示せず)が配置され、図1の右側にトランスミッション(図示せず)が配置されている。さらに、図2のR1側がクラッチディスク組立体1の回転方向駆動側(正側)であり、R2側からその反対側(負側)である。

0019

クラッチディスク組立体1は、主に、入力回転体2(クラッチプレート21,リティーニングプレート22,クラッチディスク23)と、出力回転体としてのスプラインハブ3と、入力回転体2とスプラインハブ3との間に配置されたダンパー部4とから構成されている。ダンパー部4は、第1バネ7, 第2バネ8及び大摩擦機構13などを含んでいる。

0020

入力回転体2はフライホイール(図示せず)からのトルクが入力される部材である。入力回転体2は、主に、クラッチプレート21と、リティーニングプレート22と、クラッチディスク23とから構成されている。クラッチプレート21とリティーニングプレート22は共に板金製の円板状又は環状の部材であり、軸方向に所定の間隔をあけて配置されている。クラッチプレート21はエンジン側に配置され、リティーニングプレート22はトランスミッション側に配置されている。クラッチプレート21とリティーニングプレート22は後述する板状連結部31により互いに固定され、その結果軸方向の間隔が定めされるとともに一体回転するようになっている。

0021

クラッチディスク23は、図示しないフライホイールに押し付けられる部分である。クラッチディスク23は、クッショニングプレート24と、第1及び第2摩擦フェーシング25とから主に構成されている。クッショニングプレート24は、環状部24aと、環状部24aの外周側に設けられ回転方向に並ぶ複数のクッショニング部24bと、環状部24aから半径方向内側に延びる複数の連結部24cとから構成されている。連結部24cは4カ所に形成され、各々がリベット27(後述)によりクラッチプレート21に固定されている。クッショニングプレート24の各クッショニング部24bの両面には、摩擦フェーシング25がリベット26により固定されている。

0022

クラッチプレート21及びリティーニングプレート22の外周部には、回転方向に等間隔で4つの窓孔35がそれぞれ形成されている。各窓孔35には、内周側と外周側にそれぞれ切り起こし部35a,35bが形成されている。この切り起こし部35a, 35bは後述の第2バネ8の軸方向及び半径方向への移動を規制するためのものである。また、窓孔35には、第2バネ8の端部に当接又は近接する当接面36が円周方向両端に形成されている。

0023

クラッチプレート21及びリティーニングプレート22には、それぞれ中心孔37(内周縁)が形成されている。この中心孔37内にはスプラインハブ3が配置されている。スプラインハブ3は、軸方向に延びる筒状のボス52と、ボス52から半径方向に延びるフランジ54とから構成されている。ボス52の内周部には、トランスミッション側から延びる図示しないシャフト係合するスプライン孔53が形成されている。フランジ54には回転方向に並んだ複数の外周歯55及び後述の第1バネ7を収容するための切欠き56等が形成されている。切欠き56は半径方向に対向する2カ所に形成されている。

0024

ハブフランジ6は、スプラインハブ3の外周側で、かつ、クラッチプレート21とリティーニングプレート22との間に配置された円板状の部材である。ハブフランジ6は、第1バネ7を介してスプラインハブ3と回転方向に弾性的に連結され、さらには第2バネ8を介して入力回転体2に弾性的に連結されている。図7に詳細に示すように、ハブフランジ6の内周縁には複数の内周歯59が形成されている。

0025

内周歯59は前述の外周歯55の間に配置され、回転方向に所定の隙間をあけて配置されている。外周歯55と内周歯59とは回転方向に互いに当接可能である。すなわち外周歯55と内周歯59とによりスプラインハブ3とハブフランジ6との捩じり角度を規制するための第1ストッパー9が形成されている。ここでいうストッパーとは、所定角度までは両部材の相対回転を許容するが、所定角度になると互いに当接しそれ以上の相対回転を禁止する構造をいう。外周歯55とその円周方向両側の内周歯59との間にはそれぞれ第1隙間角度θ1が確保されている。外周歯55から見てR2側の内周歯59との間を第1隙間角度θ1pとし、外周歯55から見てR1側の内周歯59との間を第1隙間角度θ1nとする。第1隙間角度θ1pとθ1nは角度の大きさが異なり、θ1pはθ1nより大きい。

0026

さらに、ハブフランジ6の内周縁には、フランジ54の切欠き56に対応して切欠き67が形成されている。切欠き56, 67内には、それぞれ1つずつ合計2つの第1バネ7が配置されている。第1バネ7は低剛性のコイルスプリングであり、2つの第1バネ7は並列に作用する。第1バネ7は円周方向両端においてスプリングシート7aを介して切欠き56, 67の円周方向両端に係合している。以上の構造によって、スプラインハブ3とハブフランジ6とが相対回転する際には第1隙間角度θ1の範囲内で第1バネ7が回転方向に圧縮される。

0027

ハブフランジ6には回転方向に等間隔で4つの窓孔41が形成されている。窓孔41は回転方向に長く延びる形状である。図5及び図6に示すように、窓孔41の縁は、円周方向両側の当接部44と、外周側の外周部45と、内周側の内周部46とから構成されている。外周部45は連続して形成されており窓孔41の外周側を閉じている。なお、窓孔41の外周側は一部が半径方向外方に開いた形状であってもよい。ハブフランジ6において各窓孔41の円周方向間には切欠き42が形成されている。切欠き42は半径方向内側から外側に向かって円周方向長さが長くなる扇形状であり、円周方向両側に縁面43が形成されている。

0028

各窓孔41が形成された部分の半径方向外側には、突起49が形成されている。すなわち突起49はハブフランジ6の外周縁48からさらに半径方向外側に延びる突起形状である。突起49は、回転方向に長く延びており、ストッパー面50が形成されている。

0029

第2バネ8はクラッチディスク組立体1のダンパー機構に用いられる弾性部材すなわちバネである。各第2バネ8は、同心に配置された1対のコイルスプリングから構成されている。各第2バネ8は各第1バネ7に比べて大型であり、バネ定数が大きい。第2バネ8は各窓孔41, 35内に収容されている。第2バネ8の円周方向両端は、窓孔41の当接部44と当接面36とに当接又は近接している。プレート21, 22のトルクは第2バネ8を介してハブフランジ6に伝達され得る。プレート21, 22とハブフランジ6とが相対回転すると、第2バネ8は両者の間で圧縮される。具体的には、第2バネ8は当接面36とその円周方向反対側の当接部44との間で回転方向に圧縮される。このとき4つの第2バネ8は並列に作用している。

0030

リティーニングプレート22の外周縁には、回転方向に等間隔で4カ所に板状連結部31が形成されている。板状連結部31は、クラッチプレート21とリティーニングプレート22とを互いに連結するものであり、さらに後述するようにクラッチディスク組立体1のストッパーの一部を構成している。板状連結部31は、リティーニングプレート22から一体に形成された板状部材であり、回転方向に所定の幅を有している。板状連結部31は、各窓孔41の円周方向間すなわち切欠き42に対応して配置されている。板状連結部31は、リティーニングプレート22の外周縁から軸方向に延びるストッパー部32と、ストッパー部32の端部から半径方向内側に延びる固定部33とから構成されている。ストッパー部32はリティーニングプレート22の外周縁からクラッチプレート21側に延びている。固定部33は、ストッパー部32の端部から半径方向内側に折り曲げられている。ストッパー部32は円周方向両側にストッパー面51を有している。固定部33の半径方向位置は窓孔41の外周側部分に対応しており、円周方向位置は回転方向に隣接する窓孔41の間である。この結果、固定部33はハブフランジ6の切欠き42に対応して配置されている。切欠き42は固定部33より大きく形成されており、このため組立時にリティーニングプレート22をクラッチプレート21に対して軸方向に移動させたときには固定部33は切欠き42を通って移動可能である。固定部33はクッショニングプレート24の連結部24cに平行にかつトランスミッション側から当接している。固定部33には孔33aが形成されており、孔33a内には前述のリベット27が挿入されている。リベット27は、固定部33とクラッチプレート21とクッショニングプレート24とを一体に連結している。さらに、リティーニングプレート22において固定部33に対応する位置にはかしめ用孔34が形成されている。

0031

次に、板状連結部31のストッパー部32と突起49とからなる第2ストッパー10について説明する。第2ストッパー10はハブフランジ6と入力回転体2との間で隙間角度θ4までの領域で両部材の相対回転を許容し、捩り角度がθ4になると両部材の相対回転を規制するための機構である。なお、この隙間角度θ4の間で第2バネ8はハブフランジ6と入力回転体2との間で圧縮される。具体的には、突起49から見てR2側のストッパー部32との間を第4隙間角度θ4pとし、突起49から見てR1側ストッパー部32との間を第4隙間角度θ4nとする。θ4pはθ4nと大きさが異なり、θ4pはθ4nより大きい。

0032

フリクションプレート11は、スプラインハブ3の外周側において、クラッチプレート21とハブフランジ6との間、及びハブフランジ6とリティーニングプレート22との間に配置された1対のプレート部材である。フリクションプレート11は円板状かつ環状のプレート部材であり、入力回転体2とスプラインハブ3との間でダンパー部4の一部を構成している。フリクションプレート11の内周縁には複数の内周歯66が形成されている。内周歯66はハブフランジ6の内周歯59と軸方向に重なるように配置されている。図7に詳細に示すように、内周歯66は内周歯59に比べて円周方向幅が広く、その円周方向両側に両端がはみでている。内周歯66は、スプラインハブ3の外周歯55と回転方向に所定の隙間をあけて配置されている。すなわちこの隙間の範囲内でスプラインハブ3とフリクションプレート11とは相対回転可能となっている。外周歯55と内周歯59とにより、スプラインハブ3とフリクションプレート11との相対回転角度を規制する第3ストッパー12が形成されている。より具体的には、図7に示すように、外周歯55と内周歯66との間には第2隙間角度θ2の隙間が確保されている。具体的には、外周歯55から見てR2側の内周歯66との間を第2隙間角度θ2pとし、外周歯55から見てR1側の内周歯66との間を第2隙間角度θ2nとする。θ2pはθ2nより大きい。第2隙間角度θ2pは第1隙間角度θ1pより小さく、第2隙間角度θ2nは第1隙間角度θ1nより小さい。

0033

1対のフリクションプレート11のうちリティーニングプレート22側に配置されたフリクションプレート11には、半径方向外側に延びる複数の突出部61が形成されている。各突出部61はハブフランジ6の窓孔41の間に配置されている。窓孔41の先端には、半円形状の位置合わせ切欠き61aが形成されている。この切欠き61aは、ハブフランジ6に形成された位置合わせ用の切欠き98やプレート21,22に形成された位置合わせ用の孔に対応している。

0034

図4及び図9に示すように、1対のフリクションプレート11同士は、複数のスタッドピン62により相対回転不能かつ軸方向の位置決めがされている。スタッドピン62は、胴部62aと、胴部62aから軸方向両側に延びる頭部62bとから構成されている。胴部62aは軸方向に延びる円柱形状である。1対のフリクションプレート11同士はスタッドピン62の胴部62a端面に軸方向から当接することによって互いに対して軸方向に接近することが制限されている。スタッドピン62の頭部62bはフリクションプレート11に形成された孔内に挿入され自らと胴部62aとの間にフリクションプレート11を挟んでいる。したがって、1対のフリクションプレート11は互いから軸方向に離れることができない。以上のように、スタッドピン62は1対のフリクションプレート11同士を連結するための部材であり、フリクションプレート11と一体回転する。また、スタッドピン62によって1対のフリクションプレート11は互い間の軸方向距離が定められている。なお、1対のフリクションプレート11同士を連結する部材としては、スタッドピンに限定されず、他の部材やフリクションプレート11の一部を利用した構造でもよい。

0035

図9に示すように、ハブフランジ6の板厚は1対のフリクションプレート11同士の軸方向隙間より小さく、ハブフランジ6の軸方向内側面と各フリクションプレート11との間には僅かながらも隙間が確保されるように配置されている。

0036

図7及び図8に示すように、ハブフランジ6には、スタッドピンに対応した位置に孔69が形成されている。孔69は、回転方向に並んで一体に形成された2つの孔101,102とからなる。第1孔101はR1側に配置され、第2孔102はR2側に配置されている。両孔101,102は概ね円形形状であるが、回転方向両端が互いに重なり合っている。第1孔101の径は第2孔102の径より大きい。孔69は全体としては回転方向に長くのびるひょうたん形状である。

0037

スタッドピン62の胴部62aは第1孔101内に配置されている。スタッドピン62の胴部62aの径は第1孔101の径より小さいため、スタッドピン62は第1孔101内を回転方向に移動可能である。ただし、スタッドピン62の胴部62aの径は突出部103部分の隙間より大きいため、スタッドピン62は、図8点線で示すように突出部103部分すなわち第1孔101のR2側壁に当接すると、それ以上の移動が停止される。

0038

スタッドピン62の胴部と第1孔101の円周方向両側端面との円周方向間に第3隙間角度θ3の隙間が確保されている。これにより第4ストッパー14が形成されている。具体的には、スタッドピン62から見てR2側の第1孔101端面との間を第3隙間角度θ3pとし、スタッドピン62から見てR1側の第1孔101端面との間を第3隙間角度θ3nとする。

0039

第2孔102内には、弾性部材104が配置されている。弾性部材104はスタッドピン62が第1孔101に対してR2側に移動する際の衝撃を緩和するための部材である。弾性部材104は、例えば、ゴム弾性樹脂材料からなり、具体的には熱可塑性ポリエステルエラストマーからなることが好ましい。弾性部材104の形状は概ね円柱形状である。図9に示すように、弾性部材104の軸方向長さは、ハブフランジ6の板厚と概ね同じであり、1対のフリクションプレート11同士の軸方向隙間より小さくなっている。したがって、弾性部材104の軸方向内側面と各フリクションプレート11との間には僅かながらも隙間が確保されるようになっている。また、弾性部材104は、第2孔102とほぼ同一の形状を有しており、第2孔102の壁面に対して僅かな隙間を確保するようになっている。したがって、弾性部材104はハブフランジ6に対して軸方向に移動可能となっている。

0040

なお、弾性部材104が最も第1孔101から離れてR2側に移動した状態でも、弾性部材104の一部、具体的には当接部104bは第1孔101と第2孔102が互いに重なり合った領域に位置している。したがって、スタッドピン62が第1孔101内でR2側に移動した際に弾性部材104に当接可能である。

0041

次に、摩擦発生機構を構成する各部材について説明する。第2摩擦ワッシャー72は、トランスミッション側のフリクションプレート11の内周部とリティーニングプレート22の内周部との間に配置されている。第2摩擦ワッシャー72は主に樹脂製の本体74から構成されている。本体74の摩擦面は、トランスミッション側のフリクションプレート11のトランスミッション側面に当接している。本体74の内周部からはトランスミッション側に係合部76が延びている。係合部76は、リティーニングプレート22に対して相対回転不能に係合されるとともに軸方向に係止されている。本体74の内周部トランスミッション側には複数の凹部77が形成されている。本体74とリティーニングプレート22との間には第2コーンスプリング73が配置されている。第2コーンスプリング73は、第2摩擦ワッシャー72の本体74とリティーニングプレート22との間で圧縮された状態で配置されている。これにより、第2摩擦ワッシャー72の摩擦面はフリクションプレート11に強く圧接されている。第1摩擦ワッシャー79はフランジ54とリティーニングプレート22の内周部との間に配置されている。すなわち、第1摩擦ワッシャー79は第2摩擦ワッシャー72の内周側でかつボス52の外周側に配置されている。第1摩擦ワッシャー79は樹脂製である。第1摩擦ワッシャー79は、主に環状の本体81から構成されており、環状の本体81からは複数の突起82が半径方向外側に延びている。本体81はフランジ54に当接しており、複数の突起82は第2摩擦ワッシャー72の凹部77に相対回転不能に係合している。これにより、第1摩擦ワッシャー79は第2摩擦ワッシャー72を介してリティーニングプレート22と一体回転可能である。第1摩擦ワッシャー79とリティーニングプレート22の内周部との間には第1コーンスプリング80が配置されている。第1コーンスプリング80は第1摩擦ワッシャー79とリティーニングプレート22の内周部との間で軸方向に圧縮された状態で配置されている。なお、第1コーンスプリング80の付勢力は第2コーンスプリング73の付勢力より小さくなるように設計されている。また、第1摩擦ワッシャー79は第2摩擦ワッシャー72に比べて摩擦係数が低い材料から構成されている。このため、第1摩擦ワッシャー79によって発生する摩擦(ヒステリシストルク)は第2摩擦ワッシャー72で発生する摩擦より大幅に小さくなっている。

0042

クラッチプレート21の内周部とフランジ54及びフリクションプレート11の内周部との間には第3摩擦ワッシャー85と第4摩擦ワッシャー86が配置されている。第3摩擦ワッシャー85及び第4摩擦ワッシャー86は樹脂製の環状部材である。第3摩擦ワッシャー85はクラッチプレート21の内周縁に相対回転不能に係合し、その内周面はボス52の外周面摺動可能に当接している。すなわち、クラッチプレート21は第3摩擦ワッシャー85を介してボス52に半径方向の位置決めをされている。第3摩擦ワッシャー85はフランジ54に対して軸方向エンジン側から当接している。第4摩擦ワッシャー86は第3摩擦ワッシャー85の外周側に配置されている。第4摩擦ワッシャー86は環状の本体87と、環状の本体87から軸方向エンジン側に延びる複数の係合部88を有している。本体87は軸方向エンジン側のフリクションプレート11に当接する摩擦面を有している。係合部88はクラッチプレート21に形成された孔内に相対回転不能に係合している。また、係合部88はクラッチプレート21の軸方向エンジン側面に当接する爪部を有している。第3摩擦ワッシャー85と第4摩擦ワッシャー86は互いに相対回転不能に係合している。なお、第3摩擦ワッシャー85と第4摩擦ワッシャー86は別体の部材であり、第4摩擦ワッシャー86は第3摩擦ワッシャー85に対して摩擦係数が高い材料から構成されている。

0043

以上に述べた摩擦機構において、第2摩擦ワッシャー72及び第4摩擦ワッシャー86とフリクションプレート11との間に比較的高いヒステリシストルクを発生させる大摩擦機構13(摩擦機構)が形成されていることになる。さらに、第1摩擦ワッシャー79及び第3摩擦ワッシャー85と、フランジ54との間に低ヒステリシストルクを発生する小摩擦機構15を形成している。

0044

次に、図10を用いてクラッチディスク組立体1の構成についてさらに説明する。図10はクラッチディスク組立体1のダンパー機構としての機械回路図である。この機械回路図は、ダンパー機構における各部材の回転方向の関係を模式的に描いたものである。したがって一体回転する部材は同一の部材として取り扱っている。

0045

図10から明らかなように、入力回転体2とスプラインハブ3との間にはダンパー部4を構成するための複数の部材が配置されている。ハブフランジ6は入力回転体2とスプラインハブ3との回転方向間に配置されている。ハブフランジ6はスプラインハブ3に第1バネ7を介して回転方向に弾性的に連結されている。また、ハブフランジ6とスプラインハブ3との間には第1ストッパー9が形成されている。第1ストッパー9における第1隙間角度θ1pの間で第1バネ7は圧縮可能である。ハブフランジ6は入力回転体2に対して第2バネ8を介して回転方向に弾性的に連結されている。また、ハブフランジ6と入力回転体2との間には第2ストッパー10が形成されている。第2ストッパー10における第4隙間角度θ4pの間で第2バネ8は圧縮可能となっている。以上に述べたように、入力回転体2とスプラインハブ3と直列に配置された第1バネ7と第2バネ8とにより回転方向に弾性的に連結されている。ここでは、ハブフランジ6は2種類のバネの間に配置された中間部材として機能している。また、以上に述べた構造は、並列に配置された第1バネ7及び第1ストッパー9からなる第1ダンパーと、並列に配置された第2バネ8と第2ストッパー10からなる第2ダンパーとが、直列に配置された構造として見ることもできる。第1バネ7全体の剛性は第2バネ8全体の剛性よりはるかに小さく設定されている。そのため、第1隙間角度θ1までの捩り角度の範囲で第2バネ8はほとんど回転方向に圧縮されない。

0046

フリクションプレート11は、入力回転体2とスプラインハブ3との回転方向間に配置されている。フリクションプレート11は、スプラインハブ3とハブフランジ6との間で相対回転するように配置されている。フリクションプレート11は、スプラインハブ3との間に第3ストッパー12を構成し、ハブフランジ6との間に第4ストッパー14を構成している。さらに、フリクションプレート11は、大摩擦機構13を介して入力回転体2に回転方向に摩擦係合している。以上に述べたフリクションプレート11は、入力回転体2, スプラインハブ3及びハブフランジ6の間に配置されることで摩擦連結機構5を構成している。

0047

次に、図10におけるダンパー機構の各隙間角度θ1p〜θ4pの関係について説明する。ここで説明する隙間角度は、スプラインハブ3から入力回転体2をR2側に見た各角度である。第1ストッパー9における第1隙間角度θ1pは第1バネ7が円周方向に圧縮される角度範囲となっており、第2ストッパー10における第4隙間角度θ4pは第2バネ8が回転方向に圧縮される角度範囲となっている。第1隙間角度θ1pと第4隙間角度θ4pとの合計がクラッチディスク組立体1全体としてのダンパー機構の正側最大捩り角度である。第1隙間角度θ1pから第2隙間角度θ2pを引いた差をさらに第3隙間角度θ3pから引いたものが、捩り特性の正側2段目において微小捩り振動が入力された時に大摩擦機構13を作動させないための正側2段目隙間角度θACpとなっている(図14図16を参照すること)。さらに具体的に説明すると、正側2段目隙間角度θACpは、スタッドピン62のR2側部と第1孔101のR2側部との間に形成される。正側2段目隙間角度θACpの大きさはこの実施形態では0.2゜と従来に比べて大幅に小さくなっているが、それより大きくてもよい。

0048

また、図10に示すように、入力回転体2とスプラインハブ3との間には小摩擦機構15が設けられている。小摩擦機構15は入力回転体2とスプラインハブ3が相対回転する際には常に滑りが生じるようになっている。この実施形態では、小摩擦機構15は主に第1摩擦ワッシャー79及び第3摩擦ワッシャー85によって構成されているが、他の部材によって構成されていてもよい。また、小摩擦機構15で発生するヒステリシストルクは場合によっては最大限低いことが望ましい。
(2)捩じり特性
次に、複数の機械回路図及び捩じり特性線図を用いてクラッチディスク組立体1におけるダンパー機構の動作を詳細に説明する。なお、以下の説明は、図10中立状態からスプラインハブ3を入力回転体2に対してR2側に捩っていく正側捩じり特性を説明しており、負側捩じり特性については同様であるので説明を省略する。

0049

図10の中立状態からスプラインハブ3を入力回転体2に対してR2側に捩っていく。このとき入力回転体2はスプラインハブ3に対してR1側すなわち回転方向駆動側に捩れていくことになる。図10の状態からスプラインハブ3がR2側に例えば3゜捩れると図11の状態に移行する。この動作時に、第1バネ7がスプラインハブ3とハブフランジ6との間で回転方向に圧縮され、小摩擦機構15で滑りが生じる。この結果、図18の捩じり特性線図に示すように、低剛性・低ヒステリシストルクの特性が得られる。そして、第1ストッパー9と第3ストッパー12とでそれぞれ隙間角度が3゜小さくなる。図10の状態からθ2p分だけスプラインハブ3が捩れると、図12の状態に移行する。この動作時にも第1バネ7がスプラインハブ3とハブフランジ6との間で回転方向に圧縮され、小摩擦機構15で滑りが生じる。図12では、第3ストッパー12においてスプラインハブ3とフリクションプレート11とが当接し、第1ストッパー9において第1ストッパー9の第1隙間角度θ1pから第3ストッパー12の第2隙間角度θ2pを引いた隙間角度が確保されている。さらに図12の状態からスプラインハブ3がR2側に捩れると、ハブフランジ6に対してフリクションプレート11が回転方向に変位し、大摩擦機構13で滑りが生じるとともに、スタッドピン62が孔69に対してR2側に変位する。図12の状態からスプラインハブ3がR2側にθ1p−θ2p分捩れると、図13の状態に示すように、第1ストッパー9においてスプラインハブ3の外周歯55がハブフランジ6の内周歯59に当接する。また、第4ストッパー14において第1隙間角度θ1pから第2隙間角度θ2pを引いた差をさらに第3隙間角度θ3pから引いた差である正側2段目隙間角度θACpが形成されている。このとき、図15及び図16に示すように、スタッドピン62は弾性部材104に当接して弾性部材104を孔69との間で圧縮している。

0050

図13の状態からさらにスプラインハブ3がR2側に捩れると、図14の状態に移行する。この動作中に、第1ストッパー9が当接しているため第1バネ7は圧縮されず、ハブフランジ6が第2バネ8を入力回転体2との間で圧縮していく。この時、フリクションプレート11と入力回転体2との間で滑りが生じることで大摩擦機構13において摩擦が発生する。この結果、高剛性・高ヒステリシストルクの特性が得られる。なお、この捩り角度2段目においては、ハブフランジ6とフリクションプレート11はともにスプラインハブ3と一体回転するため、フリクションプレート11とハブフランジ6との間には正側2段目隙間角度θACpが維持されている。

0051

図14に示す状態でエンジンの燃焼変動に起因する微小捩り振動が入力された場合には、第2バネ8が圧縮された状態から伸縮する際に正側2段目隙間角度θACp内では大摩擦機構13において滑りが生じない。すなわち正側2段目隙間角度θACpは捩り特性正側2段目において微小捩り振動(所定トルク以下であり、その結果捩じり角の小さな振動)に対して大摩擦機構13で滑りを生じさせない摩擦抑制機構として機能している。したがって、図19に示すように、捩じり角度θACpの範囲では、2段目のヒステリシストルクH2より小さなヒステリシストルクHACが得られる。ヒステリシストルクHACはヒステリシストルクH2の1/10程度であるのが好ましい。

0052

2段目の微小捩じり振動動作時は、ダンパー機構は図14の状態と図17の状態間で交互に互いの状態に移行する。つまり、図17に示す正側AC角範囲の正側端では第4ストッパー14においてスタッドピン62と孔69が衝突し、図14に示す正側AC角範囲の負側端では第3ストッパー12においてスプラインハブ3の外周歯55とフリクションプレート11の内周歯66が衝突している。より詳細には、図17ではスタッドピン62が第1孔101のR2側に衝突し、図14では内周歯66がそのR1側の外周歯55に衝突する。このとき、スタッドピン62の衝突部分には弾性部材104が配置されているため、衝撃が緩和されている。そのため、スタッドピン62や孔69に摩耗が生じにくい。この結果、正側2段目の摩擦抑制機構の所定捩じり角度としてのθACpが大きくなることが抑えられる。

0053

なお、この実施形態では、図15の状態でスタッドピン62が弾性部材104に当接しており、その結果捩じり角度θACpの範囲全てにおいて弾性部材104が回転方向に圧縮される。そのため、図18に示すように、捩じり角度θACpの範囲全てにおいて弾性部材104の剛性が現れる。しかし、図15及び図16の状態でスタッドピン62と弾性部材104との間に隙間を確保して、捩じり角度θACpの範囲の一部でのみ弾性部材104が圧縮されるようにしてよい。また、図15及び図16の状態でスタッドピン62と弾性部材104との隙間を大きく確保して、捩じり角度θACpの端でのみ弾性部材104が圧縮されるようにしてもよい。いずれの場合も、捩じり角度θACpにおいてスタッドピン62と孔69との間における衝撃が緩和される。

0054

なお、前記実施形態では、スタッドピン62は第1孔101に当接するとしたが、当接前に弾性部材104が大摩擦機構13の摩擦抵抗より大きな荷重を発生するように設定してもよい。その場合には、スタッドピン62がハブフランジ6の孔69の縁に当接することはない。したがって、捩じり角度θACpとは、図8中立位置からスタッドピン62が実際にハブフランジ6に対してR2側に移動できる範囲をいうことになる。

0055

弾性部材104は、第2孔102に対して固定されていないため、軸方向に移動可能である。したがって、弾性部材104が軸方向両側のフリクションプレート11の一方に摺動しにくい。この結果、弾性部材104がヒステリシストルクを発生したり又は摩耗したりする等の不具合は生じにくい。

0056

次に、具体的にクラッチディスク組立体1に各種捩り振動が入力された時の捩り特性の変化について説明する。車両の前後振動のように振幅の大きな捩り振動が発生すると、捩り特性は正負の2段目間で変動を繰り返す。この時2段目の高ヒステリシストルクによって車両の前後振動は速やかに減衰される。

0057

次に、例えば通常走行時においてエンジンの燃焼変動に起因する微小捩り振動がクラッチディスク組立体1に入力されたとする。この時、スプラインハブ3と入力回転体2とは正側2段目隙間角度θACpの範囲内で大摩擦機構13を作用させず相対回転可能である。すなわち捩り特性線図において隙間角度θACp範囲内では第2バネ8が作動するが、大摩擦機構13では滑りが生じない。この結果、走行時ラトル、こもり音の原因となる微小捩り振動を効果的に吸収できる。
(3)他の実施形態
図20及び図21に示すように、弾性部材104をスタッドピン62の回転方向両側に設けてもよい。この場合は、孔69は、第1孔101と、その回転方向両側に一体に形成された1対の第2孔102とから形成されている。各第2孔102には弾性部材104が配置されている。弾性部材104の形状や弾性部材104と第2孔102との関係は前記実施形態と同様である。この実施形態では、捩じり特性負側の微小捩じり振動に対する摩擦抑制機構においても衝突部分の衝撃を緩和できる。

0058

図22に示すように、スタッドピン62の周囲に弾性部材106を巻く構造にしてもよい。この場合は孔111の形状は単純な長円又は楕円形状になる。この場合も前記実施形態と同様の効果が得られる。さらに、弾性部材をピンの回転方向片側にのみ設けてもよい。

0059

図23に示すように、弾性部材107を第2孔102にモールド成形してもよい。弾性部材を第2孔に対して単に挿入しただけの構造では、部品が小さいため組み付けが困難であり、寸法公差各部材間の隙間等の設定がばらついて好ましくない部分に隙間が発生したり、さらには弾性部材の剛性がばらつく等の問題が考えられる。弾性部材を第2孔102に直接モールドすると上記問題が解決される。

0060

図24に示すように、スプラインハブ3の外周歯55とフリクションプレート11の内周歯66との間に弾性部材108を設けてもよい。図26においては、弾性部材108は内周歯66のR1側面の切欠き66aにモールド成形されている。このため、外周歯55がそのR2側の内周歯66に当接する際の衝撃が緩和される。

0061

弾性部材は、外周歯55側に設けられていてもよいし、外周歯55とそのR1側の内周歯66との間に設けられていてもよい。スプラインハブ3の外周歯55とフリクションプレート11の内周歯66との間に弾性部材を設ける実施形態は、ピンとハブフランジの孔との間に弾性部材を設ける実施形態と組みあわせてもよいし、本実施形態単独であってもよい。

0062

以上に述べた各実施形態は、単独で用いることも可能であり、必要に応じて適宜組みあわせて用いることも可能である。さらに、ピン、第1孔、第2孔及び弾性部材の形状は、前記実施形態に限定されない。

0063

本発明に係るダンパー機構は、クラッチディスク組立体以外にも採用可能である。例えば、2つのフライホイールを回転方向に弾性的に連結するダンパー機構等である。

発明の効果

0064

本発明に係るダンパー機構では、所定角度の範囲内では摩擦機構が作動しないため、所定角度範囲内の端ではエンジンの燃焼変動によって部材間の衝突が生じうる。しかし、弾性部材を設けることで互いに当接する部材の衝撃を緩和しているため、部材の摩耗が少なくなり、所定角度が大きくなることが抑えられる。

図面の簡単な説明

0065

図1クラッチディスク組立体の縦断面概略図。
図2クラッチディスク組立体の平面図。
図3図1部分拡大図
図4図1の部分拡大図。
図5各部分の捩り角度を説明するための平面図。
図6各部分の捩り角度を説明するための平面図。
図7各部分の捩り角度を説明するための平面図。
図8ピンとハブフランジの孔の関係を示す平面図。
図9図8のIX-IX断面図。
図10クラッチディスク組立体のダンパー機構の機械回路図。
図11クラッチディスク組立体のダンパー機構の機械回路図。
図12クラッチディスク組立体のダンパー機構の機械回路図。
図13クラッチディスク組立体のダンパー機構の機械回路図。
図14クラッチディスク組立体のダンパー機構の機械回路図。
図15図14の状態における各部品の位置を説明するための平面図。
図16図15の部分拡大図であり、図8に対応する図。
図17クラッチディスク組立体のダンパー機構の機械回路図。
図18ダンパー機構の捩じり特性線図。
図19図18の部分拡大図。
図20他の実施形態において、ピンとハブフランジの孔の関係を示す平面図。
図21図22のXXIII-XXIII断面図。
図22他の実施形態において、ピンとハブフランジの孔の関係を示す平面図。
図23他の実施形態において、ピンとハブフランジの孔の関係を示す平面図。
図24他の実施形態において、スプラインハブとフリクションプレートの関係を示す平面図。

--

0066

1クラッチディスク組立体
2入力回転体
3スプラインハブ(第4部材)
4ダンパー部
5摩擦連結機構
6ハブフランジ(第1部材)
8 第2バネ(ばね部材)
11フリクションプレート(第3部材)
13 大摩擦機構(摩擦機構)
62ピン(第2部材)
69 孔
101 第1孔
102 第2孔
104弾性部材
θACp 正側2段目隙間角度(摩擦抑制機構)

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 青島理工大学の「 能動回転慣性量駆動制御システム」が 公開されました。( 2021/04/01)

    【課題】システムにおける振動抑制の分野に関し、具体的に、能動回転慣性量駆動制御システムに関する。【解決手段】受力体、駆動アセンブリ及び回転慣性量プレートを備える能動回転慣性量駆動制御システムにおいて、... 詳細

  • 日本電産サンキョー株式会社の「 ダンパー部材の製造方法、ダンパー部材、及びアクチュエータ」が 公開されました。( 2021/04/01)

    【課題】特性が安定した複数のダンパー部材を短時間で製造することのできるダンパー部材の製造方法、ダンパー部材、及びそのダンパー部材を使用したアクチュエータを提供する。【解決手段】ステップST11により、... 詳細

  • いすゞ自動車株式会社の「 制御装置」が 公開されました。( 2021/04/01)

    【課題】半クラッチ状態において車両の速度をより精度よく自動制御するための制御装置を提供する。【解決手段】車両100の目標速度と車両100の位置とを関連付けて示す速度計画を取得する計画取得部521と、車... 詳細

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ