図面 (/)

技術 脈波伝播速度計測装置及び超音波診断装置

出願人 日立アロカメディカル株式会社菅原基晃
発明者 原田烈光岡田孝菅原基晃
出願日 2001年1月30日 (20年8ヶ月経過) 出願番号 2001-022198
公開日 2002年8月13日 (19年2ヶ月経過) 公開番号 2002-224063
状態 特許登録済
技術分野 脈拍・心拍・血圧・血流の測定 超音波診断装置 超音波診断装置
主要キーワード ピークレベル検出器 超音波変位計 Mモード 判定レベル設定 演算期間 前進波 変位演算 Bモード
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2002年8月13日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (5)

課題

血管の局所部位における脈波伝播速度を高精度に演算する。

解決手段

血管における局所部位の血流速度血圧とが計測される。ウエーブインテンシティの値にしたがって前進波のみが生じていると思われる演算期間310,312が設定され、各期間内において、血圧の時間微分及び血流速度の時間微分から脈波伝播速度が算出される。

概要

背景

概要

血管の局所部位における脈波伝播速度を高精度に演算する。

血管における局所部位の血流速度血圧とが計測される。ウエーブインテンシティの値にしたがって前進波のみが生じていると思われる演算期間310,312が設定され、各期間内において、血圧の時間微分及び血流速度の時間微分から脈波伝播速度が算出される。

目的

効果

実績

技術文献被引用数
2件
牽制数
3件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

血管における特定部位について血流速度演算する血流速度演算手段と、前記特定部位について血圧を演算する血圧演算手段と、前記特定部位についての血流速度及び血圧から、当該特定部位について脈波伝播速度を演算する脈波伝播速度演算手段と、を含むことを特徴とする脈波伝播速度計測装置

請求項2

請求項1記載の装置において、前記血流速度の時間微分を演算する第1微分演算手段と、前記血圧の時間微分を演算する第2微分演算手段と、を含み、前記脈波伝播速度は、前記血流速度の時間微分及び前記血圧の時間微分から演算されることを特徴とする脈波伝播速度計測装置。

請求項3

請求項1記載の装置において、心拍周期に基づいて演算期間を判定する期間判定手段を含み、前記演算期間内において前記脈波伝搬速度が演算されることを特徴とする脈波伝搬速度計測装置

請求項4

請求項3記載の装置において、前記期間判定手段は、心拍周期に応じて値が変動する所定の生体情報に基づいて前記演算期間を判定することを特徴とする脈波伝播速度計測装置。

請求項5

請求項4記載の装置において、前記所定の生体情報は、循環器系循環動態を評価する指標であるウエーブインテンシティであることを特徴とする脈波伝播速度計測装置。

請求項6

請求項5記載の装置において、前記期間判定手段は、前記ウエーブインテンシティのピークを検出するピーク検出手段と、前記ウエーブインテンシティのピークに基づいて前記演算期間を設定する設定手段と、を含むことを特徴とする脈波速度計測装置

請求項7

請求項6記載の装置において、前記ピーク検出手段は、前記ウエーブインテンシティの第1ピーク及び第2ピークを検出することを特徴とする脈波速度計測装置。

請求項8

請求項3記載の装置において、前記脈波伝播速度演算手段は、前記脈波伝播速度の前記演算期間内における平均値を演算することを特徴とする脈波伝播速度計測装置。

請求項9

血管の特定部位に対して超音波送受波を行い、受信信号を出力する送受波器と、前記受信信号に基づいて前記特定部位における血流速度を演算する血流速度演算手段と、前記特定部位における血管壁変位を演算する変位演算手段と、前記血管壁の変位を利用して、前記特定部位についての血圧を演算する血圧演算手段と、前記血流速度の時間微分及び前記血圧の時間微分を演算する微分演算手段と、前記血流速度の時間微分及び前記血圧の時間微分に基づいて、前記特定部位における血管壁の性状を表す指標値を演算する指標値演算手段と、を含むことを特徴とする超音波診断装置

請求項10

請求項9記載の装置において、前記指標値は前記血管壁を伝播する脈波の速度であることを特徴とする超音波診断装置。

請求項11

請求項9記載の装置において、前記血圧演算手段は、血圧計によって測定された他の部位の最大血圧及び最小血圧参照値として、前記血管壁の変位から前記特定部位についての血圧を演算することを特徴とする超音波診断装置。

請求項12

請求項10記載の装置において、前記脈波伝播速度と共にそれを演算するために利用された1又は複数の情報を同時表示する表示器を含むことを特徴とする超音波診断装置。

技術分野

0001

本発明は脈波伝播速度計測装置及び超音波診断装置に関し、特に、血管壁伝播する脈波速度計測方式に関する。

0002

脈波伝播速度(Pulse Wave Velocity)は、血管の性状、特に硬さを示す優れた指標である。したがって、動脈硬化などの循環器系疾病診断するために、脈波伝播速度の計測が求められている。

0003

脈波計による脈波伝播速度の計測は古くから行われてきているが、頸動脈大腿動脈との間における脈波の平均速度しか計測できない。したがって、このような計測によると、局所的な血管の性状について診断できないという問題がある。

0004

超音波ドプラ法を用いて脈波伝搬速度の計測を行う手法も提案されている。この手法では、数cm程度離れた2点を通過するように2つの超音波ビームが血管に設定され、その2点間を流れる血流の伝播時間から脈波伝播速度が演算される。しかし、この手法は、同時に2カ所でドプラ計測を行うために二つのプローブを使用するので、装置の規模が大きくなる。また、この従来の手法でも、数cm以下の局所の部位について脈波伝播速度を計測することはできない。

0005

なお、特公平7−67450号公報、特許第2801450号公報、特開2000−271117号公報には、血管壁の変位を計測する技術が開示されている。また、本特許出願の出願時点で未公開の特願2000−032856号、特願2000−123615号、特願2000−203146号及び特願2000−245892号には後述するウエーブインテンシティ(WI)に関する技術が開示されている。しかし、いずれの文献にも脈波伝播速度の計測については開示されていない。

0006

本発明は、上記従来の課題に鑑みなされたものであり、その目的は、血管の局所的な性状、特に脈波伝播速度を精度良く計測することにある。

課題を解決するための手段

0007

I.原理説明
生体内における特定の血管部位に注目すると、当該特定部位における血管壁を伝播する脈波としては、心臓から末梢へ伝播する「前進波」と、末梢から反射してきた「反射波」がある。局所部位において、前進波により微小時間dt内に引き起こされる局所的な血圧及び血流速度の変化をそれぞれdPf,dUfとし、反射波により微小時間dt内に引き起こされる局所的な血圧及び血流速度の変化をそれぞれdPb,dUbとする。

0008

生理学等において古くから知られているwater-hammer equationによれば、次式が成り立つ。但し、ρは血液の密度であり、cは脈波伝播速度である。

0009

dPf= ρcdUf ・・・(1)
dPb=−ρcdUb ・・・(2)
一方、局所部位における血圧の変化dPと血流速度の変化dUは、次式で表される。

0010

dP=dPf+dPb ・・・(3)
dU=dUf+dUb ・・・(4)
もし、血管のある局所的な特定部位において、ある時刻での血流の変化及び血圧の変化が、前進波のみによって引き起こされたならば、dP及びdUは次のように表される。

0011

dP=dPf ・・・(5)
dU=dUf ・・・(6)
以上の(5)式及び(6)式から(1)式は、次のように表すことができる。

0012

dP=ρcdU ・・・(7)
この(7)式から、脈波伝搬速度cは次のように表される。

0013

c=(dP/dU)/ρ ・・・(8)
心拍時相に応じて、血管壁には前進波と反射波が重なり合って伝播するが、そのような中で、前進波のみが支配的になっている期間を特定できれば、その期間内において上記(8)式から脈波伝搬速度を演算することができる。

0014

一方、循環器系の循環動態を評価するための指標としてウエーブインテンシティ(WI:Wave Intensity)が知られている。ウエーブインテンシティWIは、血圧Pの時間微分をdP/dtと表し、血流速度Uの時間微分をdU/dtと表すと、以下のように表すことができる。

0015

WI=(dP/dt)(dU/dt) ・・・(9)
このWIの演算のためのdP/dtとdU/dtを用いると、(8)式のdP/dUが次式から求められる。

0016

dP/dU=(dP/dt)/(dU/dt) ・・・(10)
ウエーブインテンシティの波形を観察すると、心臓における血流の駆出過程初期及び終期に2つの正のピーク(第1ピーク,第2ピーク)が認められる。ウエーブインテンシティが正であるということは、局所部位における血圧の変化及び血流速度の変化が主として前進波によって引き起こされていることを意味している。

0017

したがって、ウエーブインテンシティの波形に基づいて、前進波のみが生じているとみなせる期間を特定することができ、そのように特定された期間では上記の(10)式の値を(8)式に代入すると、脈波伝播速度cを演算することが可能となる。なお、血液密度ρは一定値みなすことができる。

0018

また、ある局所的な部位において、前進波のみが生じている期間は心拍に同期して生じるので、ウエーブインテンシティ以外の心拍を表す生体情報(例えば心電信号)を基礎として、上記の(8)式を演算する期間を判定することも可能である。

0019

II.解決手段の説明
(1)上記目的を達成するために、本発明は、血管における特定部位について血流速度を演算する血流速度演算手段と、前記特定部位について血圧を演算する血圧演算手段と、前記特定部位についての血流速度及び血圧から、当該特定部位について脈波伝播速度を演算する脈波伝播速度演算手段と、を含むことを特徴とする。

0020

上記構成によれば、上述した原理に従って、特定部位について局所的な血流速度及び血圧が計測演算され、それらを利用して、脈波伝播速度が演算される。計測対象としては、人体、それ以外の動物をあげることができる。局所的な血流速度は超音波ドプラ法を用いて計測するのが望ましいが、他の計測方法を利用することもできる。局所的な血圧の計測には、血圧計及び超音波変位計測法を用いて計測するのが望ましいが、他の計測方法を利用することもできる。

0021

ちなみに、体外から超音波探触子を利用して超音波計測を行うようにしてもよいし、血管内にカテーテル型の超音波探触子を挿入して、局所的な血流速度や血圧を計測するようにしてもよい。また、上述した原理説明では、血流速度の時間微分及び血圧の時間微分の各演算が示されていたが、そのためのハードウエア演算及びソフトウエア演算において、血流速度及び血圧から直接的に脈波伝播速度を求めることも可能である。更に、上記した原理説明では、特定の演算期間内で脈波伝播速度の演算が行われたが、そのような演算期間外においても脈波伝播速度の演算を事実上実行するようにしてもよい。例えば、個々の時相の演算結果を表示すれば、演算期間の判定が適正か否かを評価できる。また、前進波ではなく反射波について脈波伝播速度の演算を行うことも考えられる。

0022

(2)望ましくは、前記血流速度の時間微分を演算する第1微分演算手段と、前記血圧の時間微分を演算する第2微分演算手段と、を含み、前記脈波伝播速度は、前記血流速度の時間微分及び前記血圧の時間微分から演算される。また、望ましくは、心拍周期に基づいて演算期間を判定する期間判定手段を含み、前記演算期間内において前記脈波伝搬速度が演算される。

0023

望ましくは、前記期間判定手段は、心拍周期に応じて値が変動する所定の生体情報に基づいて前記演算期間を判定する。生体情報としては、前進波が支配的となっている期間を直接的にあるいは間接的に判定可能な情報であればよい。

0024

例えば、ウエーブインテンシティと類似した指標として以下のようなWInをあげることができる。ここで、Dは血管直径である。

0025

WIn=[(1/D)(dD/dt)](dU/dt)
・・・(11)
本発明者の研究によれば、上記のWInは、ウエーブインテンシティと同等の性質をもつ指標であることが確認されており、WInを第2ウエーブインテンシティと呼ぶことができる。このような指標を基準として、前進波が支配的な期間を特定することもできる。

0026

(3)望ましくは、前記所定の生体情報は、循環器系の循環動態を評価する指標であるウエーブインテンシティである。すなわち、ウエーブインテンシティあるいは上記第2ウエーブインテンシティは、前進波の強さの指標としての性質を有し、そのウエーブインテンシティから直接的に前進波が支配的に生じている期間を判定可能である。

0027

望ましくは、前記期間判定手段は、前記ウエーブインテンシティのピークを検出するピーク検出手段と、前記ウエーブインテンシティのピークに基づいて前記演算期間を設定する設定手段と、を含む。ここで、望ましくは、前記ピーク検出手段は、前記ウエーブインテンシティの第1ピーク及び第2ピークを検出する。例えば、ピークの頂点位置の時相で脈波伝播速度を演算してもよいし、ピークレベルから一定値までの範囲を演算期間として判定してもよいし、ウエーブインテンシティが所定の閾値を越える期間を演算期間と判定するようにしてもよい。

0028

望ましくは、前記脈波伝播速度演算手段は、前記脈波伝播速度の前記演算期間内における平均値を演算する。平均値によれば、ノイズなどの影響を低減し精度良く脈波伝播速度を演算できる。

0029

(4)また、上記目的を達成するために、本発明は、血管の特定部位に対して超音波の送受波を行い、受信信号を出力する送受波器と、前記受信信号に基づいて前記特定部位における血流速度を演算する血流速度演算手段と、前記特定部位における血管壁の変位を演算する変位演算手段と、前記血管壁の変位を利用して、前記特定部位についての血圧を演算する血圧演算手段と、前記血流速度の時間微分及び前記血圧の時間微分を演算する微分演算手段と、前記血流速度の時間微分及び前記血圧の時間微分に基づいて、前記特定部位における血管壁の性状を表す指標値を演算する指標値演算手段と、を含むことを特徴とする。ここで、望ましくは、前記指標値は前記血管壁を伝播する脈波の速度である。

0030

望ましくは、前記血圧演算手段は、血圧計によって測定された他の部位の最大血圧及び最小血圧参照値として、前記血管壁の変位から前記特定部位についての血圧を演算する。血圧計としては上腕に巻いて血圧を測定するカフ型の血圧計などをあげることができる。

0031

望ましくは、前記脈波伝播速度と共にそれを演算するために利用された1つ又は複数の情報を同時表示する表示器を含む。各情報の波形表示を行えば、各情報間相関関係分析評価したり、適正な演算が行われたか否かの判断をすることができる。

発明を実施するための最良の形態

0032

以下、本発明の好適な実施形態を図面に基づいて説明する。

0033

図1には、本発明に係る超音波診断装置の好適な実施形態が示されており、図1は超音波診断装置の全体構成を示すブロック図である。この超音波診断装置は、脈波伝播速度を演算する機能を具備している。

0034

図1において、プローブ10は、生体12の表面上に当接されている。プローブ10は、その内部にアレイ振動子22を有している。アレイ振動子22は、複数の振動素子22aによって構成されている。

0035

生体12の内部には、体表面からある距離をおいて血管14が存在しており、その血管14の内部には血流20が流れている。血管14は血管壁15を有し、その血管壁は、プローブ10からみて前壁16と後壁18とに大別される。

0036

上記のアレイ振動子22に対する電子走査制御により、超音波ビームが所定方向に電子走査され、これにより二次元走査面が形成される。図1においては、その走査面の一方端側の超音波ビームが符号24によって表され、他方端側の超音波ビームが符号26によって表されている。図1に示す電子走査方式電子リニア走査であるが、電子セクタ走査などにも本発明を適用できる。

0037

本実施形態では、ユーザー設定によって、血管14の中心軸と直交する方向に血管壁変位計測用の超音波ビーム28が設定され、またその血管壁変位計測用の超音波ビーム28に交差するドプラ計測用の超音波ビーム30が自動的に設定される。

0038

ここで、血管壁変位計測用の超音波ビーム28は、血管14の中心軸を含む垂直断面内に位置決めされるのが望ましく、その超音波ビーム28上にはユーザー設定により望ましくは2つのトラッキングゲート34,36が設定される。具体的には、トラッキングゲート34は、前壁16のエッジを含む領域として設定され、トラッキングゲート36は後壁18のエッジを含む領域として設定される。後述の変位演算部48は、これらのトラッキングゲート34,36内において血管壁のエッジを自動的にトラッキングし、血管壁の変位Dを演算する。

0039

また、ドプラ計測用の超音波ビーム30上には、ユーザー設定によりあるいは自動設定により、サンプルボリューム32が設定される。このサンプルボリューム32を自動設定する場合には、2つのトラッキングゲート34,36の中間点を基準とした一定の範囲として当該サンプルボリューム32が設定されることになる。ドプラ計測用の超音波ビーム30は、2つのトラッキングゲート34,36の中間点を通過するように、超音波ビーム28に対して斜め方向に設定される。つまり、血流の流れと直交する方向から超音波を送受波してもドプラ情報を検出することができないため、このようにドプラ計測用ビーム30が超音波ビーム28から傾斜した角度に設定される。

0040

ちなみに、演算精度を高めるために、超音波ビーム28が血管14の中心軸と直交していない場合には、後述の変位演算部48によって演算される変位Dに対して角度補正を行うようにしてもよい。また血流の流れに対するドプラ計測用ビーム30の傾斜角度に従って、後述の血流速度演算部50により演算される平均速度Uに対しても角度補正を行ってもよい。

0041

送信部38は、アレイ振動子22を構成する各振動素子に対して送信信号を供給する回路であり、この送信部38において各送信信号に対して所定の遅延時間を付与することによって送信ビームが形成される。また、この送信部38の作用によってその送信ビームが電子走査される。

0042

一方、受信部40は、アレイ振動子22を構成する各振動素子から出力される受信信号に対していわゆる整相加算を実行する回路である。具体的には、各受信信号に対して所定の遅延時間を付与し、その後に加算を行うことにより電子的に受信ビームが形成される。また、この受信部40の作用により受信ビームが電子走査される。

0043

なお、変位計測用の送受信方位及びドプラ計測用の送受信方位が設定されると、送信部38及び受信部40は、それらの送受信方位にそれぞれ血管壁変位計測用の超音波ビーム28及びドプラ計測用の超音波ビーム30が形成されるように送受信制御を行う。その場合においては、血管壁変位計測用の超音波ビーム28とドプラ計測用の超音波ビーム30とを交互に設定してもよく、あるいは、超音波ビームの電子スキャンを行いながら、それらのビーム28,30を所定周期で設定するようにしてもよい。

0044

ちなみに、プローブ10は例えば人体の頸部に当接され、血管14は、例えば頸動脈である。また送受波される超音波の中心周波数は、例えば7.5MHzである。

0045

制御部42は、超音波診断装置の全体動作を制御しており、その制御部42には操作パネル44が接続されている。その操作パネル44はスイッチやキーボードトラックボールなどで構成されるものであり、ユーザーはこの操作パネル44を利用して各種の設定や入力を行うことができる。制御部42はそのような設定等に基づいて送信部38、受信部40、その他の装置内における各回路の動作制御を行っている。ちなみに、図1に図示されているように、血圧計200が設けられている。

0046

超音波画像形成部46は、受信部40から出力される整相加算後の受信信号に基づいて、生体内の断層画像Bモード画像)や、Mモード画像あるいはその他の超音波画像を形成する回路である。このように形成された超音波画像の画像データは表示処理部52に出力されている。

0047

変位演算部48は、図1に示す血管壁変位計測用の超音波ビーム28上において得られた受信信号(エコーデータ)に基づいて、血管14の直径Dを演算する回路である。具体的には、トラッキングゲート34内において前壁16のエッジをトラッキングしつつその位置を逐次検出し、これと同様に、後壁18のエッジについてもトラッキングゲート36内においてそれをトラッキングしてその位置を逐次検出し、それらの2つの壁16,18の間の距離を演算することによって各時刻における血管14の直径Dを演算している。

0048

ちなみに、血管壁の変位をトラッキングする場合においては、受信信号の位相に基づいてそのトラッキングを行ってもよいし、受信信号の振幅を利用してトラッキングを行うようにしてもよい。トラッキングに対しては各種の公知の手法を利用することができる。

0049

血流速度演算部50は、例えば、直交検波器自己相関器などによって構成され、ドプラ計測用の超音波ビーム30上において得られた受信信号(エコーデータ)に基づいて、具体的には、サンプルボリューム32内において得られたエコーデータに基づいて、血流の平均速度Uを演算する回路である。つまり、サンプルボリューム32は一定の幅を有しており、その一定の幅内にはいろいろな血流の速度成分が存在しているが、血流速度演算部50はそれらの速度成分の平均値として平均速度Uを演算している。

0050

血流速度演算部50から出力される血流速度Uの情報は微分器206に入力され、その微分器において血流速度の時間微分dU/dtが演算される。その演算結果である血流速度の時間微分dU/dtは、本実施形態において、WI演算部210及び脈波伝播速度演算部212に出力されている。

0051

一方、局所血圧演算部204には、血圧計200から出力された血圧の情報202が入力されている。ここで、血圧計200は例えば上腕に巻かれて血圧を測定するカフ型の血圧計である。局所血圧演算部204には、血圧の情報202とともに血管直径Dの情報が入力されている。局所血圧演算部204は、血圧計200で測定された各心拍中の最大血圧及び最小血圧を判定し、血管径最大値及び最小値を最大血圧及び最小血圧に較正して換算式を決定し、その換算式を利用して各時刻の血管径から計測対象となった局所部位の血圧Pを算出している。この処理自体は公知であるが、いずれにしても血流速度が計測された局所部位について局所血圧Pが演算される。その局所血圧Pの情報は、微分器208に入力され、その微分器208において局所血圧の時間微分dP/dtが演算される。その局所血圧の時間微分dP/dtの情報は、本実施形態において、WI演算部210及び脈波伝播速度演算部212に出力されている。

0052

WI演算部210は、本実施形態においては、上記の(9)式を実行して、ウエーブインテンシティWIを演算している。その演算結果であるウエーブインテンシティWIの情報は、脈波伝播速度演算部212及び表示処理部52に出力されている。

0053

脈波伝播速度演算部212は上記の(8)式に従って脈波伝播速度cを演算する回路である。具体的な回路構成については後に図2及び図3を用いて説明する。演算された脈波伝播速度の情報は表示処理部52へ出力されている。なお、図1に示す各構成は必要に応じてソフトウエアによって構成することもできる。

0054

表示処理部52は、スキャンコンバータ及び画像処理部として機能するものであり、図示されるように、超音波画像の画像データ、血管直径Dのデータ、血流速度Uのデータ、脈波伝播速度cのデータ、ウエーブインテンシティWIのデータ、心電信号(図示されていない心電計からの信号53)などが入力されている。この表示処理部52は、各信号の波形を同一の時間軸上に並べてグラフとして表示する機能を有している。表示部56には、超音波画像及び各情報がグラフとして表示される。その表示例については後に図4を用いて説明する。

0055

図2には、図1に示した脈波伝播速度演算部212の具体的な回路構成例がブロック図として示されている。弁別器214は演算期間設定器として機能するものであり、換言すれば、前進波が支配的である期間を推定する機能を有している。具体的には、弁別器214にはウエーブインテンシティWIの情報が入力されており、あらかじめ設定された所定の判定レベルK1よりもウエーブインテンシティWIの値が大きくなった場合に、弁別器214は演算許可信号を出力する。周知のように1心拍中において、ウエーブインテンシティの波形を見ると、2つの大きなピークが観察され、各ピークごとに弁別器214が演算期間を設定する。これについては後に図4を用いて説明する。

0056

演算器216には一定値とみなせる血液密度ρが入力され、弁別器214によって設定された演算期間内において、上述した(8)式にしたがって脈波伝播速度cが演算される。このように演算された脈波伝播速度cの情報は表示処理部52(図1参照)に出力される他、本実施形態においては、平均値演算器218に出力されている。この平均値演算器218は、上記の演算期間内において脈波伝播速度の平均値c’を演算する回路である。そのような平均値c’は上記の表示処理部52に出力される。

0057

図3には、図1に示した脈波伝播速度演算部212の他の具体的な構成例が示されている。この図3に示すブロック図において、ウエーブインテンシティWIの情報はメモリ222に一旦格納されると共にピークレベル検出器220に入力されている。ここで、ピークレベル検出器220は、上述したウエーブインテンシティの波形における第1ピークの頂点のレベル及び第2ピークの頂点のレベルを検出する回路である。このようにピークレベルが検出されると、判定レベル設定器224は、検出されたピークレベルから所定値だけ下がった値として判定レベルK2を設定する。

0058

演算期間設定器226には、メモリ222から読み出されるウエーブインテンシティWIの情報が入力されており、その値が判定レベルK2を上回った期間として演算期間が設定されている。その演算期間内においては演算期間設定されている。その演算期間内においては演算期間設定器226から演算器232へ演算許可信号が出力される。

0059

一方、メモリ228には局所血圧の時間微分dP/dtの情報が格納され、メモリ230には血流速度の時間微分dU/dtの情報が格納されている。演算器232は、上記の(8)式にしたがって各時刻の脈波伝播速度cを演算する。その場合においては、設定された演算期間内においてのみ脈波伝播速度cの演算が実行されている。

0060

このように演算された脈波伝播速度cの情報は図1に示した表示処理部52に出力される他、平均値演算器234に出力されており、その平均値演算器234では演算期間内における脈波伝播速度cの平均値c’を演算している。その情報は図1に示した表示処理部52に出力されている。

0061

図2及び図3に示した回路構成例は一例であって、これ以外にも他の回路構成を採用することができる。また、上記の各演算をソフトウエア処理によって実現するようにしてもよい。

0062

上記のウエーブインテンシティに基づく演算期間の設定によれば、動脈上における前進波が支配的である期間を判定し、その期間内において脈波伝播速度を精度良く演算することができるという利点がある。よって、前進波が支配的である期間を特定できる限りにおいて、ウエーブインテンシティ以外の生体情報を利用することも可能である。

0063

図4には、図1に示した表示部56に表示される画面の例が示されている。図4に示されるように、互いに時間軸を一致させて複数の情報が波形表示されている。具体的には、局所血圧Pの波形301、血流速度Uの波形302、脈波伝播速度cの波形303、ウエーブインテンシティWIの波形304及び心電信号の波形305が表示されている。また、これに伴って、ウエーブインテンシティの第1ピーク及び第2ピークごとに、各ピークにおける脈波伝播速度の数値と各演算期間内における脈波伝播速度の平均値が、例えばm/sの単位で数値表示されている。なお、図4において符号305Aは第1ピークを示しており、符号305Bは第2ピークを示している。

0064

図4において、ウエーブインテンシティ304に関しては、上述したように所定の判定レベルK(=K1又はK2)が設定され、ウエーブインテンシティの値がその判定レベルKを上回った期間310,312がそれぞれ演算期間として設定される。すなわちそれらの演算期間310,312内においてのみ脈波伝播速度cが演算されている。上述したように、例えば心電図のR波を基準として前進波のみが生じる期間314,316を推定し、当該期間314,316において脈波伝播速度の演算を実行するようにしてもよい。図4に示す表示例はもちろん一例であって、これ以外にも他の表示例を採用することができる。

発明の効果

0065

以上説明したように、本発明によれば、血管における局所部位の性状についてのデータをリアルタイムで精度良く取得できる。

図面の簡単な説明

0066

図1本実施形態に係る超音波診断装置の全体構成を示すブロック図である。
図2脈波伝播速度演算部の回路構成例を示す図である。
図3脈波伝播速度演算部の他の回路構成例を示す図である。
図4表示画面に表示される各種の波形を示す図である。

--

0067

10プローブ、46超音波画像形成部、48変位演算部、50血流速度演算部、52表示処理部、56 表示部、200血圧計、204局所血圧演算部、206微分器、208 微分器、210ウエーブインテンシティ(WI)演算部、212脈波伝播速度演算部。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ