図面 (/)

技術 偏光反射素子、これを備えた液晶表示素子、および偏光反射素子の製造方法

出願人 株式会社ジャパンディスプレイセントラル
発明者 大竹利也久武雄三
出願日 2000年12月4日 (19年11ヶ月経過) 出願番号 2000-368691
公開日 2002年6月14日 (18年5ヶ月経過) 公開番号 2002-169021
状態 特許登録済
技術分野 回折格子、偏光要素、ホログラム光学素子 液晶4(光学部材との組合せ) 偏光要素 液晶4(光学部材との組合せ) 他類に属さない組成物
主要キーワード 板状光源 楕円軸 円偏光度 平均値α プロセス負荷 電解制御 右楕円偏光 マスクスパッタ法
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2002年6月14日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (11)

課題

光の利用効率が高く、コントラストの高い偏光反射素子、偏光反射素子を用いた液晶表示素子、偏光反射素子の製造方法を提供する。

解決手段

偏光反射素子8は、積層された複数のコレステリック液晶層3ないし6を有し、各コレステリック液晶層は、ポリマー化されているとともに、螺旋状の液晶分子配列からなり、略法線方向に螺旋軸を有している。液晶分子ねじれ角の面内平均値αは、ほぼnπ(n=1、2、3、・・・)である。コレステリック液晶層は、各層の界面で液晶分子の向きが連続的につながり、全体として一つの滑らかな螺旋構造を形成している。そして、半透過型の液晶表示素子においては、この偏光反射素子を選択反射層として用いる。

概要

背景

概要

光の利用効率が高く、コントラストの高い偏光反射素子、偏光反射素子を用いた液晶表示素子、偏光反射素子の製造方法を提供する。

偏光反射素子8は、積層された複数のコレステリック液晶層3ないし6を有し、各コレステリック液晶層は、ポリマー化されているとともに、螺旋状の液晶分子配列からなり、略法線方向に螺旋軸を有している。液晶分子ねじれ角の面内平均値αは、ほぼnπ(n=1、2、3、・・・)である。コレステリック液晶層は、各層の界面で液晶分子の向きが連続的につながり、全体として一つの滑らかな螺旋構造を形成している。そして、半透過型の液晶表示素子においては、この偏光反射素子を選択反射層として用いる。

目的

効果

実績

技術文献被引用数
0件
牽制数
1件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

螺旋状の液晶分子配列からなり、略法線方向に螺旋軸を有するポリマー化されたコレステリック液晶層カイラルネマティック液晶層、あるいはカイラル液晶層の少なくともいずれか1つの液晶層を備えた偏光反射素子において、液晶分子ねじれ角の面内平均値αが、nπ−0.05π≦α≦nπ+0.05π (n=1、2、3、・・・)の範囲内にあることを特徴とする偏光反射素子。

請求項2

螺旋ピッチの異なる上記液晶層を複数積層して形成され、各液晶層の界面で液晶分子の向きが連続的につながり、全体として一つの滑らかな螺旋構造を形成していることを特徴とする請求項1に記載の偏光反射素子。

請求項3

上記各液晶層の液晶分子のねじれ角の平均値αが、それぞれnπ0.05π≦α≦nπ+0.05π (n=1、2、3、・・・)の範囲内であることを特徴とする請求項2に記載の偏光反射素子。

請求項4

入射光のうち、特定円偏光成分の光の一部を反射し、上記特定円偏光成分の光のうち反射しなかった光、および上記特定円偏光成分以外の光のほとんど全てを透過することを特徴とする請求項1ないし3いずれか1項に記載の偏光反射素子。

請求項5

上記特定円偏光成分のうち、反射される光と透過する光との割合が、5:5〜9:1であることを特徴とする請求項4に記載の偏光反射素子。

請求項6

第1偏光板と、液晶セルと、第2偏光板と、上記第1偏光板と第2偏光板との間に配置された請求項1ないし5いずれか1項に記載の偏光反射素子と、を備えたことを特徴とする半透過型液晶表示素子

請求項7

請求項1ないし5いずれか1項に記載の偏光反射素子を、互いに逆回りの円偏光特性を有する一対の楕円偏光板で挟んだ時の透過率が、上記一対の楕円偏光板の光軸をそれぞれ回転させた時に最小となるように、上記偏光反射素子と上記一対の楕円偏光板が配置されていることを特徴とする請求項6に記載の半透過型の液晶表示素子。

請求項8

第1偏光板と、液晶セルと、第2偏光板と、背面光源と、上記第2偏光板と背面光源との間に配置された請求項1〜5いずれか1項に記載の偏光反射素子と、上記第2偏光板と上記偏光反射素子との間に配置されたλ/4波長板と、を備えたことを特徴とする液晶表示素子。

請求項9

基板上に配向膜を形成する工程と、上記配向膜に液晶分子を面内1方向に制御する配向処理を施す工程と、上記配向膜上に螺旋構造を有する液晶層を形成する工程と、上記液晶層の上面部の液晶分子を上記配向膜の配向処理方向とほぼ同じ方向に配向固化させる工程と、を備えたことを特徴とする偏光反射素子の製造方法。

請求項10

基板上に配向膜を形成する工程と、上記配向膜に液晶分子を面内一方向に制御する配向処理を施す工程と、上記配向膜上に螺旋構造を有する第1液晶層を形成する工程と、上記第1液晶層の上面部を上記配向膜の配向処理方向とほぼ同じ方向に配向固化させる工程と、上記第1液晶層の上に、螺旋構造を有する第2液晶層を形成する工程と、上記第2液晶層の上面部を上記配向膜の配向処理方向とほぼ同じ方向に配向固化させる工程と、を備えたことを特徴とする偏光反射素子の製造方法。

請求項11

基板上に第1配向膜を形成する工程と、上記第1配向膜に、液晶分子を面内1方向に制御する配向処理を施す工程と、上記第1配向膜上に螺旋構造を有する第1液晶層を形成する工程と、上記第1液晶層の上面部を上記第1配向膜の配向処理方向とほぼ同じ方向に配向固化させる工程と、上記第1液晶層の上に第2配向膜を形成する工程と、上記第2配向膜に、上記第1配向膜の配向処理方向と同じ方向に配向処理を施す工程と、上記第2配向膜上に第2液晶層を形成する工程と、上記第2液晶層の上面部を上記第1配向膜の配向処理方向とほぼ同じ方向に配向固化させる工程と、を備えたことを特徴とする偏光反射素子の製造方法。

請求項12

上記第1配向膜、上記第2配向膜および上記第2液晶層の屈折率が、上記第1液晶層の屈折率の95%ないし105%の値を有していることを特徴とする請求項11に記載の偏光反射素子の製造方法。

請求項13

第1基板上に第1配向膜を形成する工程と、上記第1配向膜に、液晶分子を面内1方向に制御する配向処理を施す工程と、第2基板上に第2配向膜を形成する工程と、上記第2配向膜に上記第1配向膜の配向処理方向と同じ方向に配向処理を施す工程と、上記第1基板と上記第2基板とをスペーサを介して貼り合せて第1セルを作る工程と、上記第1セルに第1液晶注入し固化させる工程と、上記第2基板を剥離する工程と、を備えたことを特徴とする偏光反射素子の製造方法。

請求項14

第3基板に第3配向膜を形成する工程と、上記第3配向膜に上記第1配向膜の配向処理方向と同じ方向に配向処理を施す工程と、上記第1基板と上記第3基板とをスペーサを介して貼り合せて第2セルを作る工程と、上記第2セルに第2液晶を注入し固化させる工程と、上記第3基板を剥離する工程と、を備えていることを特徴とする請求項13に記載の偏光反射素子の製造方法。

請求項15

上記第1液晶の上に第4配向膜を形成する工程と、上記第4配向膜に上記第1配向膜の配向処理方向と同じ方向に配向処理を施す工程と、を備えていることを特徴とする請求項14に記載の偏光反射素子の製造方法。

技術分野

0001

本発明は、偏光反射素子、偏光反射素子を用いた液晶表示素子、および偏光反射素子の製造方法に関する。

0002

一般に、螺旋状の分子配列を持ち、その螺旋軸がほぼ法線方向に向いているようなコレステリック液晶膜、或いはカイラルネマティック液晶膜は、円偏光二色性を示すことが知られている。円偏光二色性とは、膜に入射する光のうち特定波長の特定方向の円偏光反射し、また、反射された円偏光と逆方向の円偏光を透過するような性質を言う。

0003

上記円偏光二色性の反射および透過特性は、用いる液晶螺旋構造によって決定される。すなわち、反射される円偏光の向きは、液晶の螺旋の向きと同じであり、その波長は螺旋のピッチに依存する。また、反射率および透過率は、液晶膜の厚みによって変わり、厚ければ厚いほど、反射率が高くなる。

0004

このような性質を利用して、液晶膜の螺旋の向きやピッチ、および膜厚を制御することにより、様々な偏光反射特性を有する偏光反射素子を得ることができる。上記偏光反射素子は、円偏光を利用して表示を行う透過型或いは半透過型の液晶表示素子に適用することができるとともに、光源利用効率を上げるための輝度向上フィルムなどとして有用である。

0005

このような目的で使用される偏光反射素子は、その性質上、反射および透過する光の円偏光度が重要となってくる。すなわち、反射および透過する光に、所望の方向の円偏光と反対の方向の円偏光が混じると、漏れ光となるため偏光反射素子の機能を低下させてしまう。

0006

しかしながら、従来用いられている偏光反射素子では、上記反射および透過する光の円偏光度が十分に高くなっていない。そのため、偏光反射素子を液晶表示素子に適用した場合には、漏れ光が多くなりコントラストが減少して液晶表示素子の表示品位が低下し、また、輝度向上フィルムとして用いた場合には、光の利用効率が低下してしまう。従って、偏光反射素子の機能が十分に生かされない結果となっている。

0007

この発明は以上の点に鑑みてなされたもので、その目的は、従来の問題点を解決し、反射および透過する光の円偏光度を飛躍的に高め、高い光利用効率を実現するための偏光反射素子、偏光反射素子を用いた液晶表示素子、および偏光反射素子の製造方法を提供することにある。

課題を解決するための手段

0008

上記目的を達成するため、この発明に係る偏光反射素子は、螺旋状の液晶分子配列からなり、略法線方向に螺旋軸を有するポリマー化されたコレステリック液晶層カイラルネマティック液晶層、あるいはカイラル液晶層の少なくともいずれか1つの液晶層を備えた偏光反射素子において、液晶分子ねじれ角の面内平均値αが、
nπ−0.05π≦α≦nπ+0.05π (n=1、2、3、・・・)
の範囲内にあることを特徴とする。

0009

また、この発明に係る偏光反射素子は、螺旋ピッチの異なる上記液晶層を複数積層して形成され、各液晶層の界面で液晶分子の向きが連続的につながり、全体として一つの滑らかな螺旋構造を有していることを特徴とする。

0010

この場合においても、各液晶層の液晶分子のねじれ角の平均値αは、それぞれnπ−0.05π≦α≦nπ+0.05π(n=1、2、3、・・・)の範囲内であることを特徴としている。

0011

上記のように構成された偏光反射素子におよれば、反射および透過する光の円偏光度を飛躍的に高め、高い光利用効率を実現することが可能となる。

0012

また、この発明に係る偏光反射素子によれば、入射光のうち、特定円偏光成分の光の一部を反射し、上記特定円偏光成分の光のうち反射しなかった光および上記特定円偏光成分以外の光のほとんど全てを透過する機能を有していることを特徴としている。更に、発明に係る偏光反射素子によれば、上記特定円偏光成分のうち、反射される光と透過する光の割合は、5:5〜9:1であることを特徴としている。

0013

一方、この発明に係る液晶表示素子は、第1偏光板と、液晶セルと、第2偏光板と、上記第1偏光板と第2偏光板との間に配置された偏光反射素子と、を備えたことを特徴としている。更に、この発明に係る他の半透過型の液晶表示素子は、第1偏光板と、液晶セルと、第2偏光板と、背面光源と、上記第2偏光板と背面光源との間に配置された偏光反射素子と、上記第2偏光板と上記偏光反射素子との間に配置されたλ/4波長板と、を備えたことを特徴としている。

0014

上記のように構成された液晶表示素子によれば、光利用効率の高い上述の偏光反射素子を用いることにより、コントラスの高い優れた表示特性を実現することが可能となる。

0015

また、この発明に係る偏光反射素子の製造方法は、基板上に、配向膜を形成する工程と、上記配向膜に液晶分子を面内1方向に制御する配向処理を施す工程と、上記配向膜上に螺旋構造を有する液晶層を形成する工程と、上記液晶層の上面の液晶分子を上記配向膜の配向処理方向とほぼ同じ方向に配向固化させる工程と、を備えたことを特徴としている。

0016

更に、この発明に係る他の偏光反射素子の製造方法は、基板上に第1配向膜を形成する工程と、上記第1配向膜に、液晶分子を面内1方向に制御する配向処理を施す工程と、上記第1配向膜上に螺旋構造を有する第1液晶層を形成する工程と、上記第1液晶層の上面部を上記第1配向膜の配向処理方向とほぼ同じ方向に配向固化させる工程と、上記第1液晶層の上に第2配向膜を形成する工程と、上記第2配向膜に、上記第1配向膜の配向処理方向と同じ方向に配向処理を施す工程と、上記第2配向膜上に第2液晶層を形成する工程と、上記第2液晶層の上面部を上記第1配向膜の配向処理方向とほぼ同じ方向に配向固化させる工程と、を備えたことを特徴としている。

0017

また、この発明に係る偏光反射素子の製造方法は、第1基板上に第1配向膜を形成する工程と、上記第1配向膜に、液晶分子を面内1方向に制御する配向処理を施す工程と、第2基板上に第2配向膜を形成する工程と、上記第2配向膜に上記第1配向膜の配向処理方向と同じ方向に配向処理を施す工程と、上記第1基板と上記第2基板とをスペーサを介して貼り合せて第1セルを作る工程と、上記第1セルに第1液晶を注入し固化させる工程と、上記第2基板を剥離する工程と、を備えたことを特徴としている。

発明を実施するための最良の形態

0018

以下、図面を参照しながら、この発明の実施の形態に係る偏光反射素子およびこの偏光反射素子を備えた液晶表示素子について詳細に説明する。図1に示すように、第1の実施の形態に係る偏光反射素子8は、透明基板1と、透明基板1上に配置された配向膜2と、配向膜2上に積層された複数のコレステリック液晶層3、4、5、6と、を備えている。

0019

この偏光反射素子8の製造方法は以下の通りである。まず、透明基板1上にポリイミド印刷し、熱処理により固化させる。透明基板1としては、ここではガラス基板を用いたが、軽量化や耐衝撃性を求める場合には、プラスティック基板を用いることもできる。また、ポリイミドはコレステリック液晶を配向させるものであれば良く、TFTやSTN液晶プロセスで用いられる一般的なポリイミドを用いた。

0020

次に、形成されたポリイミド層ラビング処理を施し、配向層2とする。なお、このような配向処理の工程は、ラビング法以外に、制御方位と略等しい方位の直線偏光照射する光配向法、制御方位と直交する方位、平行する方位の斜め方位から無機材料蒸着する斜方蒸着法などの工程を用いることもできる。

0021

続いて、配向層2の上に、コレステリック液晶層3をスピンコート法あるいは印刷法などにより塗布し、熱処理により固化しポリマー化する。熱処理に際しては、配向層2のラビング方向と同じ方向に窒素ガスを吹き付けながら、徐々に熱を加えていく。これにより、コレステリック液晶層3の上面部、つまり、最上部の液晶分子は、配向層2のラビング方向、すなわちコレステリック液晶層3の最下部の液晶分子と同じ方向を向くことになる。従って、螺旋状の液晶分子配列からなり、略法線方向に螺旋軸を有するポリマー化されたコレステリック液晶層3が形成される。

0022

コレステリック液晶層3の最上部の液晶分子の方向を決める方法は上記に限定されない。すなわち、コレステリック液晶層3を塗布形成後、適度な温度で半固化した状態でラビング処理を施す方法、第2基板に配向膜を形成しラビング処理を施した後、この第2基板をコレステリック液晶層に貼付け、熱処理を行ってから第2基板を剥離する方法、或いは、コレステリック液晶を塗布する前に、透明基板1と配向処理の施された第2基板とをスペーサを介して貼り付けてセルを構成し、その間にコレステリック液晶を注入・熱処理した後、第2基板を剥離する方法などでを用いてもよい。

0023

続いて、同様の方法により、コレステリック液晶層3の上にコレステリック液晶層4、5、6を順次形成していく。このようにして形成されたコレステリック液晶層3〜6は、各層の最上部および最下部の液晶分子が、全て配向膜2のラビング方向と同じ方向を向いたものとなる。

0024

なお、コレステリック液晶層3〜6の螺旋の向きは右回りでも左回りでも構わないが、本実施の形態では左回りの螺旋構造を用いた。より配向を完全にするためには、各コレステリック液晶層を形成後に配向膜を形成してラビングし、その上に次のコレステリック液晶層を形成するというプロセスを繰り返すこともできる。

0025

この場合には、各コレステリック液晶層と配向膜との屈折率の差によって、入射光の界面反射が生ずる。このような界面反射が起こると、出射光偏光度を悪くする成分が現れるため、界面反射は小さい方が望ましい。

0026

本実施の形態では上記構成とした場合、コレステリック液晶層3〜6の屈折率ncと配向膜の屈折率npとの比と、左円偏光を入射させたときの出射光の左円偏光成分右円偏光成分との比(1/CRと表す)の関係を図2に示す。この図から分かるように、np/nc=1から離れるにつれ1/CRの値が大きくなり、表示品位が悪化する。特に、np/ncの値が0.95以下または1.05以上の時には、1/CR>0.01(CR<100)となり、著しく偏光特性が悪くなる。従って、コレステリック液晶層3の屈折率に対して、積層する各コレステリック液晶層および配向膜の屈折率は95%〜105%であることが望ましい。

0027

なお、本実施の形態では配向膜2を用いたが、場合によっては配向膜2を省略した構成としてもよい。例えば、透明基板1の表面を直接ラビングすることにより、コレステリック液晶層3の透明基板1側の液晶分子に所望の配向状態を与えることができる場合、配向膜2を形成する必要はない。

0028

また、最上層のコレステリック液晶層6の上には、必要に応じてオーバーコート層を設けてもよい。コレステリック液晶は、螺旋ピッチPと屈折率ncとによって定まる特定波長λ(λ=nc・P)の光のうち、螺旋方向と同じ向きの円偏光のみを選択的に反射する。螺旋方向および選択反射波長λは、目的に応じて適当な値になるように設定できるが、本実施の形態では、コレステリック液晶層3〜6を全て左螺旋構造とし、それぞれの選択反射波長λ3、λ4、λ5、λ6をそれぞれ、λ3=450nm、λ4=510nm、λ5=570nm、λ6=630nmとなるように設定した。これにより、偏光反射素子8は、可視光のうち、420nmから660nmまでの広い範囲の光を選択反射する機能を有した偏光反射素子となる。

0029

また、本実施の形態において、コレステリック液晶層は4層積層としたが、層の数はこれに限定されず、偏光反射素子8を使用する目的に応じて、1〜3層でもよく、あるいは、5層以上としてもよい。

0030

また、コレステリック液晶層の膜厚を十分に厚くした場合には、選択反射波長近傍の光のうち特定円偏光成分(ここでは左円偏光成分)を全て反射するが、膜厚を薄くした場合には、特定円偏光成分の一部は透過することになる。このような反射:透過の比率は、偏光反射素子8の利用目的や環境によって任意に設定することができる。

0031

特に、本実施の形態に係る偏光反射素子8を半透過型の液晶表示素子に利用する場合、様々な外光のもとで見易さに関する調査を行ったところ、一般の半透過型液晶表示素子よりも光の利用効率が高いため、反射:透過の比率の設定自由度が高いことが確認された。具体的には、反射:透過の比率が5:5〜9:1の場合に使用し易い液晶表示素子となることが分かった。

0032

反射、透過の比率が5:5よりも小さい場合、反射表示が十分ではなく、晴れた日の屋外では非常に使いにくい。逆に反射、透過の比率が9:1よりも大きい場合には、透過表示が不十分で、夜、蛍光燈などの光源のすぐ下でないと使用できない。

0033

本実施の形態では、コレステリック液晶層3〜6の反射:透過の比率が、7:3となるように、各層の膜厚を設定した。コレステリック液晶層3〜6の各層の液晶分子は、最上部と最下部とで同一方向を向いているため、そのねじれ角はnπ(n=1、2、3、・・・)となっており、本実施の形態では、14πとなった。

0034

次に、本実施の形態の偏光反射素子8の機能について説明する。ここでは、図3に示すように、偏光反射素子8の一方の側(ここでは透明基板1側)に、左円偏光板7、板状光源9、反射10を順に配置した構成を想定して説明する。

0035

この場合、左円偏光板7側から入射した光は、左円偏光板7によって、左円偏光となって偏光反射素子8に到達する。この左円偏光は、コレステリック液晶層3〜6によって、それぞれの選択反射波長λ3〜λ6近傍の波長領域の光のうち60〜70%が選択的に反射される。一方、コレステリック液晶層3〜6で反射されなかった30〜40%の光は、そのまま透過し、偏光反射素子8から出射される。

0036

上述したように、コレステリック液晶層3〜6は、それぞれ液晶分子の方向が、最上部と最下部とで一様に揃っており、そのねじれ角がnπ(n=1、2、3、・・・)となっているため、液晶分子の螺旋軸に対して対称な構造となっている。従って、コレステリック液晶層3〜6を透過する左円偏光は、偏光状態を乱されることなく、左円偏光のまま偏光反射素子8から出射されることになる。その結果、偏光反射素子8から出射される光は、円偏光度が極めて高い光となる。

0037

一方、コレステリック液晶層3〜6で反射された光は、左円偏光板7を通って光源9の方向に戻っていく。光源9の後方反射板10が設けてある場合、偏光反射素子8で反射された光は、この反射板10によって反射され、再び偏光反射素子8に左円偏光板7を通して入射し、上述と同じ過程を繰り返すことになる。

0038

従って、上記偏光反射素子8を用いることにより、このような過程を通して、光源9から出射された光の70%以上を左円偏光として取り出すことが可能になる。

0039

なお、コレステリック液晶層3〜6の各層の液晶分子のねじれ角は、上述のようにnπ(n=1、2、3、・・・)で揃っていることが望ましいが、実際の製造に当たっては、多少のばらつきがあっても構わない。

0040

図4に、ねじれ角の面内平均値αと、出射光の右円偏光成分と左円偏光成分との比(1/CR)の関係を示す。この図から分かるように、平均値αがπの整数倍の時、1/CRは極小値をとり良好な表示が実現される。また、平均値αがnπ±0.05π(n:整数)の範囲から外れると、1/CRは0.01以上(コントラスト比100以下)となり、表示品位が極めて悪化する。従って、ねじれ角の面内平均値αは、nπ−0.05π≦α≦nπ十0.05πに設定されていることが必要である。

0041

さらに、理想的には各コレステリック液晶層3〜6の最上部の液晶分子について全て同じ方向に配向処理をするのが望ましいが、必ずしも上述のような配向処理をしなくても、本発明の効果が発揮され得る。この場合には、下層のコレステリック液晶層の上に形成するコレステリック液晶層は、その最下部の液晶分子が、下層のコレステリック液晶層の液晶分子と同じ方向を向くように形成する。このようにすることにより、積層されたコレステリック液晶層は、液晶分子の向きが連続的につながり、全体として一つの滑らかな螺旋構造を持つため、出射する光の偏光状態の乱れを最小限に止めることができる。

0042

次に、本発明の第2の実施の形態に係る液晶表示素子について説明する。この液晶表示素子は、前述した第1の実施の形態に係る偏光反射素子を利用した半透過型の液晶表示素子として構成されている。

0043

図5および図6に示すように、この液晶表示素子は、対向配置された2枚のガラス基板13、14間に液晶層15を扶持して形成された液晶素子を備え、この液晶素子の観察側、つまり、ガラス基板13の外面上には、λ/4波長板12、および偏光板11が順に設けられている。位相差板12および偏光板11は、合わせて右円偏光特性を有する右円偏光板を構成している。

0044

また、他方のガラス基板14の外面と対向して、λ/4波長板25、偏光板26、および背面光源21が順に設けられている。位相差板25および偏光板26は、合わせて左円偏光特性を有する、左円偏光板を構成している。

0045

液晶素子の観察側のガラス基板13はアレイ基板を構成し、ガラス基板13の内面には、カラーフィルタ層50が設けられ、このカラーフィルタ層上に透明なIT0から多数の画素電極16がマトリクス状に設けられている。

0046

図6ないし図8に示すように、ガラス基板13上には、信号線32と、ゲート電極33を含む走査線34とがマトリクス状に設けられ、更に、必要に応じて図示しない補助容量電極が設けられる。また、信号線32と走査線34との交差部には、スイッチング素子としての薄膜トランジスタ(以下、TFTと称する)31が設けられ、それぞれ画素電極16に接続されている。信号線32、および走査線34に重ねて酸化膜35が形成されている。

0047

各TFT31は、酸化膜35を介してゲート電極33上に設けられたアモルファスシリコン(a−Si)からなる半導体膜36、半導体膜上に低抵抗半導体膜37を介して設けられたソース電極41およびドレイン電極39を備え、パッシベーション膜38によって覆われている。

0048

ゲート電極33が半導体膜36の下に配置されたボトムゲート構造のTFTにおいては、アレイ基板13からTFT31に向かって入る外光は、ゲート電極33で遮断されるため、半導体膜36に入射しない。その結果、液晶表示装置を屋外で使用する時の光によって発生する光リーク電流に起因するコントラスト比の低下を防止することができる。

0049

各画素電極16は、カラーフィルタ層50に形成された10μm角程度のコンタクトホール40を介してソース電極41に接続されている。カラーフィルタ層50は、画素部の全面に配置されている。このカラーフィルタ層50は、赤、緑、青の3原色もしくはイエローマジェンタシアンの補色3原色のカラーフィルタ層でなり、マトリクス状に配置された画素電極16および対向電極17により液晶層15を画素単位電解制御することにより加法混色によるカラー表示を行う。画素電極16の境界部分には、信号線32、走査線34、補助容量線のいずれかの配線が配置され、背面光源21からの透過光使用時に、背面光源からの光が漏れてコントラスト比を低下させることがない。

0050

一方、図6に示すように、液晶素子の背面側のガラス基板14は対向基板を構成している。ガラス基板14の画素電極16と対向する面に、IT0等の透明導電膜からなる対向電極17がほぼ全面に亘って形成されている。ガラス基板14と対向電極17との間には、上述した第1の実施の形態で示した偏光反射素子と同等の構成を有したコレステリック液晶層を積層してなる選択反射層18が設けられている。

0051

なお、対向電極17は、通常のマスクスパッタ法により成膜パターニングとを同時に行うことが好ましい。この場合、対向電極17形成時、選択反射層18を構成するコレステリック液晶層へのプロセス負荷を極めて小さくすることができる。

0052

また、アレイ基板13および対向基板14の液晶層15と接する面には、それぞれ図示しない配向膜が形成されている。これらの配向膜は、液晶層15の液晶分子が基板に対して垂直に配向されるような、配向方向をそれぞれ有している。これにより、アレイ基板13と対向基板14との間には、マトリクス状に配列された多数の液晶画素が形成されている。

0053

また、図8に示すように、アレイ基板13と対向基板14とは、両基板の周縁部(シール部)42に沿って塗布されたシール材43によって、互いに貼り合わされている。この際、シール材43を対向基板14の選択反射層18上に塗布した場合、シール材の付着性が悪く、1万時間以上の長時間の使用に際して、基板同士が剥がれるなどの信頼性低下を招く恐れがある。

0054

あるいは、選択反射層18上に、シール材に対して付着性に優れたオーバーコート剤を塗布し、このオーバーコート剤を介して選択反射層18上にシール材を塗布した場合には、信頼性の問題を回避することができる。オーバーコート剤としては、例えば、通常のカラーフィルタに用いるアクリル樹脂を使用することができる。

0055

図5に示すように、ガラス基板14の背面側に設けられた背面光源21は、例えばアクリル等の透光性平板からなる導光体22と、導光体の側面に配置された線状光源24と、導光体の裏面に設けられた散乱反射層23とを備えている。

0056

なお、本実施の形態では、a−Siを用いたTFTを用いたが、液晶を駆動するための駆動素子はこれに限定するものではない。MIM等の2端子素子を用いてもよく、あるいは、p−Siを用いた素子としてもよい。また、上述したアクティブマトリクス型に限らず、単純マトリクス型で電極を形成することも可能である。

0057

次に、上記のように構成された液晶表示素子の動作について説明する。図5(a)に示すように、垂直配向型の液晶層15に電源20から電圧印加されたオン状態、正確には液晶の閾値以上の電圧が印加された状態(Von時)では、ネマテイツク液晶分子はアレイ基板13から対向基板14に向けて基板に平行な方向に配列するホモジニアス配向となる。

0058

この状態において、図の上方の観察側から入射してくる光Lfは、偏光板11およびλ/4波長板12を通り、右回りの円偏光として、液晶層15に入射する。そして、光は、液晶層15によって位相がλ/2遅延されることにより、左回りの円偏光に変換されて選択反射層18に到達する。従って、到達した左回りの円偏光は選択反射層18により反射され、再び液晶層15により位相がλ/2遅延されることにより、右回りの円偏光に変換されて観察側へ出力される。この光は、再びλ/4波長板12を通過することにより、偏光板11の偏光軸に沿った直線偏光となり、偏光板11を通過して外部に出力される。これにより、明状態の表示が得られる。

0059

また、図5(b)に示すように、液晶層15に閾値以下の電圧が印加されたオフ状態電圧を含む)(Voff時)において、液晶層15の液晶分子はガラス基板13、14に対して垂直に配列し、入射光を位相変調しない状態となる。

0060

この状態において、図の上方から入射してくる光は、Von時と同様に、偏光板11およびλ/4波長板12を通り、右回りの円偏光として液晶層15に入射するが、この液晶層15では位相変調されず、右回りの円偏光のまま選択反射層18に到達する。そのため、右回りの円偏光は、選択反射層18を背面側に向けて透過し、位相差板25により、偏光板26の吸収軸に沿った振動成分を持つ直線偏光に変換される。その結果、入射光Lfは観察面に戻らず、暗状態の表示が得られる。

0061

次に、選択反射層18の背面側に設けられた背面光源21を作動させた場合の動作について説明する。図5(a)に示すVon時、背面光源21から出力された光Lbは、偏光板26および位相差板25により左回りの円偏光となり、そのうち所定の割合の光(本実施の形態では30〜40%)は選択反射層18を透過し、残りは、選択反射層によって反射される。

0062

選択反射層18を通過した光は、液晶層15によって位相変調され、右回りの円偏光に変換される。そして、この光がλ/4波長板12を通過することにより、偏光板11の偏光軸に沿った直線偏光となり、偏光板を通過して観察面側に出力される。上記過程において、選択反射層18を通過した光は、前述したように偏光度の高い左円偏光であり、右円偏光成分をほとんど含んでいない。従って、光の利用効率が高く、輝度の高い明状態の表示が得られる。

0063

一方、図5(b)に示すVoff時、選択反射層18を通過した左回りの円偏光は、液晶層15による位相変調を受けずにそのまま観察側に出力される。そして、この光は、λ/4波長板12を通過することにより、偏光板11の偏光軸と直交する振動方向を有する直線偏光となり、偏光板11により吸収される。前述した理由で、選択反射層18を通過した光にはほとんど右円偏光成分を含んでいないため、偏光板11から漏れて出射される光は極めて少ない。従って、極めて輝度が0に近い暗状態の表示が得られる。

0064

以上のように構成された液晶表示素子によれば、選択反射層18は第1の実施の形態で示したように優れた円偏光度を得られるため、この選択反射層を用いた液晶表示素子は、コントラストが高く、優れた表示性能を発揮することができる。

0065

なお、本実施の形態では、λ/4波長板12および25、偏光板11および26が完全なる円偏光板として機能した場合について説明したが、実際には、これらのフィルムに異なる波長分散があるものを使用することもできる。この場合、位相差板12と偏光板11との組合わせは右楕円偏光板として、位相差板25および偏光板26の組合わせは左楕円偏光板として機能する。

0066

上記構成によれば、それぞれの楕円偏光板の光軸楕円軸)と、選択反射層18および液晶層15のそれぞれの層の液晶分子の方向とによって、液晶表示素子の表示性能が変わってくる。より良いコントラストを得るためには、Voff時に、上記右楕円偏光板および左楕円偏光板を回転させて透過率Tを測定し、透過率が最小となるような配置とすればよい。

0067

図9は、本実施の形態に係る液晶表示素子で得られたVoff時の透過率Tと、偏光板11の吸収軸との関係を示している。この図から、本実施の形態の場合、偏光板11の吸収軸を45°とした時に、透過率Tが最小になり、最良の表示品位となることが分かる。

0068

次に、この発明の第3の実施の形態に係る液晶表示素子について説明する。図10に示すように、本実施の形態に係る液晶表示素子は、前述した第2の実施の形態に係る液晶表示素子において、偏光板26と背面光源21の間に、更に、λ/4波長板51および偏光反射素子52を配置した構成を有している。

0069

偏光反射素子52は、前述した第1の実施の形態と同様に製造されたものを用いることができるが、望ましくは、偏光反射素子の特定円偏光成分(ここでは左円)の反射:透過の比率は10:0に近い方がよい。他の構成は、第2の実施の形態に係る液晶表示素子と同一であり、同一の部分には同一の参照符号を付してその詳細な説明を省略する。

0070

上記のように構成された第3の実施の形態に係る液晶表示素子によれば、背面光源21から出射された光のうち、右円偏光成分は偏光反射素子52を透過し、左円偏光成分は反射されて背面光源21に戻る。背面光源21に戻った光は散乱反射され、偏光解消されて再び偏光反射素子52に入射するため、再び右円偏光成分は透過し、左円偏光成分は反射される。このようにして、偏光反射素子52と背面光源21の間を光が複数回反射しながら、右円偏光成分のみが偏光反射素子52を透過する。

0071

偏光反射素子52を透過した右円偏光は、λ/4波長板51により直線偏光となり、偏光板26に向かう。この時、λ/4波長板51を透過した直線偏光の方向が、偏光板26の透過軸に合うように配置してあれば、ほとんど全ての光が偏光板26を透過し、液晶表示素子の表示に利用される。

0072

偏光反射素子52は、前述したように非常に良好な円偏光二色性を示すため、上記構成の液晶表示素子の光の利用効率は非常に高いものとなる。偏光反射素子52が配置されていない一般の液晶表示素子では、背面光源21から出射された光の50%以下しか表示に利用できないのに対して、本実施の形態に係る液晶表示素子によれば、70%以上を利用することが可能になる。

0073

特に、光の利用効率が重要となる半透過型の液晶表示素子においては、本実施の形態のように、前述した第2の実施の形態の半透過型液晶表示素子に偏光反射素子を組み合わせにより、飛躍的に表示性能が向上する。従来の一般の半透過型液晶表示素子に対して、本実施の形態の半透過型液晶表示素子では、光の利用効率が約1.6倍になった。

0074

なお、この発明は上述した実施例に限定されることなく、この発明の範囲内で種々変形可能である。例えば、上述した実施の形態では、偏光反射素子の構成要素として、ポリマー化したコレステリック液晶層を用いたが、これに限らず、カイラルネマティツク液晶層、あるいはカイラル液晶層をポリマー化して用いることもできる。なお、上述した説明において、層とは、膜の概念も含むものとして述べている。

0075

また、前述した第2および第3の実施の形態では半透過型の液晶表示素子について説明したが、本発明は透過型の液晶表示素子についても同様な効果が得られる。その場合にも、従来の透過型液晶表示素子の背面光源と液晶パネル裏面の偏光板との間に、本実施の形態と同様な偏光反射素子とλ/4波長板を配置すればよい。

発明の効果

0076

以上詳述したように、本発明によれば、光の利用効率が高く、偏光特性の優れた偏光反射素子、コントラストの高い優れた表示特性を有する液晶表示素子、および偏光反射素子の製造方法を実現することができる。

図面の簡単な説明

0077

図1本発明の第1の実施の形態に係る偏光反射素子の断面図。
図2コレステリック液晶層および配向層の屈折率と偏光反射素子のコントラストとの関係を示す図。
図3上記偏光反射素子の機能を説明する概念図。
図4コレステリック液晶分子のねじれ角と偏光反射素子のコントラストとの関係を示す図。
図5この発明の第2の実施の形態に係る液晶表示素子の液晶側に第1電圧を印加した状態、および上記液晶表示素子の液晶側に第2電圧を印加した状態をそれぞれ模式的に示す図。
図6上記液晶表示素子の断面図。
図7上記液晶表示素子のアレイ基板を拡大して示す断面図。
図8上記アレイ基板を概略的に示す平面図。
図9上記液晶表示素子における偏光板の吸収軸角度と透過率との関係を示す図。
図10この発明の第3の実施の形態に係る液晶表示素子を示す断面図。

--

0078

3、4、5、6…コレステリック液晶層
8、52…偏光反射素子
11、26…偏光板
12、25、51…λ/4波長板
13、14…透明基板
15…液晶層
16、17…透明電極
18…選択反射層
21…背面光源
50…カラーフィルタ層

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ