図面 (/)

技術 電力変換装置

出願人 サンケン電気株式会社
発明者 長井真一郎佐藤伸二
出願日 2000年4月19日 (21年1ヶ月経過) 出願番号 2000-117899
公開日 2001年11月2日 (19年7ヶ月経過) 公開番号 2001-309667
状態 特許登録済
技術分野 インバータ装置 電力変換一般
主要キーワード 補助制御回路 ブリッチ 変換用コンデンサ 残留エネルギ 電力用スイッチ 過電圧防止用 鋸波発生器 補助直流電源
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2001年11月2日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (18)

課題

電力変換回路における主スイッチのタ−ンオン時、タ−ンオフ時のスイッチング損失の低減と過電圧抑制との両方を容易に図ることが困難であった。

解決手段

対の直流ライン間に対の主スイッチQ1 、Q1 の直列回路が接続され、この対の主スイッチQ1 、Q2 を交互にオン・オフする形式インバ−タ、コンバ−タ等の電力変換装置において、対の直流ライン11、12間に第1のソフトスイッチング用スイッチQ11を介して直流端子1a、1bを接続する。対の直流ライン11、12間に共振用インダクタLr と第2のソフトスイッチング用スイッチQ12と補助電源10との直列回路を接続する。第1のスイッチQ1に並列クランプダイオ−ドDa1とコンデンサCa1とダイオ−ドDa2との直列回路を接続する。第2のスイッチQ2に並列にクランプ用ダイオ−ドDa3を介してコンデンサCa2を接続する。直流端子1a、1bとクランプ用コンデンサCa1,Ca2との間に充電及び放電用抵抗Ra1、Ra2を接続する。

概要

背景

電力用スイッチPWM制御して直流電力交流電力に変換する電力変換装置は、モ−タ駆動用インバ−タ、無停電電源装置などに用いられている。図1は従来のPWM制御電力変換装置としてのブリッジ型インバ−タの1相分を示す。この電力変換装置は、対の直流端子1a、1bと、変換回路2と、制御回路3とを有する。変換回路2は第1及び第2のスイッチQ1 、Q2 の直列回路から成る。この直列回路は一方の直流端子1aと他方の直流端子1bとの間に接続されている。第1及び第2のスイッチQ1 、Q2の相互接続点出力交流端子4が接続されている。なお、第1及び第2のスイッチQ1 、Q2 は絶縁ゲ−トバイポラトランジスタ即ちIGBTで示されており、トランジスタスイッチS1 、S2 と内蔵ダイオ−ドD1 、D2 とから成る。出力端子4に接続されている負荷インダクタンス又は配線導体のインダクタンスのためにスイッチQ1、Q2のオンオフ動作時に過電圧が発生する。この過電圧を抑制するために、第1及び第2のクランプ用コンデンサCa1、Ca2、第1及び第2のクランプ用ダイオ−ドDc1、Dc2、第1及び第2のクランプ用抵抗R1、R2から成るクランプ回路が設けられている。第1及び第2のクランプ用コンデンサCa1、Ca2は第1及び第2のクランプ用ダイオ−ドDc1、Dc2を介して第1及び第2のスイッチQ1、Q2に並列に接続されている。第1のクランプ用抵抗R1は一方(正側)の直流端子1a及び中継端子Tdcと第2のクランプ用コンデンサCa2との間に接続されている。第2のクランプ用抵抗R2は第1のクランプ用コンデンサCa1と他方(負側)の直流端子1bとの間に接続されている。この結果、第1及び第2のクランプ用コンデンサCa1、Ca2の電圧及び第1及び第2のスイッチQ1、Q2の電圧は対直流端子1a、1b間の電圧にクランプされる。

制御回路3は第1及び第2のスイッチQ1 、Q2 を交互にオン・オフするための制御信号を形成し、第1及び第2のスイッチQ1 、Q2 の制御端子(ゲ−ト)に供給するものであり、電圧基準値発生器5と、鋸波発生器6と、比較器7と、制御信号形成回路8とから成る。電圧基準値発生器5は例えば図2(A)に示す正弦波から成る電圧基準値Vr を発生する。鋸波発生器6は変換回路2の出力周波数よりも十分高い周波数の搬送波としての三角波電圧即ち鋸波電圧Vt を図2(A)に示すように発生する。比較器7は図2(A)に示す電圧基準値発生器5から発生した電圧基準値Vr と鋸波電圧Vt とを比較して図2(B)に示すPWM信号を形成する。制御信号形成回路8は、電圧基準値Vr が鋸波電圧Vt よりも高いことを示す比較器7の出力によって第1のスイッチQ1 をオン制御する信号を図2(B)に示すように形成し、また、第2のスイッチQ2 を第1のスイッチQ1 と逆に動作させる制御信号即ち図2(B)の信号の逆相信号を形成する。図2の例では出力電流Io を図2(C)に示すように正弦波に制御しているので、第1及び第2のスイッチQ1 、Q2 の電流Iq1、Iq2は図2(D)(E)に示すように流れる。なお、図1の回路コンバータとして使用し、交流端子4に交流電圧を入力させて、直流電源1側に直流電力を得ることもできる。

図1に示すPWM制御電力変換回路は、任意の出力電圧又は電流を供給することができるという特長を有している。しかし、第1及び第2のスイッチQ1 、Q2 のタ−ンオン時及びタ−ンオフ時にスイッチング損失が生じる。

図1の典型的な電力変換装置のスイッチング損失を低減させるために、図3に示すようなDCリンク回路から成るソフトスイッチング転流回路9を設けることが知られている。このソフトスイッチング用転流回路9は、第1及び第2のスイッチQ1、Q2に並列接続された共振用の第1及び第2のコンデンサC1、C2の電荷を第1及び第2の主スイッチQ1、Q2のターンオン直前に放出させて第1及び第2のスイッチQ1 、Q2をゼロボルトスイッチング(ZVS)させるための回路である。即ち、このソフトスイッチング用転流回路9は変換回路2の一対の直流端子としてのライン11、12間即ち中継端子Tdcと負の直流端子1bとの間の電圧(直流リンク電圧)を第1及び第2のスイッチQ1 、Q2 のタ−ンオン時点の直前ににするものであり、第1及び第2のソフトスイッチング用スイッチQ11、Q12と第1及び第2のソフトスイッチング用ダイオ−ドD11、D12と共振用インダクタリアクトル)Lr と補助電源10 とから成る。図3の回路ではインダクタLr に基づく共振によって直流ライン11、12間の電圧を零にし、しかる後、第1のスイッチQ1 又は第2のスイッチQ2 をオン状態に制御する。この制御を実行するために、主制御回路3の他に、補助制御回路13、第1及び第2の電流検出器14、15、及び直流リンク電圧検出回路16が設けられている。この回路によれば、第1及び第2のスイッチQ1 、Q2 のタ−ンオン時及びターンオフ時のスイッチング損失を低減することができる。図4は図3の回路において交流端子4に誘導性負荷が接続され、且つ交流端子4に負方向電流が流れている時における各部の状態を示す。即ち、図4の(A)は第1のスイッチQ1のゲート制御信号、(B)は第2のスイッチQ2のゲート制御信号、(C)は第1のソフトスイッチング用スイッチQ11のゲート制御信号、(D)は第2のソフトスイッチングスイッチQ12のゲート信号、(E)は交流端子4を流れる負荷電流IoとインダクタLrを流れる共振電流Ir、(F)は一対の直流ライン11、12間の直流リンク電圧Vdc1を示す。図4の方法では、t1〜t1’期間、t1’〜t2期間において第1及び第2のソフトスイッチング用スイッチQ11,Q12を同時にオン状態とし、出力電流Ioよりも大きな電流IrをインダクタLrに流し、これを利用してt2〜t2’期間で直流リンク電圧Vdc1を零にし、t2’時点で第2のスイッチQ2をターンオンさせる。

概要

電力変換回路における主スイッチのタ−ンオン時、タ−ンオフ時のスイッチング損失の低減と過電圧抑制との両方を容易に図ることが困難であった。

対の直流ライン間に対の主スイッチQ1 、Q1 の直列回路が接続され、この対の主スイッチQ1 、Q2 を交互にオン・オフする形式のインバ−タ、コンバ−タ等の電力変換装置において、対の直流ライン11、12間に第1のソフトスイッチング用スイッチQ11を介して直流端子1a、1bを接続する。対の直流ライン11、12間に共振用インダクタLr と第2のソフトスイッチング用スイッチQ12と補助電源10との直列回路を接続する。第1のスイッチQ1に並列にクランプ用ダイオ−ドDa1とコンデンサCa1とダイオ−ドDa2との直列回路を接続する。第2のスイッチQ2に並列にクランプ用ダイオ−ドDa3を介してコンデンサCa2を接続する。直流端子1a、1bとクランプ用コンデンサCa1,Ca2との間に充電及び放電用の抵抗Ra1、Ra2を接続する。

目的

効果

実績

技術文献被引用数
0件
牽制数
3件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

対の直流端子と、少なくとも1つの交流端子と、少なくとも第1及び第2のスイッチを含んで直流電力交流電力に又は交流電力を直流電力に変換する電力変換回路と、第1及び第2のダイオードと、第1及び第2のコンデンサ又は寄生容量と、主制御回路と、ソフトスイッチング転流回路と、補助制御回路とを有し、前記第1及び第2のスイッチは前記対の直流端子間において互いに直列に接続され、前記交流端子は前記第1及び第2のスイッチの相互接続点に接続され、前記第1及び第2のダイオード及び前記第1及び第2のコンデンサ又は寄生容量は前記第1及び第2のスイッチに並列に接続され、前記主制御回路は直流電力を交流電力に又は交流電力を直流電力に変換するように前記第1及び第2のスイッチをオンオフ制御するように構成され、前記転流回路は、前記対の直流端子の一方と前記第1及び第2のスイッチの直列回路の一端との間に接続された第1のソフトスイッチグ用スイッチと、前記第1及び第2のスイッチの直列回路の一端と他端との間に接続された共振用インダクタと第2のソフトスイッチグ用スイッチとの直列回路とを含み、前記補助制御回路は前記第1及び第2のスイッチのタ−ンオン時点において前記第1及び第2のスイッチの直列回路の両端子間電圧又は零近傍値になるように前記転流回路の前記第1及び第2のソフトスイッチング用スイッチを制御するように形成されている電力変換装置であって、前記第1のスイッチに並列に接続された、第1のクランプダイオ−ドと第1のクランプ用コンデンサと第2のクランプ用ダイオ−ドとの直列回路と、前記第2のスイッチに並列に接続された、第3のクランプ用ダイオ−ドと第2のクランプ用コンデンサとの直列回路と、前記第1のクランプ用ダイオ−ドと前記第1のクランプ用コンデンサとの相互接続点と前記第3のクランプ用ダイオ−ドと前記第2のクランプ用コンデンサとの相互接続点とを互いに接続する導体と、前記導体と前記対の直流端子の一方との間に接続された第1のクランプ用抵抗と、前記第1のクランプ用コンデンサと前記第2のクランプ用ダイオ−ドとの相互接続点と前記対の直流端子の他方との間に接続された第2のクランプ用抵抗とを備えていることを特徴とする電力変換装置。

請求項2

対の直流端子と、少なくとも1つの交流端子と、少なくとも第1及び第2のスイッチを含んで直流電力を交流電力に又は交流電力を直流電力に変換する電力変換回路と、第1及び第2のダイオードと、第1及び第2のコンデンサ又は寄生容量と、主制御回路と、ソフトスイッチング用転流回路と、補助制御回路とを有し、前記第1及び第2のスイッチは前記対の直流端子間において互いに直列に接続され、前記交流端子は前記第1及び第2のスイッチの相互接続点に接続され、前記第1及び第2のダイオード及び前記第1及び第2のコンデンサ又は寄生容量は前記第1及び第2のスイッチに並列に接続され、前記主制御回路は直流電力を交流電力に又は交流電力を直流電力に変換するように前記第1及び第2のスイッチをオン・オフ制御するように構成され、前記転流回路は、前記対の直流端子の一方と前記第1及び第2のスイッチの直列回路の一端との間に接続された第1のソフトスイッチグ用スイッチと、前記第1及び第2のスイッチの直列回路の一端と他端との間に接続された共振用インダクタと第2のソフトスイッチグ用スイッチとの直列回路とを含み、前記補助制御回路は前記第1及び第2のスイッチのタ−ンオン時点において前記第1及び第2のスイッチの直列回路の両端子間電圧が零又は零近傍値になるように前記転流回路の前記第1及び第2のソフトスイッチング用スイッチを制御するように形成されている電力変換装置であって、前記第1のスイッチに並列に接続された、第1のクランプ用ダイオ−ドと第1のクランプ用コンデンサと第2のクランプ用ダイオ−ドとの直列回路と、前記第2のスイッチに並列に接続された、第3のクランプ用ダイオ−ドと第2のクランプ用コンデンサとの直列回路と、前記第1のクランプ用ダイオ−ドと前記第1のクランプ用コンデンサとの相互接続点と前記対の直流端子の一方との間に接続された第1のクランプ用抵抗と、前記第1のクランプ用コンデンサと前記第2のクランプ用ダイオ−ドとの相互接続点と前記対の直流端子の他方との間に接続された第2のクランプ用抵抗と、前記第3のクランプ用ダイオ−ドと前記第2のクランプ用コンデンサとの相互接続点と前記一方の直流端子との間に接続された第3のクランプ用抵抗とを備えていることを特徴とする電力変換装置。

請求項3

前記転流回路は、更に、前記対の直流端子間の電圧によって逆バイアスされる方向性を有して前記第1及び第2のソフトスイッチング用スイッチに並列接続された第1及び第2のソフトスイッチング用ダイオ−ドと、前記共振用インダクタンス及び前記第2のソフトスイッチング用スイッチに対して直列に接続された補助直流電源又はコンデンサとを有していることを特徴とする請求項1又は2記載の電力変換装置。

請求項4

前記第1及び第2のスイッチは、制御半導体スイッチとこの制御半導体スイッチに対して逆方向並列に接続された第1及び第2のダイオ−ドとを有するものである請求項1又は2又は3記載の電力変換装置。

請求項5

前記第1及び第2のクランプ用コンデンサは、前記第1及び第2のコンデンサ又は寄生容量よりも大きな容量値を有していることを特徴とする請求項1乃至4のいずれかに記載の電力変換装置。

請求項6

前記補助制御回路は、前記第1のスイッチ又は前記第2のスイッチのターンオン時点(t3)よりも少し前の第1の時点(t1)から前記ターンオン時点(t3)よりも少し後の第2の時点(t6)まで前記第1のソフトスイッチング用スイッチをオフ状態に制御し、前記第2のソフトスイッチング用スイッチをオン状態に制御するための制御信号を形成するものであり、前記第1の時点(t1)から前記ターンオン時点(t3)までの第1の時間長(T1)が前記共振用インダクタの働きによって前記ターンオン時点までに前記第1及び第2のスイッチの直列回路の両端間の電圧を零又はほぼ零にすることができる時間長とされ、前記ターンオン時点(t3)から前記第2の時点(t6)までの第2の時間長(T2)が前記共振用インダクタの働きによって前記第2の時点(t6)までに前記第1のソフトスイッチング用スイッチの電圧を零又はほぼ零にすることができる時間長とされていることを特徴とする請求項1乃至5のいずれかに記載の電力変換装置。

請求項7

前記補助制御回路は、前記第1又は第2のスイッチのオン・オフ繰返し周期と同一の周期を有して鋸波電圧を発生する鋸波発生手段と、前記交流端子を通って流れる電流の大きさ示す信号を検出又は演算で求める電流検知手段と、前記電流検知手段の出力(Io)と前記インダクタインダクタンス(Lr)と前記直流電源の電圧(Vdc)と前記第1又は第2のコンデンサ又は寄生容量の容量値(C)とに基づいて前記鋸波電圧を横切る第1及び第2の電圧レベル(Vta、Vtb)を設定し、前記第1の電圧レベル(Vta)を前記鋸波電圧が横切る時点(t1)から前記鋸波電圧の1周期の終りの時点(t3)までの時間長が前記第1の時間長(T1)になり、前記鋸波電圧の1周期の始まりの時点(t3)から前記第2の電圧レベル(Vtb)を前記鋸波電圧が横切る時点(t6)までの時間長が前記第2の時間長(T2)になるるように前記第1及び第2の電圧レベル(Vta、Vtb)及び前記鋸波電圧の振幅が決定されていることを特徴とする請求項6記載の電力変換装置。

請求項8

前記主制御回路は、前記交流端子における所望交流電圧を示す電圧基準値(Vr )を発生する電圧基準値発生器と、前記交流電圧の周期よりも十分に短い周期で鋸波電圧(Vt )を発生する鋸波発生器と、前記交流端子における電流の方向を検知する電流方向検出手段と、前記電流の方向が第1の方向の時には前記鋸波電圧(Vt)を出力し、前記電流の方向が第1の方向と逆方向の第2の方向の時には前記鋸波電圧(Vt)に対して逆相の鋸波電圧を出力する補正回路と、前記電圧基準値(Vr )と前記補正回路から得られた補正鋸波電圧(Vt’)とを比較し、前記電圧基準値(Vr )と前記補正鋸波電圧(Vt’)の傾斜電圧部分との交差時点を示すパルスを発生する比較手段と、前記第1及び第2のスイッチの直列回路の両端間の電圧が高レベルから零又はほぼ零になったことを検出する零電圧検出手段と、前記零電圧検出手段から零又はほぼ零を示す検出信号が得られた時点から前記比較手段からパルスが発生した時点までがオン時間幅となる第1の制御パルスを形成して前記第1のスイッチに供給し、前記第1の制御パルスと逆位相の第2の制御パルスを形成して前記第2のスイッチに供給するスイッチ制御信号形成手段とを備えており,前記補助制御回路は、前記第1のソフトスイッチング用スイッチの両端子間電圧が零又はほぼ零になる時点を検出するスイッチ電圧検出手段と、前記鋸波電圧の垂直の部分又はこれに同期た信号に応答して前記第1のソフトスイッチング用スイッチをオフに制御し、しかる後前記スイッチ電圧検出手段の零又はほぼ零を示す出力に応答して前記第1のソフトスイッチング用スイッチをオンに制御する第1のソフトスイッチング制御信号を形成し、且つ前記第1のソフトスイッチング制御信号と逆相の第2のソフトスイッチング制御信号を形成するソフトスイッチング制御信号形成回路と、を備えていることを特徴とする請求項6記載の電力変換装置。

請求項9

更に、前記対の直流端子間に接続された電池又はコンデンサと、交流電源端子と、交流電源端子と前記転流回路との間に接続されコンバ−タとを有していることを特徴とする請求項1乃至8のいずれかに記載の電力変換装置。

技術分野

(12)図11インバータ変換回路2a、2b、2cの内の任意の相の変換回路のPWM制御を停止することができる。

背景技術

0001

本発明は、コンバ−タ、インバ−タ、AC−DC−AC変換器等のスイッチング方式電力変換装置に関する。

0002

電力用スイッチをPWM制御して直流電力交流電力に変換する電力変換装置は、モ−タ駆動用インバ−タ、無停電電源装置などに用いられている。図1は従来のPWM制御電力変換装置としてのブリッジ型インバ−タの1相分を示す。この電力変換装置は、対の直流端子1a、1bと、変換回路2と、制御回路3とを有する。変換回路2は第1及び第2のスイッチQ1 、Q2 の直列回路から成る。この直列回路は一方の直流端子1aと他方の直流端子1bとの間に接続されている。第1及び第2のスイッチQ1 、Q2の相互接続点出力交流端子4が接続されている。なお、第1及び第2のスイッチQ1 、Q2 は絶縁ゲ−トバイポラトランジスタ即ちIGBTで示されており、トランジスタスイッチS1 、S2 と内蔵ダイオ−ドD1 、D2 とから成る。出力端子4に接続されている負荷インダクタンス又は配線導体のインダクタンスのためにスイッチQ1、Q2のオンオフ動作時に過電圧が発生する。この過電圧を抑制するために、第1及び第2のクランプ用コンデンサCa1、Ca2、第1及び第2のクランプ用ダイオ−ドDc1、Dc2、第1及び第2のクランプ用抵抗R1、R2から成るクランプ回路が設けられている。第1及び第2のクランプ用コンデンサCa1、Ca2は第1及び第2のクランプ用ダイオ−ドDc1、Dc2を介して第1及び第2のスイッチQ1、Q2に並列に接続されている。第1のクランプ用抵抗R1は一方(正側)の直流端子1a及び中継端子Tdcと第2のクランプ用コンデンサCa2との間に接続されている。第2のクランプ用抵抗R2は第1のクランプ用コンデンサCa1と他方(負側)の直流端子1bとの間に接続されている。この結果、第1及び第2のクランプ用コンデンサCa1、Ca2の電圧及び第1及び第2のスイッチQ1、Q2の電圧は対直流端子1a、1b間の電圧にクランプされる。

0003

制御回路3は第1及び第2のスイッチQ1 、Q2 を交互にオン・オフするための制御信号を形成し、第1及び第2のスイッチQ1 、Q2 の制御端子(ゲ−ト)に供給するものであり、電圧基準値発生器5と、鋸波発生器6と、比較器7と、制御信号形成回路8とから成る。電圧基準値発生器5は例えば図2(A)に示す正弦波から成る電圧基準値Vr を発生する。鋸波発生器6は変換回路2の出力周波数よりも十分高い周波数の搬送波としての三角波電圧即ち鋸波電圧Vt を図2(A)に示すように発生する。比較器7は図2(A)に示す電圧基準値発生器5から発生した電圧基準値Vr と鋸波電圧Vt とを比較して図2(B)に示すPWM信号を形成する。制御信号形成回路8は、電圧基準値Vr が鋸波電圧Vt よりも高いことを示す比較器7の出力によって第1のスイッチQ1 をオン制御する信号を図2(B)に示すように形成し、また、第2のスイッチQ2 を第1のスイッチQ1 と逆に動作させる制御信号即ち図2(B)の信号の逆相信号を形成する。図2の例では出力電流Io を図2(C)に示すように正弦波に制御しているので、第1及び第2のスイッチQ1 、Q2 の電流Iq1、Iq2は図2(D)(E)に示すように流れる。なお、図1回路コンバータとして使用し、交流端子4に交流電圧を入力させて、直流電源1側に直流電力を得ることもできる。

0004

図1に示すPWM制御電力変換回路は、任意の出力電圧又は電流を供給することができるという特長を有している。しかし、第1及び第2のスイッチQ1 、Q2 のタ−ンオン時及びタ−ンオフ時にスイッチング損失が生じる。

0005

図1の典型的な電力変換装置のスイッチング損失を低減させるために、図3に示すようなDCリンク回路から成るソフトスイッチング転流回路9を設けることが知られている。このソフトスイッチング用転流回路9は、第1及び第2のスイッチQ1、Q2に並列接続された共振用の第1及び第2のコンデンサC1、C2の電荷を第1及び第2の主スイッチQ1、Q2のターンオン直前に放出させて第1及び第2のスイッチQ1 、Q2をゼロボルトスイッチング(ZVS)させるための回路である。即ち、このソフトスイッチング用転流回路9は変換回路2の一対の直流端子としてのライン11、12間即ち中継端子Tdcと負の直流端子1bとの間の電圧(直流リンク電圧)を第1及び第2のスイッチQ1 、Q2 のタ−ンオン時点の直前ににするものであり、第1及び第2のソフトスイッチング用スイッチQ11、Q12と第1及び第2のソフトスイッチング用ダイオ−ドD11、D12と共振用インダクタリアクトル)Lr と補助電源10 とから成る。図3の回路ではインダクタLr に基づく共振によって直流ライン11、12間の電圧を零にし、しかる後、第1のスイッチQ1 又は第2のスイッチQ2 をオン状態に制御する。この制御を実行するために、主制御回路3の他に、補助制御回路13、第1及び第2の電流検出器14、15、及び直流リンク電圧検出回路16が設けられている。この回路によれば、第1及び第2のスイッチQ1 、Q2 のタ−ンオン時及びターンオフ時のスイッチング損失を低減することができる。図4図3の回路において交流端子4に誘導性負荷が接続され、且つ交流端子4に負方向電流が流れている時における各部の状態を示す。即ち、図4の(A)は第1のスイッチQ1のゲート制御信号、(B)は第2のスイッチQ2のゲート制御信号、(C)は第1のソフトスイッチング用スイッチQ11のゲート制御信号、(D)は第2のソフトスイッチングスイッチQ12のゲート信号、(E)は交流端子4を流れる負荷電流IoとインダクタLrを流れる共振電流Ir、(F)は一対の直流ライン11、12間の直流リンク電圧Vdc1を示す。図4の方法では、t1〜t1’期間、t1’〜t2期間において第1及び第2のソフトスイッチング用スイッチQ11,Q12を同時にオン状態とし、出力電流Ioよりも大きな電流IrをインダクタLrに流し、これを利用してt2〜t2’期間で直流リンク電圧Vdc1を零にし、t2’時点で第2のスイッチQ2をターンオンさせる。

0006

ところで、図3の交流端子4に接続される負荷のインダクタンス又は変換回路2及び負荷回路の配線導体のインダクタンスに蓄積された残留エネルギ及びこれに基づく過電圧(サ−ジ電圧)が大きくなると、第1及び第2のコンデンサC1、C2のみで過電圧(サ−ジ電圧)を抑制することができない。そこで、図3の回路に図1に示したクランプ回路を付加することが考えられる。しかし、図1のコンデンサCa1、Ca2とダイオ−ドDc1、Dc2と抵抗R1、R2とから成るクランプ回路を図3の回路に単に付加すると、対のライン11、12間の直流リンク電圧Vdc1の変化によってクランプ用コンデンサCa1、Ca2の充放電が生じ、抵抗R1、R2を通って電流が流れ、電力損失が生じ、電力変換装置の効率低下が生じる。

課題を解決するための手段

0007

そこで、本発明の目的は、比較的簡単な回路によってスイッチング損失の低減過電圧の抑制との両方を行うことができる電力変換装置を提供することにある。

0008

上記課題を解決し、上記目的を達成するための本発明は、対の直流端子と、少なくとも1つの交流端子と、少なくとも第1及び第2のスイッチを含んで直流電力を交流電力に又は交流電力を直流電力に変換する電力変換回路と、第1及び第2のダイオードと、第1及び第2のコンデンサ又は寄生容量と、主制御回路と、ソフトスイッチング用転流回路と、補助制御回路とを有し、前記第1及び第2のスイッチは前記対の直流端子間において互いに直列に接続され、前記交流端子は前記第1及び第2のスイッチの相互接続点に接続され、前記第1及び第2のダイオード及び前記第1及び第2のコンデンサ又は寄生容量は前記第1及び第2のスイッチに並列に接続され、前記主制御回路は直流電力を交流電力に又は交流電力を直流電力に変換するように前記第1及び第2のスイッチをオン・オフ制御するように構成され、前記転流回路は、前記対の直流端子の一方と前記第1及び第2のスイッチの直列回路の一端との間に接続された第1のソフトスイッチグ用スイッチと、前記第1及び第2のスイッチの直列回路の一端と他端との間に接続された共振用インダクタと第2のソフトスイッチグ用スイッチとの直列回路とを含み、前記補助制御回路は前記第1及び第2のスイッチのタ−ンオン時点において前記第1及び第2のスイッチの直列回路の両端子間電圧が零又は零近傍値になるように前記転流回路の前記第1及び第2のソフトスイッチング用スイッチを制御するように形成されている電力変換装置であって、前記第1のスイッチに並列に接続された、第1のクランプ用ダイオ−ドと第1のクランプ用コンデンサと第2のクランプ用ダイオ−ドとの直列回路と、前記第2のスイッチに並列に接続された、第3のクランプ用ダイオ−ドと第2のクランプ用コンデンサとの直列回路と、前記第1のクランプ用ダイオ−ドと前記第1のクランプ用コンデンサとの相互接続点と前記第3のクランプ用ダイオ−ドと前記第2のクランプ用コンデンサとの相互接続点とを互いに接続する導体と、前記導体と前記対の直流端子の一方との間に接続された第1のクランプ用抵抗と、前記第1のクランプ用コンデンサと前記第2のクランプ用ダイオ−ドとの相互接続点と前記対の直流端子の他方との間に接続された第2のクランプ用抵抗とを備えていることを特徴とする電力変換装置に係わるものである。

発明の効果

0009

なお、請求項2に示すように第3のクランプ用抵抗Ra3を設け、請求項1の発明の第1のクランプ用抵抗Ra1と同様な機能を第1及び第3のクランプ用抵抗Ra1、Ra3とで得ることができる。また、請求項3に示すように第1及び第2のソフトスイッチング用スイッチに対して並列に第1及び第2のソフトスイッチング用ダイオ−ドを接続し、また、第2のソフトスイッチング用スイッチに直列に直流電源又はコンデンサを接続することが望ましい。また、請求項4に示すように、第1及び第2のスイッチは、制御半導体スイッチとダイオ−ドとの並列回路であることが望ましい。また、請求項5に示すように、第1及び第2のクランプ用コンデンサは、第1及び第2のコンデンサ又は寄生容量よりも大きな容量値を有していることが望ましい。また、補助制御回路による第1及び第2のソフトスイッチング用スイッチの制御は請求項6及び図8に示すようなタイミングで実行するように構成することが望ましい。また、補助制御回路は、請求項7、図6及び図8に示すように鋸波発生手段と交流端子の電流を検知する手段とを有することが望ましい。また、主制御回路は請求項8、図6及び図7に示すように、電圧基準発生器と、鋸波発生器と、電流方向検出手段と、鋸波電圧の補正回路と、比較手段と、零電圧検出手段と、スイッチ制御形成手段とで構成することができる。また、請求項9に示すように、コンバ−タを設けることができる。

0010

各請求項の発明によれば、転流回路によってZVSを達成してスイッチング損失の低減を図り、且つクランプコンデンサによってスイッチのオフ時に発生する過電圧を抑制することができる。また、クランプ用コンデンサの電荷が転流回路を通って放出されることを第1及び第3のクランプ用ダイオ−ドで阻止しているので、転流回路の電圧変化に基づく放電電流がクランプ用抵抗を介して流れない。従って、転流回路を設けることによってクランプ用抵抗での電力損失の増大が生じない。この結果、効率向上と過電圧抑制との両方を良好に達成することができる。なお、過電圧が抑制されると、第1及び第2のスイッチの耐圧を下げることができ、コストの低減を図ることができる。請求項6の発明によれば、スイッチング損失及びノイズの低減を良好に達成することができ、且つインダクタに流れる電流の最大振幅を抑制し、効率を向上させることができる。また、請求項7の発明によれば各スイッチの制御信号を演算による予測に基づいて形成するので、高速検出器や高速な制御装置が不要となる。また、請求項8の発明によれば比較的簡単な回路で各スイッチの制御信号を形成することができる。また、請求項9の発明によれば、AC—DC—AC変換を良好に行うことができる。

0011

次に、図5〜図17を参照して本発明の実施形態及び実施例を説明する。

0012

まず、図5に示す第1の実施例の電力変換装置を説明する。但し、図5において図1及び図3と実質的に同一の部分には同一の符号を付してその説明を省略する。図5の電力変換装置は、インバ−タであって、第1及び第2の直流端子1a、1bと、ソフトスイッチング用転流回路9と、第1及び第2の変換回路2a、2bと、誘導性負荷20と、主制御回路21と、補助制御回路22と、第1及び第2の電流検出器23、24とから成る。

0013

第1及び第2の直流端子1a、1b間には電池又は整流平滑回路又はコンデンサ等で構成される主直流電源が接続される。第1の変換回路2aは図1及び図3の変換回路2と同様にIGBTから成る主スイッチ又は変換用スイッチとしての第1及び第2のスイッチQ1 、Q2 と第1及び第2のコンデンサC1 、C2 とを有し、更に、過電圧防止用クランプ回路を含む。このクランプ回路は、第1及び第2のクランプ用コンデンサCa1、Ca2と、第1、第2及び第3のクランプ用ダイオ−ドDa1、Da2、Da3と、第1及び第2のクランプ用抵抗Ra1、Ra2とから成る。第1及び第2のクランプ用コンデンサCa1の一方の端子は第1のクランプ用ダイオードDa1を介して第1のスイッチQ1の一端に接続され、この他方の端子は第2のクランプ用ダイオ−ドDa2を介して第1のスイッチQ1の他端に接続されている。第2のクランプ用コンデンサCa2の一端は第3のクランプ用ダイオ−ドDa3を介して第2のスイッチQ2の一端に接続され、この他端は第2のスイッチQ2の他端に接続されている。第1、第2及び第3のクランプ用ダイオ−ドDa1、Da2、Da3は第1及び第2の直流端子1a、1b間の電圧によって順バイアスされる方向性を有している。第1のクランプ用ダイオ−ドDa1と第1のクランプ用コンデンサCa1との相互接続点と第2のクランプ用ダイオ−ドDa3と第2のクランプ用コンデンサCa2との相互接続点とは導体Wa1によって相互に接続されている。第1のクランプ用抵抗Ra1は導体Wa1と第1の直流端子1aとの間に接続されている。第2のクランプ用抵抗Ra2の一端は第1のクランプ用コンデンサCa1と第2のクランプ用ダイオ−ドDa2との相互接続点に接続され、この他端は第2の直流端子1bに接続されている。なお、第1及び第2のクランプ用コンデンサCa1、Ca2の容量は第1及び第2のコンデンサC1、C2の容量よりも大きい。第2の変換回路2bは第1の変換回路2aと実質的に同一に構成されており、第3及び第4のスイッチQ3 、Q4 、と第3及び第4のコンデンサC3 、C4 と、第3及び第4のクランプ用コンデンサCb1、Cb2と、第4、第5及び第6のクランプ用ダイオ−ドDb1、Db2、Db3と、第3及び第4のクランプ用抵抗Rb1、Rb2と、導体Wb2とから成る。第1及び第2の変換回路2a、2bにおいて、第1及び第2のスイッチQ1、Q2と第3及び第4のスイッチQ3、Q4、第1及び第2のコンデンサC1、C2と第3及び第4のコンデンサC3、C4、第1及び第2のクランプ用コンデンサCa1、Ca2と第3及び第4のクランプ用コンデンサCb1、Cb2、第1、第2及び第3のクランプ用ダイオ−ドDa1、Da2、Da3と第4、第5及び第6のクランプ用ダイオ−ドDb1、Db2、Db3、第1及び第2のクランプ用抵抗Ra1、Ra2と第3及び第4のクランプ用抵抗Rb1、Rb2、導体Wa1と導体Wb2はそれぞれ実質的に同一機能を有し、それぞれ同様に接続されている。従って、第2の変換回路2bの内部接続の説明を省略する。第1及び第2のスイッチQ1、Q2の直列回路と第3及び第4のスイッチQ3、Q4との直列回路は直流ライン11、12間に接続され、第1及び第2の交流端子4a、4b間に出力回路としての負荷20が接続されているので、第1〜第4のスイッチQ1〜Q4でブリッチ型インバ−タ回路が形成されている。なお、第1、第2、第3及び第4のスイッチQ1、Q2、Q3 、Q4 はトランジスタスイッチS1、S2、S3 、S4 と内蔵ダイオ−ドD1、D2、D3 、D4 との並列回路から成る。また負荷20はフイルタトランスとこの2次巻線に接続された負荷とから成る誘導性負荷である。

0014

ソフトスイッチング用転流回路9は、図3の回路と同様に共振用インダクタ(リアクトル)Lr と第1及び第2のソフトスイッチング用スイッチQ11、Q12と第1及び第2のソフトスイッチング用ダイオ−ドD11、D12と補助電源10とから成る。第1のソフトスイッチング用スイッチQ11はここに並列に接続された内蔵ダイオ−ドD11を伴って第1の直流端子1aと第1及び第2の変換回路2a、2bとの間の一方の直流ライン11に直列に接続されている。共振用インダクタLrと第2のソフトスイッチング用スイッチQ12と補助電源10との直列回路が第1及び第2の直流ライン11、12間に接続されている。第2のソフトスイッチング用スイッチQ12は転流スイッチとも呼ぶことができるものである。第2のソフトスイッチング用ダイオ−ドD12は第2のソフトスイッチング用スイッチQ12に逆方向並列に接続されている。なお、第1及び第2のソフトスイッチング用スイッチQ11、Q12は第1及び第2の直流端子1a、1b間の電圧によって正方向電流が流れる極性を有し、第1及び第2のソフトスイッチング用ダイオ−ドD11、D12は逆バイアスされる極性を有する。補助電源10は第1及び第2の直流端子1a、1b間の電圧Vdcの約1/2の電圧V10を有し、コンデンサで構成することもできる。ソフトスイッチング用転流回路9は、第1及び第2の変換回路2a、2bの第1〜第4のスイッチQ1 〜Q4 のタ−ンオンの時に一対の直流ライン11、12間の電圧を零にして第1〜第4のスイッチQ1 〜Q4 を零電圧スイッチング(ZVS)させる機能を有する。

0015

主制御回路21は第1及び第2の変換回路2a、2bの第1〜第4のスイッチQ1 〜Q4 をオン・オフする制御信号を形成するものであって、図6に示すように図1の制御回路3と実質的に同一の電圧基準値発生器5と鋸波発生器6と比較器7と制御信号形成回路8とを有し,更に補正回路6aを有する。電圧基準値発生器5は負荷20に供給する交流電圧に相当する図7(B)に示す電圧基準値Vrを発生する。鋸波発生器6は電圧基準値Vrの周波数(例えば50Hz)よりも十分に高い周波数(例えば20kHz )で図7(A)に示す鋸波電圧(三角波電圧)Vt を発生する。この実施例の鋸波電圧Vt は傾斜して立上った後に垂直に立下っている。勿論、図7(A)の鋸波電圧Vt と傾きが逆の鋸波電圧とすることもできる。補正回路6aは鋸波発生器6と比較器7との間に接続され,負荷電流検出器23の出力ライン25の信号に応答して鋸波電圧Vt の位相を制御する。即ち補正回路6aは、図7(D)に示す負荷電流Ioが正の半波の期間には図7(A)の鋸波電圧Vtと同一の正相鋸波電圧Vt1を出力し、負荷電流Ioが負の半波の期間には図7(A)の鋸波電圧Vtと逆相の鋸波電圧Vt2を出力する。正相鋸波電圧Vt1と逆相鋸波電圧Vt2との合成から成る補正鋸波電圧Vt’は比較器7の入力となる。なお, 負荷電流検出器23は出力端子4aを流れる電流Ioを検出する。比較器7即ちコンパレ−タは、図7(B)に示すように電圧基準値Vr と鋸波電圧Vt’ とを比較し、図7(C)に示すようなPWM制御信号を形成する。図7(B)から明らかなように正弦波電圧基準値Vrの正ピーク負ピークとの中間位置と鋸波電圧Vt’の正ピークと負ピークとの中間位置とが互いに一致するようにそれぞれのレベルが設定されている。制御信号形成回路8は図7(C)に示す制御信号を第1及び第4のスイッチQ1、Q4 に供給し、また、図7(C)の制御信号の逆相信号を形成し、この逆相の制御信号を第2及び第3のスイッチQ2 、Q3 に供給する。

0016

図5の補助制御回路22は第1〜第4のスイッチQ1 〜Q4 をソフトスイッチングすることができるようにソフトスイッチング用転流回路9のスイッチQ11、Q12をオン・オフ制御するものであり、ライン26によって主制御回路21の鋸波発生器6に接続され、また、ライン27によって電流検出器24に接続されている。

0017

補助制御回路22は図6に概略的に示すように、Vta設定回路31、Vtb設定回路32、第1及び第2の比較器33、34ANDゲート35及びNOT回路36から成る。なお、鋸波発生器6を補助制御回路22に含めることができる。

0018

Vta設定回路31は、図8(A)の上側電圧レベルVtaを設定し、これを第1の比較器33に供給するものである。Vtb設定回路32は、図8(A)の下側電圧レベルVtbを設定し、これを第2の比較器34に供給するものである。なお、Vta設定回路31及びVtb設定回路32は演算手段を含み、ライン25の負荷電流Ioと図5の各部の定数とに基づいて図8及び図9のt1〜t3期間T1及びt3〜t6期間T2が最適時間長になるように電圧レベルVta,Vtbを決定する。なおこの際、鋸波電圧Vtを考慮してVta、Vtbを決定する。この実施例では鋸波電圧Vtの振幅は0〜Vdcである。

0019

上側電圧レベルVtaと下側電圧レベルVtbとを演算する式は次の通りである。
Vta=Vdc[1-{(2LrIo)/Vdc+π√(LrC)}/T]
Vtb=Vdc{2(2LrIo)/Vdc+π√(LrC)}/T
ここで、Vdcは直流端子1a、1b間の電圧又は鋸波電圧の最大振幅、Cは直流ライン11,12間の容量即ちC1+C4又はC2+C4、Tは鋸波電圧Vtの周期、√(LrC)は(LrC)1/2である。なお、Vta及びVtb設定回路31、32に第2の電流検出器24の出力を与える代わりに、第1の電流検出器23の出力を与えることもできる。

0020

第1の比較器33はライン26の鋸波電圧Vtと上側電圧レベルVtaとを比較し、鋸波電圧Vtが上側電圧レベルVtaよりも高い時に低レベルとなる図8(B)の信号を出力する。なお、Vtaは鋸波電圧Vtの最大値よりも少し低い値に設定される。

0021

第2の比較器34はライン26の鋸波電圧Vtと下側電圧レベルVtbとを比較し、下側電圧レベルVtbが鋸波電圧Vtよりも高い時に低レベルとなる図8(C)の信号を出力する。

0022

ANDゲート35は第1及び第2の比較器33、34に接続されており、第1及び第2の比較器33、34の低レベル出力に対応して低レベルとなる図8(E)の信号を出力する。このANDゲート35の出力は第1のソフトスイッチング用スイッチQ11の制御信号となる。NOT回路36はANDゲ−ト35の出力を位相反転し、図8(D)の信号を第2のソフトスイッチング用スイッチQ12の制御信号を形成する。

0023

次に、図5の回路の動作を図9の波形図を参照して説明する。図9は図7の負荷電流Ioが負の半波の期間におけるt3時点及びこの近傍における図5の各部の状態を示す。更に詳細には図9(A)(B)は第1及び第2のスイッチQ1 、Q2の制御信号を示し、図9(C)(D)は第1及び第2のソフトスイッチング用スイッチQ11、Q12の制御信号を示し、図9(E)はインダクタLrの電流Irを示し、図9(F)は第1及び第2の直流ライン11、12間の直流リンク電圧Vdc1を示し、図9(G)(H)は第1及び第2のスイッチQ1 、Q2 の端子間電圧Vq1、Vq2を示す。なお、第4のスイッチQ4 は第1のスイッチQ1 と実質的に同一に動作し、第3のスイッチQ3 は第2のスイッチQ2 と実質的に同一に動作する。

0024

次に、図9の各区間の動作を説明する。以下の説明において電流経路は各部の参照符号のみで示す。図9のt1 時点の前では、第2及び第3のスイッチQ2 、Q3 がオフ、第1及び第4のスイッチQ1 、Q4 がオン、第1のソフトスイッチング用スイッチQ11がオン、第2のソフトスイッチング用スイッチQ12がオフである。負荷20が誘導性であるので、20—D1—D11—1—D4 の閉回路が形成される。この時、第2及び第3のコンデンサC2 、C3 は直流端子1a、1b間の電圧Vdcに充電されている。

0025

t1時点で第1のソフトスイッチング用スイッチQ11がオフ、第2のソフトスイッチング用スイツチQ12がオンになると、誘導性負荷20の蓄積エネルギの放出によって、20−D1−D11−1-D4の回路に回生電流が流れると共に、20−D1−Lr−Q12−10−D4の回路に電流Irが流れる。これにより、インダクタLrにエネルギが蓄積される。この時インダクタLrの電流Irは図9(E)に示すように傾斜を有して徐々に立上るために第2のソフトスイッチング用スイッチQ12はゼロ電流スイツチングとなり、スイツチング損失がほとんど生じない。また、第1のソフトスイッチング用スイッチQ11の電圧は回生電流のためにt1時点で零に保たれ,ZVSが達成される。

0026

t2〜t3期間には、Lr −Q12−10−C2 −D1の閉回路及びLr −Q12−10−D4 −C3 の閉回路及び20—D1—Lr—Q12—10—D4の閉回路が形成され、第2及び第3のコンデンサC2 、C3 の放電が生じ、この電圧即ち第2及び第3のスイッチQ2 、Q3 の電圧Vq2、Vq3が図9(H)に示すように徐々に低下し、また、第1のソフトスイッチング用スイッチQ11の電圧Vq11 がVq2とは逆に徐々に上昇する。t1 〜t3 期間はt3 時点で第2及び第3のスイッチQ2 、Q3 の電圧がほぼ零になるように決定されている。従って、t3 時点で第2及び第3のスイッチQ2 、Q3 をタ−ンオンすると、ZVSが達成される。図9(E)ではt2〜t3期間で共振電流Irがオ−バ−シュ−トによって負荷電流Ioよりも大きくなっているが、共振電流Irの最大値は負荷電流Ioとほぼ同一である。

0027

t3 時点で第2及び第3のQ2 、Q3 をタ−ンオン制御し、第1及び第4のスイッチQ1 、Q4 をタ−ンオフ制御する。t3〜t4期間には、20—D1—Lr−Q12−10−D4の回路で電流Irが流れると共に、20−S2−D4の閉回路に電流が流れる。

0028

t4時点でインダクタLrの蓄積エネルギの放出が終了した後のt4〜t5期間では、補助電源10に基づいて、10−D12−Lr−Q3−20−Q2の閉回路で逆方向の共振電流Irが図9(E)に示すように流れる。また、20−S2−D4の回路にも電流が流れる。

0029

t5時点で共振電流Irの負方向の振幅が負荷電流Ioの振幅に等しくなると、t5〜t6期間において、10−D12−Lr−C1-Q2の回路及び10−D12-Lr-Q3−C4の回路でコンデンサC1、C4の充電が始まり、対の直流ライン11、12間の直流リンク電圧Vdc1と第1のスイツチQ1の電圧Vq1と第4のスイツチQ4の電圧が図9(F)(G)に示すように徐々に上昇する。なお、t5〜t6期間には20−S2−D4の回路にも電流が流れる。

0030

t6時点で直流リンク電圧Vdc1が直流端子1a、1b間の電圧Vdcに等しくなると、第1のソフトスイッチング用スイッチQ11の電圧は実質的に零になるので、この時点でタ−ンオン制御し、ZVSを達成する。t6時点で第2のソフトスイッチング用スイッチQ12をタ−ンオフ制御するが、この時ダイオ−ドD12が導通しているので、ZVSが達成される。

0031

t6時点で第2のソフトスイッチング用スイッチQ12がオフになってもt6〜t7期間には10−D12−Lr−Q3−20−Q2の回路に電流が流れ、また、20−S2—D4の回路にも電流が流れる。t7時点でインダクタLrに基づく電流Irが流れなくなると、1—Q11—Q3—20—Q2の回路で負荷電流が流れる。

0032

図9のt0においては、第1のスイッチQ1がタ−ンオン動作し、第2のスイッチQ2がターンオフ動作する。本実施例では、このt0時点において、第1及び第2のソフトスイッチング用スイッチQ11、Q12を特別に制御しない。この様にt0でソフトスイッチング制御しなくても、第1及び第4のスイッチQ1、Q4のソフトスイッチングが可能である。即ち、負荷20は誘導性負荷であり、且つ図9のt0時点は負荷20に負方向電流が流れている図7のt2〜t4期間内にあるので、図9のt0時点で第1及び第4のスイッチQ1、Q4がオン制御されても、トランジスタスイッチS1,S4に電流が流れ込まず,20−C1−C3の回路及び20−C2−C4の回路によって第1及び第4のコンデンサC1、C4が放電し、第2及び第3のコンデンサC2、C3が充電される。このため、コンデンサC1、C4の蓄積エネルギの放出に基づく損失が発生しない。図9のt0時点で第2及び第3のがターンオフ制御されると、第2及び第3のコンデンサC2,C3が徐々に充電され、この電圧が図9(H)に示すように徐々に高くなり、第2及び第3のスイッチQ2,Q3のZVSが達成される。t0でソフトスイッイング用転流回路9を動作させないと、スイッチQ11,Q12のスイッイング回数が少なくなり、効率が向上する。

0033

図7のt1〜t2期間には正方向の負荷電流Ioが流れる。正の半波期間t1〜t2と負の半波期間t0〜t1及びt2〜t4とでは図6の補正回路6aの働きで、比較器7に互いに反対位相の鋸波電圧Vt1,Vt2が供給される。この結果、図7のt1〜t2期間では第1及び第4のスイッチQ1,Q4のターンオン時点及び第2及び第3のスイッチQ2,Q3のターンオフ時点で鋸波電圧Vt1が垂直に立上っている。ソフトスイッチング用スイッチQ11〜Q12の制御信号は図7(A)に示す全期間で同一位相の鋸波電圧Vtに基づいて作成されているが、第1〜第4のスイッチQ1〜Q4の制御信号は図7(B)の補正鋸波電圧Vt’に基づいて作成されているので、負の半波期間の第1及び第4のスイッチQ1,Q4のターンオン時のZVSと、正の半波期間の第2及び第3のスイッチQ2,Q3のターンオン時のZVSとの両方が可能になる。

0034

図10図7のt1〜t2の負荷電流Ioの正の半波期間における第1及び第2のスイッチQ1,Q2のターンオン時及びターンオフ時の動作を示す。図10の正の半波期間t1〜t2では、第1のスイッチQ1のターンオン時においてソフトスイッチング用スイッチQ11、Q12によるソフトスイッチング制御が図9のt1〜t7と同様に実行され、第2のスイッチQ2のターンオン時点t0ではソフトスイッチング用スイッチQ11〜Q12の制御は実行されない。第2のスイッチQ2のターンオン時にソフトスイッチング制御を行わなくても、負荷20が誘導性負荷であり、図9のt0時点と同様な動作となり,コンデンサC2,C3の蓄積エネルギ放出に基づく損失が発生しない。また、第1及び第4のスイッチQ1,Q4のターンオフはコンデンサC1,C4の働きでZVSになり、電力損失及びノイズが低減される。

0035

本実施例においては、電流検出器24の出力に基づいて図8のt1〜t3期間T1及びt3〜t6期間T2を演算で決定する。これにより、インダクタLrの電流を抑制してZVSを達成することができ、転流回路の損失が小さくなる。又、本実施例では鋸波電圧Vtの周期で変化する高周波の電流及び電圧を検出することが不要であり、高速な検出器及び高速な制御装置が不要に成り、コストの上昇を抑えることがでできる。

0036

図3の回路で既に説明したように、負荷20がインダクタンスを有する場合、又はインバ−タ出力回路導体がインダクタンスを有する場合には、第1〜第4のスイッチQ1〜Q4のタ−ンオフ時に過電圧が発生し、、第1〜第4のコンデンサC1〜C4のみではこれを吸収できないことがある。第1〜第4のクランプ用コンデンサCa1、Ca2、Cb1、Cb2は上述のような過電圧を吸収するためのものであって、第1〜第4のコンデンサC1〜C4の容量よりも大きい容量を有する。第1〜第4のクランプ用コンデンサCa1、Ca2、Cb1、Cb2は抵抗Ra1、Ra2、Rb1、Rb2を介して直流端子1a、1b間の電圧Vdcに予め充電されている。今、第1のスイッチQ1のターンオフによってここに過電圧が印加されれば、第1のクランプ用ダイオ−ドDa1と第1のクランプ用コンデンサCa1と第2のクランプ用ダイオ−ドDa2とから成る回路で第1のクランプ用コンデンサCa1の充電電流が流れる。第1のクランプ用コンデンサCa1は大きな容量を有するので、充電によってこの電圧の上昇は極めて小さく、コンデンサCa1の電圧は直流端子1a、1b間の電圧Vdcよりも僅かに高い値になる。このため、第1のスイッチQ1の電圧Vq1は電圧Vdcよりも僅かに高いクランプ用コンデンサCa1の電圧にクランプされ、第1のスイッチQ1に対する過電圧の継続的印加が阻止される。外部から第1のスイッチQ1に印加される電圧がクランプ用コンデンサCa1の電圧よりも低くなると、ダイオ−ドDa1、Da2がオフになり、コンデンサCa1と第1のクランプ用抵抗Ra1と直流端子1a、1b間と第2のクランプ用抵抗Ra2とから成る回路でコンデンサCa1の放電が生じ、コンデンサCa1の電圧は直流端子1a、1b間の電圧Vdcに等しくなる。第2のスイッチQ2のタ−ンオフ時にここに過電圧が印加されると、第3のクランプ用ダイオ−ドDa3がオン状態になり、クランプ用コンデンサCa2に充電電流が流れ、第2のスイッチQ2の電圧Vq2は直流端子1a、1b間の電圧Vdcよりも僅かに高いコンデンサCa2の電圧にクランプされる。その後、過電圧状態が解消すると、コンデンサCa2と第1のクランプ用抵抗Ra1と直流端子1a、1b間(図示せず)とから成る回路でコンデンサCa2の放電が生じ、コンデンサCa2の電圧は直流端子1a、1b間の電圧Vdcになる。第2の変換回路2bの第3及び第4のスイッチQ3、Q4のタ−ンオフ時においても第1及び第2のスイッチQ1、Q2のとーンオフ時と同様な動作が生じる。

0037

上述から明らかなように本実施例は次の効果を有する。
(1)ソフトスイッチング用転流回路9を設けて第1〜第4のスイッチQ1〜Q4のスイッチング損失の低減を図ると同時に、過電圧の抑制を効率の低下を抑えて達成することができる。即ち、クランプ用コンデンサCa1、Ca2、Cb1、Cb2の転流回路9側への放電がダイオ−ドDa1、Da3、Db1、Db3で阻止され、クランプ用コンデンサCa1、Ca2、Cb1、Cb2の放電は直流端子1a、1b間の電源側へのみ生じ、クランプ用コンデンサCa1、Ca2、Cb1、Cb2のエネルギを電源側に回生することができ、電力変換装置の効率を向上させることができる。
(2)電圧Vta、Vtb即ち期間T1、T2を演算で最適に決定するので、インダクタLrの電流を抑制し、転流回路9の損失を低減することができる。
(3)負荷電流I0の正の半波期間と負の半波期間で鋸波電圧の位相を反転させているので、第1〜第4のスイッチQ1〜Q4の制御信号を容易に作成することができる。

0038

次に、図11に示す第2の実施例の電力変換装置を説明する。但し、図11において図5と実質的に同一の部分には同一の符号を付してその説明を省略する。

0039

図11の電力変換装置は、図5の第1、第2、第3及び第4のクランプ用抵抗Ra1、Ra2、Rb1、Rb2の代わりに、第1、第2、第3、第4、第5及び第6のクランプ用抵抗Ra1、Ra2、Ra3、Rb1、Rb2、Rb3を設け、この他は図5と同一に構成したものである。図11において第1のクランプ用抵抗Ra1は第1のクランプ用ダイオ−ドDa1と第1のクランプ用コンデンサCa1との相互接続点と第1の直流端子1aとの間に接続されている。図11の第2及び第5のクランプ用抵抗Ra2、Rb2は図5で同一符号で示すRa2、Rb2と同様に接続されている。図11の第3のクランプ用抵抗Ra3は第3のクランプ用ダイオ−ドDa3と第2のクランプ用コンデンサCa2との相互接続点と第1の直流端子1aとの間に接続されている。図11の第4のクランプ用抵抗Rb1は第4のクランプ用ダイオ−ドDb1と第3のクランプ用コンデンサCb1との相互接続点と第1の直流端子1aとの間に接続されている。図11の第6のクランプ用抵抗Rb3は第6のクランプ用ダイオ−ドDb3と第4のクランプ用コンデンサCb2との相互接続点を第1の直流端子1aとの間に接続されている。

0040

図11の第1〜第4のクランプ用コンデンサCa1、Ca2、Cb1、Cb2は抵抗Ra1、Ra2、Ra3、Rb1、Rb2、Rb3を介して直流端子1a、1b間の電圧Vdcに予め充電される。第1〜第4のクランプ用コンデンサCa1、Ca2、Cb1、Cb2による過電圧吸収動作は図5の回路と同一である。図11において、第1のクランプ用コンデンサCa1の放電はCa1−Ra1−1aと1bとの間の電源-Ra2から成る回路で行われ、第2のクランプ用コンデンサCa2の放電はCa2-Ra3-1aと1bとの間の電源から成る回路で行われ、第3のクランプ用コンデンサCb1の放電は、Cb1−Rb1−1aと1bとの間の電源−Rb2とから成る回路で行われ、第4のクランプ用コンデンサCb2の放電は、Cb2-Rb3-1aと1bとの間の電源から成る回路で行われる。従って、第2の実施例の電力変換装置によっても第1の実施例と同一の効果を得ることができる。

0041

次に、図12図14を参照して、本発明の第3の実施例に係わるモータ駆動等に適したAC−DC−AC電力変換装置を説明する。但し、図12〜図14及び後述する図15図17において、図5と実施的に同一の部分には同一の符号を付してその説明を省略する。

0042

図12は第3の実施例の3相電力変換装置を示す。この実施例では一対の直流ライン11、12間の直流電圧を3相交流電圧に変換して誘導性負荷20aに供給するために、図5に示した第1及び第2の変換回路2a、2bと同様なものに加えて第3の変換回路2cが設けられている。第3の変換回路2cは第1の変換回路2aの第1及び第2のスイッチQ1 、Q2、第1及び第2のコンデンサC1、C2、クランプ用コンデンサCa1、Cab、クランプ用ダイオ−ドDa1、Da2、Da3、クランプ用抵抗Ra1、Ra2と同様なものを含み、一対の直流ライン11、12間に接続されている。要するに、図12では第1、第2及び第3の変換回路2a、2b、2cによって3相ブリッジ型インバ−タ回路が構成されている。

0043

例えば50Hzの正弦波交流電源に接続される3相交流電源端子39a、39b、39cと転流回路9即ち一対の直流ライン11、12との間には昇圧タイプの3相ブリッジ型コンバ−タ回路40が接続されている。図13に示すように、3相ブリッジ型コンバ−タ回路40は3相交流電源端子39a、39b、39cと一対の直流ライン11、12との間にリアクトルLa、Lb、Lcを介して接続された第1、第2及び第3のコンバ−タ変換回路41、42、43を有する。第1、第2、第3のコンバ−タ回路41、42、43は互いに同一に形成されているので、図13では第1のコンバ−タ変換回路41のみが詳しく示されている。この第1のコンバ−タ変換回路41はIGBTから成る2つのスイッチQ41、Q42から成り、インバ−タ変換回路2aと同一に構成されている。なお、スイッチQ41、Q42はトランジスタスイッチS41、S42の他に内蔵タイオ−ドD41、D42を有し、コンデンサC41、C42はスイッチQ41、Q42に並列に接続されている。また、第1、第2及び第3のコンバ−タ変換回路41、42、43に含まれている対のスイッチの相互接続点は3相交流電源端子39a、39b、39cに接続され、それぞれの対のスイッチの直列回路は直流ライン11、12間に接続されている。要するに、3相インバ−タ変換回路2a、2b、2c及び3相コンバ−タ変換回路41、42、43を構成している各対のスイッチの直列回路即ちア−ムは互いに並列に接続されている。また、電源端子39a、39b、39cの各相交流ラインにインダクタを含む高調波成分除去回路(図示せず)が接続されている。

0044

3相ブリッジ型コンバ−タ回路40の3つの変換回路41、42、43のスイッチQ41、Q42等は電源端子39a、39b、39cの電流波形が正弦波になるように周知の制御方法で制御される。即ちコンバ−タは40は周知の同期整流方式で制御される。

0045

図12においてはコンバ−タ40とインバ−タとの間の直流リンク回路を形成するために第1及び第2の直流端子1a、1bとの間にコンデンサ1が接続されている。このコンデンサ1は第1のソフトスイッチング用スイッチQ11のオン期間にコンバ−タ40の出力で充電される。3相ブリッチ型インバ−タの第1、第2及び第3の変換回路2a、2b、2cは図5の変換回路2a、2bと同様に動作する。

0046

図14には図12の3相変換回路の各部の状態が示されている。図14(A)(B)(C)は図6の比較器7に相当する第1、第2及び第3の相のPWM信号形成用比較器の入力、即ち補正鋸波電圧Vt´と電圧基準値Vrとを示す。図14(D)(E)(F)は図6の比較器7に相当する第1、第2及び第3の相の比較器出力を示す。図14(G)は第1、第2及び第3相の負荷電流を示す。図14(H)(I)(G)は図14(G)の3相の負荷電流の方向(極性)を示す。図14(K)は直流ライン11、12間の直流リンク電圧Vdc1を示す。この電圧Vdc1は鋸波電圧Vt´の周期で断続的に零になる。図14(L)は第1相の上側スイツチQ1の電流を示す。図14(M)は第1相の下側スイッチの電流を示す。図14(M)は第1相の下側スイツチQ2の電流を示す。図14(N)は第2相の上側スイッチの電流を示す。図14(O)は第2相の下側スイッチの電流を示す。図14(P)は第3相の上側スイッチの電流を示す。図14(Q)は第3相の下側スイッチの電流を示す。

0047

図14(A)(B)(C)から明らかなように第1相の補正鋸波電圧の位相はt0、t4で反転し、第2相の補正鋸波電圧の位相はt3、t6で反転し、第3相の補正鋸波電圧の位相はt1、t5で反転している。

0048

図12の実施例によれば、AC−DC変換コンバ−タ回路のスイッチQ41、Q42等のソフトスイッチングを第1の実施例のスイッチQ1 、Q2 等と同様に行うことができる。また、1つのソフトスイッチング用転流回路9によって3相インバ−タ回路と3相コンバ−タ回路との両方の主スイッチのソフトスイッチングを行うことが可能になる。

0049

図15に示す第4の実施例の電力変換装置は、図5の回路における電流検出器24の代りに第1及び第2の電圧検出器51、52を設け、また変形された制御回路21a、22aを設けた他は、図5と実質的に同一に構成したものである。第1の電圧検出器51は、第1のソフトスイッチング用スイツチQ11の両端に接続されており、このスイッチQ11の電圧が高レベルから低レベルに変化して実質的に零になった時に図17(D)のt2 時点及びt6 時点に示す零電圧検出パルスを発生するものであって、コンパレ−タによって構成されている。なお、この第1の電圧検出器51はライン53によって補助制御回路22aに接続されている。第2の電圧検出器52は対の直流ライン11、12間に接続されており、直流リンク電圧Vdc1 が実質的に零になったことを検出し、図17(C)のt1 及びt5 に示す検出パルスを発生するものであり、コンパレ−タで構成されている。なお、第2の電圧検出器52はライン54によって主制御回路21aに接続されている。

0050

図16図15の主制御回路12a及び補助制御回路22aを詳しく示し、図17図15及び図16の各部の状態を示す。なお、図17において(A)はライン11、12間の直流リンク電圧を示し、(B)は搬送波としての鋸波電圧Vt を示し、(C)は第2の電圧検出器52の零電圧検出パルスを示し、(D)は第1の電圧検出器51の零電圧検出パルスを示し、(E)は第2のフリップフロップ63の出力を示し、(F)はNOT回路64の出力パルスを示し、(G)は比較器7の出力パルスを示し、(H)は第1のフリップフロップ61の出力パルスを示し、(I)は第1のNOT回路62の出力パルスを示す。

0051

図16の主制御回路21aは、図6と同一構成の電圧基準発生器5、鋸波発生器6、補正回路6a、比較器7を含む他に、第1のフリップフロップ61及び第1のNOT回路62を含む。なお、図16の比較器7は出力段トリガ回路を含み、補正鋸波電圧Vt´ が電圧基準値Vr を下から上に向かって横切った時に図17(G)のトリガパルスを発生するように形成されている。第1のフリップフロップ61のセット端子Sは直流リンク電圧が零になったことを示すパルスを伝送するためのライン54に接続され、このリセット端子Rは比較器7に接続され、この出力端子は第2及び第3のスイッチQ2 、Q3 の制御端子に接続されていると共に第1のNOT回路62に接続されている。第1のNOT回路62は第1及び第4のスイッチQ1 、Q4 の制御端子に接続されている。

0052

補助制御回路22aは、第2のフリップフロップ63と第2のNOT回路64とからなる。第2のフリップフロップ63のセット端子Sは第1のソフトスイッチング用スイッチQ11の零電圧検出パルスの伝送ライン53に接続され、このリセット端子Rは鋸波発生器6に接続され、この出力端子Qは第1のソフトスイッチング用スイッチQ11の制御端子と第2のNOT回路64に接続されている。第2のNOT回路64の出力は第2のソフトスイッチング用スイツチQ12の制御端子に接続されている。

0053

図15の電力変換装置の各スイッチQ1 〜Q4 、Q11、Q12の制御タイミング及び動作は第1の実施例の電力変換装置と実質的に同一であり、各スイッチQ1〜Q4 、Q11、Q12の制御信号の形成方法において第4の実施例は第1の実施例と相違している。第4の実施例では、図17(B)に示す鋸波電圧Vt の立上り時点t0及びt4 に同期して第2のフリップフロップ63がリセットされ、この出力が図17(E)に示すように低レベルになり、第1のソフトスイッチング用スイッチQ11がタ−ンオフ制御され、逆に第2のソフトスイッチング用スイッチQ12が図17(F)の信号でタ−ンオン制御される。これにより、第1の実施例と同様にインダクタLr に電流が流れ、図17のt0 〜t2 期間において、図9のt1 〜t6 期間と同様な共振動作が電力変換回路において生じる。この共振動作によって図17(A)の直流リンク電圧が図9のt3 時点と同様に図17(A)のt1 時点で実質的に零になり、第2の電圧検出器52から図17(C)のパルスが発生し、第1のフリップフロップ61がセットされ、図17(H)の出力パルスが得られ、第2及び第3のスイッチQ2 、Q3 がZVSでタ−ンオンする。図17のt1時点で第1及び第4のスイッチQ2 、Q4 がタ−ンオフ制御されるが、これ等の電圧は直ちに立上らない。即ち、図17図9と同様に図7のt3 時点及びこの近傍を示し、且つ負荷20は誘導性であるために、第1及び第4のスイッチQ1、Q4 のタ−ンオフ時に第1及び第4のダイオ−ドD1 、D4 を通って電流が流れ、図17のt1 時点で第1及び第4のスイッチQ1 、Q4 の電圧は直ちに高レベル(電源電圧)に立上らない。図13の回路において共振動作が継続して図9のt6 時点に相当するt2 時点になると、図17(A)の直流リンク電圧がほぼ電源電圧になり、第1のソフトスイッチング用スイツチQ11の電圧が実質的に零に成る。この結果、第1の電圧検出器51から図17(D)のパルスが発生し、第2のフリップフロップ63がセットされ、図17(E)の出力パルスが第1のソフトスイッチング用スイッチQ11に供給され、このスイッチQ11がZVSでタ−ンオンする。t2時点で第2のソフトスイッチング用スイツチQ12がタ−ンオフ制御されるが、ダイオ−ドD12に共振電流が流れているので、スイッチQ2 は零電圧でタ−ンオフ制御される。図17のt3 時点で電圧基準値Vr が補助鋸波電圧Vt ′を横切ると、図17(G)のトリガパルスが比較器7から発生し、第1のフリップフロップ61がリセットされ、第2及び第3のスイッチQ2 、Q3 がタ−ンオフし、第1及び第4のスイッチQ1 、Q4 がタ−ンオンする。この第4の実施例においても、第1の実施例と同様に図17のt3 で特別にソフトスイッチング制御を実行する必要はない。

0054

第4の実施例によれば、第1の実施例と同様に損失低減ノイス低減、共振電流の抑制の効果を得ることができ、更に演算回路を使用しないで上記効果を得ることができ、更にまた、第1の実施例と同様にクランプ回路による過電圧防止効果も得ることができる。

図面の簡単な説明

0055

本発明は上記の実施例に限定されるものでなく、例えば次の変形が可能なものである。
(1)コンデンサC1 〜C4 をスイッチQ1 〜Q4 の対の主端子間即ちコレクタエミッタ間の寄生容量とすること、又は寄生容量と個別のコンデンサとの合計容量とすることができる。
(2) 第1〜第4のスイッチQ1 〜Q4 、第1及び第2のソフトスイッチング用スイッチQ11、Q12を絶縁ゲ−ト型電界効果トランジスタ、バイポ−ラトランジスタ等の他の半導体スイッチとすることができる。
(3) 各実施例で負荷20、20aが回生電力を発生する場合には変換回路2a、2b、2cを介して直流側電力を回生することができる。
(4)図12の変換回路2a、2b、2cを図11の変換回路2a´、2b´と同様な回路にすることができる。
(5)図15の変換回路2a、2bを図11の2a´、2b´とすることができる。
(6)図5から第2の変換回路2b を省き、第2のスイッチQ2 に並列に変換用コンデンサを介して出力トランス1次巻線または負荷回路を接続してハ−フブリッジ型インバ−タを構成することができる。
(7) 各実施例の電力変換回路を、負荷電流Io の方向に無関係に、第1のスイッチQ1 のタ−ンオン時の全てと第2のスイッチQ2 のタ−ンオン時の全てにおいて第1及び第2のソフトスイッチング用スイッチQ11〜Q12を使用したソフトスイッチング制御を行う用に変形するこができる。
(8)主制御回路21及び補助制御回路22の一部又は全部をディジタル回路で形成することができる。
(9) 負荷電流を電源端子1a、1bに流れる電流を検出して決定すること、又は第1及び第2のスイッチQ1 、Q2 の電流を検出して決定することができる。また、Vta、Vtbを演算で求める式として実施例以外の式を使用することもできる。
(10) ANDゲ−ト35の代わりに排他的ORゲ−トを使用することができる。
(11)補助電源10をコンデンサとすることができる。また、補助電源10の電圧を端子1a、1bの電圧よりも低い任意の値に設定することができる。

--

0056

図1従来の電力変換装置の1相分を示す回路図である。
図2図1の各部の状態を示す波形図である。
図3別の従来の電力変換装置の1相分を示す回路図である。
図4図3の各部の状態を示す波形図である。
図5本発明の第1の実施例の電力変換装置を示す回路図である。
図6図5の主制御回路及び補助制御回路を概略的に示すプロック図である。
図7図5の主制御回路の各部の状態を示す波形図である。
図8負荷電流の負の半波期間における図6の各部の状態を示す波形図である。
図9負荷電流の負の半波期間における図5の各部の状態を示す波形図である。
図10負荷電流の正の半波期間における図5の各部の状態を示す波形図である。
図11第2の実施例の電力変換装置を示す回路図である。
図12第3の実施例の電力変換装置を示す回路図である。
図13図12のコンバ−タを詳しく示す回路図である。
図14図12の各部の状態を示す波形図である。
図15第4の実施例の電力変換装置を示す回路図である。
図16図15の主制御回路及び補助制御回路を示すブロック図である。
図17図15及び図16の状態を示す波形図である。

0057

1a、1b直流端子
2a、2b、2c変換回路
ソフトスイッチング回路
11、12直流ライン
21主制御回路
22補助制御回路
Q1 〜Q4 第1〜第4のスイッチ
Q11〜Q12ソフトスイッチング用スイッチ
C1 〜C4コンデンサ
Lr共振用インダクタ
D11、D12 ソフトスイッチング用ダイオ−ド
Ca1、Ca2、Cb1、Cb2クランプ用コンデンサ
Da1、Da2、Da3、Db1、Db2、Db3クランプ用ダイオ−ド
Ra1、Ra2、Ra3、Rb1、Rb2、Rb3 クランプ用抵抗

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ