図面 (/)

技術 圧力制御方法および圧力制御装置

出願人 キャタピラージャパン合同会社
発明者 戸澤祥二小野智昭
出願日 1999年12月24日 (21年2ヶ月経過) 出願番号 1999-368462
公開日 2001年7月6日 (19年7ヶ月経過) 公開番号 2001-184130
状態 特許登録済
技術分野 掘削機械の作業制御 流体圧力の制御
主要キーワード 復帰バネ力 拡大変化 可変スロット 回動角度検出 実シリンダ 許容重量 ゲイン調整装置 戻り圧力
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2001年7月6日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (17)

課題

圧力制御における安定性の向上を図る。

解決手段

バルブハウジング21内に、パイロット流量を制御するパイロットスプール54と、パイロットスプール54によりパイロット操作する主流量制御用メインポペット41とを設ける。主流量の負荷圧力Ploadをパイロットスプール54にフィードバックする負荷圧力フィードバック機構を、通路79および負荷圧力感知部77などにより形成する。この負荷圧力フィードバック機構は、負荷圧力Ploadの増大により、パイロットスプール54をパイロット流量減少方向に変位させ、メインポペット41を主流量減少方向に制御して、負荷圧力Ploadを減少させる。このようにして、負荷圧力Ploadの変動を抑え込んで、安定性を確保する。

概要

背景

図15は、従来の例えば油圧ショベルなどの建設機械に設けられているメータインメータアウト分離型制御回路を示し、可変容量型ポンプ1と、負荷Wを駆動するシリンダ型流体圧アクチュエータ2との間には、2個のメータインバルブA1IMV ,A2IMV および2個のメータアウトバルブA3IMV ,A4IMV からなるブリッジ回路3が設けられている。

さらに、ポンプ1とブリッジ回路3との間の通路にはロードホールドチェック弁4が設けられ、また、ブリッジ回路3と流体圧アクチュエータ2との間の2通路にはリーク防止用ドリフト低減弁(パイロット操作型チェック弁)5がそれぞれ設けられている。

また、ポンプ1の吐出口には、通路6により、他の流体圧アクチュエータ(図示せず)を制御するブリッジ回路(図示せず)が同様に接続されている。

さらに、ポンプ1の吐出口とタンク7との間には、上記複数の流体圧アクチュエータ2のブリッジ回路3などの制御時に連動して制御される1個の共通バイパス弁8と、ポンプ吐出圧力を設定するメインリリーフ弁9とが設けられている。

メータインバルブA1IMV ,A2IMV 、メータアウトバルブA3IMV ,A4IMV および共通バイパス弁8は、通常、スプール弁タイプの中間絞りノッチ付き開閉弁であり、操作レバーの操作量に応じてコントローラ(図示せず)より出力された電気信号で作動されるプッシュソレノイドにより、スプール弁ストロークを制御される。

この回路において、例えば流体圧アクチュエータ2を負荷Wに抗して伸張させる場合、ドリフト低減弁5を開口させ、メータインバルブA1IMV およびメータアウトバルブA4IMV は閉止したまま、可変容量型のポンプ1の吐出量を徐々に増加させるとともに、共通バイパス弁8を徐々に閉止させ、メータインバルブA2IMVおよびメータアウトバルブA3IMV を徐々に開くように制御する。

一方、流体圧アクチュエータ2を収縮させる場合は、ドリフト低減弁5を開口させ、メータインバルブA2IMV およびメータアウトバルブA3IMV は閉止したまま、可変容量型のポンプ1の吐出量を徐々に増加させるとともに、共通バイパス弁8を徐々に閉止させ、メータインバルブA1IMV およびメータアウトバルブA4IMVを徐々に開くように制御する。このような制御は、図示されない操作レバーによりコントローラを介してなされる。

図16に示されるように、従来は、流体圧アクチュエータ2の負荷圧力圧力センサ10Aで検出して、コントローラ10Bにより電気的にメータインバルブA2IMVなどの制御弁を制御(開口面積を減少)して、制御弁にて制御された負荷圧力が予め設定しておいた圧力を超えないようにしている。

概要

圧力制御における安定性の向上を図る。

バルブハウジング21内に、パイロット流量を制御するパイロットスプール54と、パイロットスプール54によりパイロット操作する主流量制御用メインポペット41とを設ける。主流量の負荷圧力Ploadをパイロットスプール54にフィードバックする負荷圧力フィードバック機構を、通路79および負荷圧力感知部77などにより形成する。この負荷圧力フィードバック機構は、負荷圧力Ploadの増大により、パイロットスプール54をパイロット流量減少方向に変位させ、メインポペット41を主流量減少方向に制御して、負荷圧力Ploadを減少させる。このようにして、負荷圧力Ploadの変動を抑え込んで、安定性を確保する。

目的

本発明は、このような点に鑑みなされたもので、圧力制御における安定性の向上を図ることを目的とするものである。

効果

実績

技術文献被引用数
1件
牽制数
3件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

パイロット弁によりパイロット流量を制御することにより主流量制御用主弁パイロット操作し、主流量の負荷圧力をパイロット弁にフィードバックし、負荷圧力の増大によりパイロット弁をパイロット流量減少方向に変位させ、パイロット流量の減少により主弁を主流量減少方向に制御して負荷圧力を減少させることを特徴とする圧力制御方法

請求項2

パイロット弁にフィードバックされた負荷圧力と対抗する方向からパイロット弁に作用する外部からの推力を制御することにより負荷圧力を調整することを特徴とする請求項1記載の圧力制御方法。

請求項3

外部からの推力を立上げる際に負荷圧力によるフィードバック力より推力を一時的に減少させることを特徴とする請求項2記載の圧力制御方法。

請求項4

パイロット流量を制御するパイロット弁と、パイロット弁によりパイロット操作される主流量制御用の主弁と、主流量の負荷圧力をパイロット弁にフィードバックし負荷圧力の増大によりパイロット弁をパイロット流量減少方向に変位させ主弁を主流量減少方向に制御して負荷圧力を減少させる負荷圧力フィードバック機構とを具備したことを特徴とする圧力制御装置

請求項5

パイロット弁にフィードバックされた負荷圧力と対抗する方向からパイロット弁に作用する推力を制御することにより負荷圧力を調整する駆動手段を具備したことを特徴とする請求項4記載の圧力制御装置。

請求項6

駆動手段の推力を立上げる際に負荷圧力によるフィードバック力より駆動手段の推力を一時的に減少させるコントローラを具備したことを特徴とする請求項5記載の圧力制御装置。

技術分野

0001

本発明は、パイロット弁および主弁を用いた圧力制御方法および圧力制御装置に関する。

背景技術

0002

図15は、従来の例えば油圧ショベルなどの建設機械に設けられているメータインメータアウト分離型制御回路を示し、可変容量型ポンプ1と、負荷Wを駆動するシリンダ型流体圧アクチュエータ2との間には、2個のメータインバルブA1IMV ,A2IMV および2個のメータアウトバルブA3IMV ,A4IMV からなるブリッジ回路3が設けられている。

0003

さらに、ポンプ1とブリッジ回路3との間の通路にはロードホールドチェック弁4が設けられ、また、ブリッジ回路3と流体圧アクチュエータ2との間の2通路にはリーク防止用ドリフト低減弁(パイロット操作型チェック弁)5がそれぞれ設けられている。

0004

また、ポンプ1の吐出口には、通路6により、他の流体圧アクチュエータ(図示せず)を制御するブリッジ回路(図示せず)が同様に接続されている。

0005

さらに、ポンプ1の吐出口とタンク7との間には、上記複数の流体圧アクチュエータ2のブリッジ回路3などの制御時に連動して制御される1個の共通バイパス弁8と、ポンプ吐出圧力を設定するメインリリーフ弁9とが設けられている。

0006

メータインバルブA1IMV ,A2IMV 、メータアウトバルブA3IMV ,A4IMV および共通バイパス弁8は、通常、スプール弁タイプの中間絞りノッチ付き開閉弁であり、操作レバーの操作量に応じてコントローラ(図示せず)より出力された電気信号で作動されるプッシュソレノイドにより、スプール弁ストロークを制御される。

0007

この回路において、例えば流体圧アクチュエータ2を負荷Wに抗して伸張させる場合、ドリフト低減弁5を開口させ、メータインバルブA1IMV およびメータアウトバルブA4IMV は閉止したまま、可変容量型のポンプ1の吐出量を徐々に増加させるとともに、共通バイパス弁8を徐々に閉止させ、メータインバルブA2IMVおよびメータアウトバルブA3IMV を徐々に開くように制御する。

0008

一方、流体圧アクチュエータ2を収縮させる場合は、ドリフト低減弁5を開口させ、メータインバルブA2IMV およびメータアウトバルブA3IMV は閉止したまま、可変容量型のポンプ1の吐出量を徐々に増加させるとともに、共通バイパス弁8を徐々に閉止させ、メータインバルブA1IMV およびメータアウトバルブA4IMVを徐々に開くように制御する。このような制御は、図示されない操作レバーによりコントローラを介してなされる。

0009

図16に示されるように、従来は、流体圧アクチュエータ2の負荷圧力圧力センサ10Aで検出して、コントローラ10Bにより電気的にメータインバルブA2IMVなどの制御弁を制御(開口面積を減少)して、制御弁にて制御された負荷圧力が予め設定しておいた圧力を超えないようにしている。

発明が解決しようとする課題

0010

しかし、フィードバック演算遅れなどにより制御系が不安定となるおそれがあり、安定するまで時間がかかるなどの問題がある。

0011

本発明は、このような点に鑑みなされたもので、圧力制御における安定性の向上を図ることを目的とするものである。

課題を解決するための手段

0012

請求項1に記載された発明は、パイロット弁によりパイロット流量を制御することにより主流量制御用の主弁をパイロット操作し、主流量の負荷圧力をパイロット弁にフィードバックし、負荷圧力の増大によりパイロット弁をパイロット流量減少方向に変位させ、パイロット流量の減少により主弁を主流量減少方向に制御して負荷圧力を減少させる圧力制御方法である。

0013

そして、負荷圧力が増大すると、その負荷圧力はパイロット弁に直接フィードバックされ、パイロット弁がフィードバック力によりパイロット流量減少方向に変位され、このパイロット弁変位により主弁が主流量減少方向に制御され、負荷圧力が応答良く減少するから、高負荷駆動が防止されるとともに、負荷圧力の変動が抑え込まれ、フィードバックの演算遅れによる不安定性も生じない。

0014

請求項2に記載された発明は、請求項1記載の圧力制御方法において、パイロット弁にフィードバックされた負荷圧力と対抗する方向からパイロット弁に作用する外部からの推力を制御することにより負荷圧力を調整する圧力制御方法である。

0015

そして、負荷圧力に対抗する推力を調整することで、駆動したい負荷圧力を調整する。

0016

請求項3に記載された発明は、請求項2記載の圧力制御方法において、外部からの推力を立上げる際に負荷圧力によるフィードバック力より推力を一時的に減少させる圧力制御方法である。

0017

そして、負荷圧力と対抗する推力を立上げる際に負荷圧力によるフィードバック力より推力を一時的に減少させることで、パイロット弁は応答良く中立位置方向へ戻り、制御系を安定させる。

0018

請求項4に記載された発明は、パイロット流量を制御するパイロット弁と、パイロット弁によりパイロット操作される主流量制御用の主弁と、主流量の負荷圧力をパイロット弁にフィードバックし負荷圧力の増大によりパイロット弁をパイロット流量減少方向に変位させ主弁を主流量減少方向に制御して負荷圧力を減少させる負荷圧力フィードバック機構とを具備した圧力制御装置である。

0019

そして、負荷圧力が増大すると、その負荷圧力は負荷圧力フィードバック機構によりパイロット弁に直接フィードバックされ、パイロット弁はフィードバック力によりパイロット流量減少方向に変位し、これにより主弁は主流量減少方向に変位して負荷圧力を応答良く減少させるから、高負荷駆動が防止されるとともに、負荷圧力の変動を抑え込み、安定性を確保する。

0020

請求項5に記載された発明は、請求項4記載の圧力制御装置において、パイロット弁にフィードバックされた負荷圧力と対抗する方向からパイロット弁に作用する推力を制御することにより負荷圧力を調整する駆動手段を具備した圧力制御装置である。

0021

そして、パイロット弁の駆動手段を制御することにより、負荷圧力に対抗する駆動手段の推力を調整して、駆動したい負荷圧力を調整する。

0022

請求項6に記載された発明は、請求項5記載の圧力制御装置において、駆動手段の推力を立上げる際に負荷圧力によるフィードバック力より一時的に推力を減少させるコントローラを具備した圧力制御装置である。

0023

そして、コントローラにより、駆動手段の推力を立上げる際に負荷圧力によるフィードバック力より駆動手段の推力を一時的に減少させることで、負荷圧力によりパイロット弁を応答良く中立位置方向へ戻して、制御系を安定させる。

発明を実施するための最良の形態

0024

以下、本発明の一実施の形態を図1乃至図14を参照しながら説明する。

0025

先ず、図1および図2に示された一実施の形態を説明する。なお、図15に示された従来の制御回路と同様の部分には同一符号を付する。

0026

図2は、制御弁としてのメータインバルブA1IMV ,A2IMV と、制御弁としてのメータアウトバルブA3IMV ,A4IMV とを組合せたブリッジ回路3により、メータイン・メータアウト分離型の制御回路を構成したもので、ポンプ斜板1aにより吐出流量を可変制御できる可変容量型のポンプ1の吐出口にポンプ吐出通路11が接続され、このポンプ吐出通路11に、一の流体圧アクチュエータ2を制御するための一のブリッジ回路3の二つのメータインバルブA1IMV ,A2IMV にそれぞれ連通する通路12,13が接続され、また、上記ポンプ吐出通路11には、他の流体圧アクチュエータ2aを制御するための他のブリッジ回路3aに連通する通路6も接続されている。

0027

さらに、ポンプ1の吐出口には、ポンプ1から吐出された作動流体の各ブリッジ回路3,3aに対する供給量を制御する共通バイパス弁8と、ポンプ吐出圧力の上限を設定するメインリリーフ弁9とが、複数のブリッジ回路3,3aに対し共通に設けられている。

0028

一方のブリッジ回路3について説明すると、ポンプ吐出通路11に通路12,13を介して2つのメータインバルブA1IMV ,A2IMV がそれぞれ接続され、これらのメータインバルブA1IMV ,A2IMV に、流体圧アクチュエータ2への通路14,15とタンク通路16,17との間を制御する2つのメータアウトバルブA3IMV ,A4IMV がそれぞれ接続され、タンク通路16,17はタンク7に接続されている。

0029

さらに、このブリッジ回路3の上側に図示されたメータインバルブA1IMV とメータアウトバルブA3IMV とを経て引出された通路14a は、流体圧アクチュエータ2のピストン2pよりロッド側が位置する室(以下、「ロッド側室2r」という)に接続され、また、下側に図示されたメータインバルブA2IMV とメータアウトバルブA4IMV とを経て引出された通路15a は、流体圧アクチュエータ2のピストン2pよりヘッド側に位置する室(以下、「ヘッド側室2h」という)に接続されている。

0030

図1および図2を参照して、前記各メータアウトバルブA3IMV ,A4IMV を説明すると、バルブハウジング21内にそれぞれ設けられた主弁としてのパイロット流量増幅型のメインポペット22を中心に構成されており、バルブハウジング21内にそれぞれ形成された弁室23にて各メインポペット22がそれぞれ軸方向へ変位自在に設けられ、各弁室23に前記流体圧アクチュエータ2よりの戻り通路14a ,15aがそれぞれ連通されている。

0031

これらのメータアウト側のメインポペット22の側面部には、各メインポペット22の軸方向変位が大きくなるにしたがって、それぞれの開口面積が比例的に拡大変化する可変スロット25がそれぞれ軸方向に形成されている。

0032

これらの可変スロット25は、各メインポペット22の反対側端部にそれぞれ形成されたドレン流量制御部26がシート27に着座している状態で、バルブハウジング21内にそれぞれ形成されたバネ室28と連通する若干の開口25a を有する。それぞれのシート27は、タンク通路16,17によりそれぞれタンク7に連通されている。

0033

これらのメータアウト側のメインポペット22に対する各バネ室28には、ドレン流量制御部26をシート27側へ押圧する方向すなわち閉じ方向に押圧する圧縮コイル状の復帰バネ29がそれぞれ内蔵されている。

0034

また、各メインポペット22の開度を制御する手段として、各バネ室28から各タンク通路16,17にわたって、シート30を介し連通可能な通路31および通路32がそれぞれ引出され、各通路31,32中には、パイロット弁としてのパイロットスプール33がそれぞれ介在され、これらのパイロットスプール33は、各バネ室28を図示されないコントローラからの電気信号に応じてドレン制御するもので、各パイロットスプール33を中立位置(閉止位置)に附勢するバネ室24内の復帰バネ34と、これらの復帰バネ34に抗してパイロットスプール33をそれぞれ駆動する駆動手段としてのプッシュソレノイド35とを備えている。

0035

パイロットスプール33の変位が中立位置近辺不感帯デッドバンド)以下の微小変位であるときは、シート30での通過流量が0となる。

0036

各メータアウトバルブA3IMV ,A4IMV のパイロットスプール33には、流体圧アクチュエータ2よりの戻り通路14a ,15a が通路36によりそれぞれ連通され、過大な負荷圧力に対して、後述するリリーフ機能を有する。

0037

図1に示されるように、前記プッシュソレノイド35は、励磁用コイル35a と、パイロットスプール33の上部に一体化された可動鉄心35b とからなる。

0038

各メータアウトバルブA3IMV ,A4IMV のパイロットスプール33には、負荷圧力感知部38がそれぞれ大径に形成され、これらの負荷圧力感知部38の上側に負荷圧力室39がそれぞれ形成され、これらの負荷圧力室39に流体圧アクチュエータ2よりの戻り通路14a ,15a が通路36によりそれぞれ連通されている。

0039

前記負荷圧力を導く通路36、負荷圧力室39および負荷圧力を受けるパイロットスプール33の負荷圧力感知部38により、負荷圧力フィードバック機構を形成している。

0040

これにより、流体圧アクチュエータ2よりの戻り通路14a ,15a に過大な負荷圧力が生じたとき、その負荷圧力は、負荷圧力室39に導かれ、負荷圧力感知部38を図示下方へ押圧するので、シート30が開口され、バネ室28を減圧して、メインポペット22をリフトすることにより、弁室23をタンク7に連通するリリーフ機能を有する。

0041

このプッシュソレノイド35の上側には、パイロットスプール33の軸方向ストロークを検出する変位センサ40が取付けられている。この変位センサ40は、プッシュソレノイド35上にコイル40a がセンサ取付筒材40b を介して取付けられ、このセンサ取付筒材40b の内部に前記可動鉄心35b と一体的に移動するコア40c が嵌合されたものであり、コイル40a によりコア40c の軸方向変位量すなわちパイロットスプール33の軸方向変位量を検出する。

0042

パイロットスプール33、可動鉄心35b およびコア40c には全長にわたって作動流体を排出するためのドレン孔37が穿設されている。

0043

このように構成された各メータアウトバルブA3IMV ,A4IMV において、流体圧アクチュエータ2よりの戻り流量Qのうち一部の流量qは、パイロット可変スロット25の開口25a よりバネ室28に流入する。メインポペット22のストローク制御は、バネ室28に連通したシート30のパイロットスプール33による開度制御で達成され、このパイロットスプール33を通過する流量はqである。

0044

このメータアウト側のメインポペット22のストローク制御により、ドレン流量制御部26がシート27の開度を制御するから、主流量LQコントロールされ、この主流量LQは、あたかもパイロットスプール33で制御されたパイロット流量qが増幅された様相を呈する。

0045

一方、このパイロットスプール33が閉止し、流量qも主流量LQもゼロ値となっているときに、流体圧アクチュエータ2よりの戻り通路14a ,15a の戻り圧力が上昇し、通路36を経てパイロットスプール33の負荷圧力感知部38に作用する力と、プッシュソレノイド35の推力との和が、復帰バネ34の附勢力に打ち勝つと、パイロットスプール33が変位してシート30が開口し、パイロット流量qが流れ始め、メータアウト側のメインポペット22の可変スロット25の開口25a の前後に差圧が生じ、メインポペット22はバネ室28側へ移動し、シート27が開口し、主流量LQが発生することにより、流体圧アクチュエータ2よりの戻り通路14a または15a の戻り圧力が異常上昇することを抑えて、パイロットスプール33に作用する圧縮コイル状の復帰バネ34およびプッシュソレノイド35の推力により設定された一定の圧力値整定するリリーフ弁機能を有する。

0046

次に、前記メータインバルブA1IMV ,A2IMV を説明すると、バルブハウジング21の内部に設けられた主弁としてのパイロット流量増幅型のメインポペット41を中心に構成されており、この点は、メータアウトバルブA3IMV ,A4IMV と同様であるが、このメインポペット41自体の構造と、そのパイロット制御手段はメータアウトバルブA3IMV ,A4IMV と異なる。

0047

メータインバルブA1IMV ,A2IMV の構造は同一であるから、ここでは、シリンダヘッド側のメータインバルブA2IMV を例にとって詳細に説明する。

0048

図2に示されるように、前記メータイン側のメインポペット41は、内部に高圧選択手段としてのシャトル弁42を持ち、このシャトル弁42の一方の入口側に形成された通路43は、ポンプ1の吐出口にポンプ吐出通路11を介して連通された通路13に開口され、ポンプ吐出圧力をシャトル弁42に導き、また、シャトル弁42の他方の入口側に形成された通路44は、流体圧アクチュエータ2のヘッド側室2hに通路15を経て連通された環状空間45に開口され、流体圧アクチュエータ2へ供給される圧力または流体圧アクチュエータ2の負荷圧力をシャトル弁42に導き、シャトル弁42は、これらの圧力のうちで高圧側を選択する。

0049

このシャトル弁42の出力側に形成されたメインポペット41内の通路46は、メインポペット41の周面に軸方向に加工された可変スロット47に連通されている。この可変スロット47は、メインポペット41の移動ストロークに応じて開口面積が増加する。

0050

この可変スロット47は、メインポペット41の流量制御部48がシート49に着座している状態で、バルブハウジング21内に形成された圧力室としてのバネ室51と連通する若干の開口47a を有するものである。

0051

このメインポペット41に対するバネ室51には、メインポペット41の流量制御部48をシート49に押圧する圧縮コイル状の復帰バネ52が設けられ、このバネ室51は、通路53により、パイロット弁としてのパイロットスプール54に連通されている。

0052

図1に示されるように、このパイロットスプール54は、バルブハウジング21内に形成された嵌合穴55に摺動自在に嵌合され、この嵌合穴55の先端には、パイロットスプール54により開閉されるシート56が設けられている。

0053

パイロットスプール54は、外部の駆動手段としてのプッシュソレノイド57によりストローク制御される。このプッシュソレノイド57は、バルブハウジング21上に設置されたコイル57a内に、パイロットスプール54の図示上端部に一体化された可動鉄心57b が移動自在に嵌合されたもので、コイル57a に通電することにより、パイロットスプール54をバルブハウジング21内に押込む方向(シート56から開口する方向)に付勢する励磁力を得ることができる。

0054

パイロットスプール54の図示下端部は、バルブハウジング21内に形成されたバネ室61に挿入され、このバネ室61内に設けられた圧縮コイル状の復帰バネ62によりパイロットスプール54を図において上方へ復帰させる付勢力が付与されている。

0055

バネ室61は、通路63によりチェック弁64に連通され、さらに通路65を経て前記通路15に連通されている。

0056

パイロットスプール54の比較的下部には、周溝66を介してランド部68とポペット部69とが形成され、このポペット部69が中立位置で前記シート56に係止されている。

0057

パイロットスプール54の変位が中立位置近辺の不感帯(デッドバンド)以下の微小変位であるときは、シート56での通過流量が0となる。

0058

前記嵌合穴55には常に周溝66に開口する環状溝71が形成され、この環状溝71に前記通路53によりメータイン側のメインポペット41のバネ室51が連通されている。

0059

また、パイロットスプール54の比較的上部には、大径の負荷圧力感知部77が形成され、この負荷圧力感知部77の図示下側に、負荷圧力感知部77と嵌合する嵌合穴により負荷圧力室78が形成され、この負荷圧力室78が通路79により前記通路65に連通されている。負荷圧力感知部77の上側部は通路81によりタンク7に連通されている。

0060

前記負荷圧力を導く通路79、負荷圧力室78および負荷圧力を受けるパイロットスプール54の負荷圧力感知部77により、負荷圧力フィードバック機構が形成されている。

0061

また、前記パイロットスプール54には、その作動ストロークを検出することによりパイロットスプール54の開口面積を監視できる開口面積監視手段としての変位センサ82が設けられている。

0062

この変位センサ82は、プッシュソレノイド57上にコイル82a がセンサ取付筒材82b を介して取付けられ、このセンサ取付筒材82b の内部に前記可動鉄心57b と一体的に移動するコア82c が嵌合されたものであり、コイル82a によりコア82cの軸方向変位量すなわちパイロットスプール54の軸方向変位量を検出する。

0063

さらに、パイロットスプール54、可動鉄心57b およびコア82c の全長にわたって、作動流体を排出するためのドレン孔83が貫通穿設されている。

0064

なお、前記メインポペット22およびパイロットスプール33により一方の制御弁を構成し、また前記メインポペット41およびパイロットスプール54により他方の制御弁を構成する。

0065

このように構成されたメータインバルブA1IMV ,A2IMV において、プッシュソレノイド57が励磁されて復帰バネ62のバネ力に抗してパイロットスプール54が押込まれる方向に移動すると、前記パイロットスプール54のポペット部69がシート56を開口するから、メインポペット41のバネ室51は、通路53、環状溝71、周溝66、シート56、パイロットスプール54のバネ室61、通路63、チェック弁64および通路65を経て、流体圧アクチュエータ2への通路15に連通され、パイロットスプール54の変位量に応じてバネ室51が減圧制御され、メインポペット41が開口するようにストローク制御され、シート49を経て通路13から通路15へ流出する主流量は、あたかもパイロットスプール54で制御されたパイロット流量が増幅された様相を呈する。

0066

図2に示されるように、86は、油圧ショベルなどの建設機械に搭載されたコントローラであり、このコントローラ86の入力端子に、各アクチュエータ2,2aに対するコマンド信号を発する操作レバー87、ポンプ吐出通路11に設けられたポンプ吐出圧力検出用ポンプ圧力センサ88、およびメータインバルブA1IMV ,A2IMV の変位センサ82およびメータアウトバルブA3IMV ,A4IMV の変位センサ40がそれぞれ接続され、このコントローラ86の出力端子に、メータインバルブA1IMV ,A2IMV のプッシュソレノイド57およびメータアウトバルブA3IMV ,A4IMV のプッシュソレノイド35がそれぞれ接続され、操作レバー87から入力された指令信号がコントローラ86で演算処理されて、メータインバルブA1IMV ,A2IMV およびメータアウトバルブA3IMV ,A4IMV を、以下に説明するような最適な条件で制御する。

0067

図3は、ポンプ1から流体圧アクチュエータ2のヘッド側室2hに作動油を供給するメータインバルブA2IMV用の圧力・流量複合制御系を示すブロック図であり、この制御系は、操作レバー87のレバー操作量Lと、メインポペット41で制御される流量Qすなわちアクチュエータ速度と、負荷圧力Pすなわちアクチュエータ作動力との関係を示す3次元マップ91を備えている。

0068

この3次元マップ91は、レバー操作量Lと負荷圧力Pとを入力することにより、対応する流量Qを求めることができ、また、レバー操作量Lと流量Qとを入力することにより、対応する負荷圧力Pを求めることができる。

0069

L−Q面における曲線は、無負荷時の流量特性すなわち速度モジュレーション特性を示し、また、L−P面における曲線は、流体圧アクチュエータ2が負荷により動けなくなったストール状態における圧力特性すなわち力モジュレーション特性を示し、通常は、それらの間の曲面におけるレバー操作量Lと対応する負荷圧力Pまたは流量Qを用いる。

0070

この3次元マップ91から引出された実線は流量Qを示し、また、点線は負荷圧力Pを示す。

0071

この制御系には、圧力センサを用いることなく流体圧アクチュエータ2の負荷圧力Ploadを推定する負荷圧力演算装置92が設けられている。この負荷圧力演算装置92は、後で詳述するが、主としてメータイン側のパイロットスプール54のプッシュソレノイド57に供給される駆動電流Iおよび変位センサ82により検出された変位量Xか、またはメータアウト側のパイロットスプール33のプッシュソレノイド35に供給される駆動電流Iおよび変位センサ40により検出された変位量Xから、負荷圧力Ploadを推定する。

0072

前記メインポペット41により制御される流量Qは次の式1で表すことができる。

0073

Q=α・A・(PP−Pload)1/2
ここで、αは定数、Aはメインポペット41の流量制御部48・シート49間の開口面積、PPはポンプ圧力センサ88により検出されたポンプ吐出圧力、Ploadは負荷圧力である。

0074

式1よりメインポペット41の開口面積Aは、次の式2により表される。

0075

A=Q/{α・(PP−Pload)1/2}
したがって、前記操作レバー87にてレバー操作量Lを入力することにより3次元マップ91から出力された要求流量値Qを与えると、ポンプ圧力センサ88により検出されたポンプ吐出圧力PPと、負荷圧力演算装置92により高精度で推定された負荷圧力Ploadとにより、メインポペット41の開口面積Aを演算することができる。

0076

メインポペット41の開口面積Aと、メインポペット41の変位量XPは、予め設計された所定の関係にあり、その関係を関数で表すと、XP=f(A)であり、図3に関数93で示す。

0077

メインポペット41の変位量XPが決まると、流量値Q、ポンプ吐出圧力PP、負荷圧力Ploadを加味しながら、メインポペット41の変位量XPを実現するためのパイロットスプール54の変位量XCを、XC=f(XP)で表される関数94により求めることができる。

0078

この変位量XCを目標値として、変位センサ82により検出されたパイロットスプール54の実際の変位量Xとの誤差を、比較器95により演算し、その誤差に2種類の可変調整可能のゲインKiおよびゲインKPを乗じて、加算器96に入力する。

0079

ゲインKiおよびゲインKPを可変調整するのは、ゲイン調整装置97であり、ゲイン調整によりプッシュソレノイド57に供給される電流値Iを調整することで、相対的にパイロットスプール54の復帰バネ62のバネ定数を負荷圧力Ploadに応じて任意に変更できる。

0080

すなわち、プッシュソレノイド57と復帰バネ62は、パイロットスプール54に対し反対方向に作用するので、例えば、復帰バネ62を強くする必要があるときは、ゲイン調整装置97によりプッシュソレノイド57への電流値Iを決定するゲインKiおよびゲインKPを小さくするように調整して、プッシュソレノイド57の推力を減少させることにより、相対的に復帰バネ62のバネ定数を大きくして強くした場合と同等の効果が得られる。

0081

ゲイン調整装置97は、直接的には流量制御系のゲインKiおよびゲインKPを調整するが、これにより、次の圧力制御装置98などの圧力制御系とのバランスを調整する機能もある。

0082

また、前記加算器96には、圧力制御装置98およびフィードフォワードコントローラ99を経た信号も入力される。

0083

圧力制御装置98は、圧力フィードバックコントローラ101と、作業負荷推定装置102とを備えている。

0084

圧力フィードバックコントローラ101は、負荷圧力演算装置92により推定された負荷圧力Ploadとの関係で、プッシュソレノイド57に供給される電流値を制御することで、例えば負荷圧力Ploadが設定圧力を超えないように圧力制御して、制御系の安定性を図ることが可能である。

0085

作業負荷推定装置102は、例えば油圧ショベルのフロント作業装置が作動しているときに、そのブームシリンダなどの負荷圧力を推定する場合は、負荷圧力演算装置92により推定された負荷圧力Ploadが、純粋な作業負荷(荷の静的荷重)だけでなく、フロント作業装置の慣性負荷の影響も受けたものであることを前提として、その慣性負荷の影響を取除くことにより、バケット内の作業負荷を精度良く推定するものである。

0086

フィードフォワードコントローラ99は、フィードバック制御系の演算遅れなどにより制御系が不安定となるおそれを改善するために設置する。

0087

次に、図1および図2に示された実施形態の作用を説明する。

0088

操作レバー87を操作すると、この操作レバー87から発信されたコマンド電気信号がコントローラ86で演算処理され、コントローラ86より出力された電流値などの電気信号により、共通バイパス弁8が徐々に閉止されるとともに、ポンプ斜板1aの制御によりポンプ吐出量が徐々に増大する。

0089

同時に、コントローラ86よりメータインバルブA1IMV ,A2IMV のプッシュソレノイド57またはメータアウトバルブA3IMV ,A4IMVのプッシュソレノイド35へ操作レバー量に応じたコマンド信号(電流)が供給され、電流が供給されたプッシュソレノイド57,35では推力が発生し、パイロットスプール54,33が、復帰バネ62,34のバネ力に抗して変位することにより、パイロット流量が発生する。

0090

これにより、バネ室51またはバネ室28が減圧され、メータイン側のメインポペット41またはメータアウト側のメインポペット22がリフトし、ポンプ1から流体圧アクチュエータ2のロッド側室2rおよびヘッド側室2hの一方に供給されるとともに他方からタンク7に排出される作動油が、2つのメータインバルブA1IMV ,A2IMV および2つのメータアウトバルブA3IMV ,A4IMV で形成されたブリッジ回路3により制御される。

0091

例えば、メータインバルブA1IMV ,A2IMVは、プッシュソレノイド57によりパイロットスプール54を復帰バネ62に抗して変位させ、シート56を開口させることにより、通路13,43,46、可変スロット47の開口47a 、バネ室51、通路53、シート56、バネ室61、通路63、チェック弁64、通路65を経て通路15へ至るパイロット流れが生じると、可変スロット47の開口47a の前後で差圧が生じ、この差圧によりメインポペット41が復帰バネ52に抗して変位し、メインポペット41のシート49が開口し、通路11から通路13および通路15を経た作動流体(圧油)が流体圧アクチュエータ2のヘッド側室2hへ供給され、負荷圧力Ploadが発生する。

0092

作業中に、このヘッド側室2h における負荷圧力Ploadが上昇すると、パイロットスプール54の負荷圧力室78に臨む負荷圧力感知部77の下側段差部がその上昇した負荷圧力Ploadを受けて、パイロットスプール54が図示上方の中立位置側へ変位し、シート56に対するポペット部69の開度が減少する。

0093

これにより、メインポペット41上のバネ室51内が昇圧し、メインポペット41の上面および下面に作用する圧力の差すなわち差圧が減少し、メインポペット41が復帰バネ52の復元力により閉じ方向に作用し、高負荷駆動を防止できるとともに、操作レバー87の急激な入力操作により負荷圧力Ploadが急上昇しても、負荷圧力室78にフィードバックされた負荷圧力Ploadによりパイロットスプール54が直ちに中立位置側に戻され、これに伴い、メインポペット41も直ちに中立位置側に戻され、負荷圧力が応答良く減少することで、負荷圧力の変動を抑え込むことができる。この圧力制御は後でさらに説明する。

0094

一方、メータアウトバルブA3IMV ,A4IMVは、プッシュソレノイド35によりパイロットスプール33を復帰バネ34に抗して変位させ、シート30を開口させることにより、通路15a 、可変スロット25の開口25a 、バネ室28、通路31、シート30、バネ室24、通路32、タンク通路17を経てタンク7へ至るパイロット流れが生じると、可変スロット25の開口25a の前後で差圧が生じ、この差圧によりメインポペット22が復帰バネ29に抗して変位し、メインポペット22のシート27が開口し、流体圧アクチュエータ2のヘッド側室2hから通路15a 、シート27およびタンク通路17を経た作動流体(圧油)がタンク7へ排出される。

0095

作業中に、このヘッド側室2h における負荷圧力Ploadが上昇すると、パイロットスプール33の負荷圧力室39に臨む負荷圧力感知部38の上側段差部がその上昇した負荷圧力Ploadを受けて、パイロットスプール33がシート30から離反する方向に変位する。

0096

これにより、メインポペット22上のバネ室28内が減圧され、メインポペット22の上面および下面に作用する差圧が増大し、メインポペット22が復帰バネ29の復元力に抗して開き方向に作用し、通路15aをタンク7に連通するから、操作レバー87の急激な入力操作により負荷圧力Ploadが急上昇しても、前記負荷圧力感知部38への負荷圧力フィードバックにより負荷圧力Ploadが自動的に応答良く減少することで、この負荷圧力Ploadの変動を抑え込むことができる。

0097

また、メータインバルブA1IMV ,A2IMV のリーク低減機能を説明すると、操作レバー87が中立位置にあり、コマンド(電流値)が各プッシュソレノイド57に与えられないときは、パイロットスプール54は図1に示されたように中立位置にある。また、共通バイパス弁8が開いており、さらに可変容量型のポンプ1からのポンプ吐出量も最少であるから、通路13の圧力は低圧力である。

0098

この場合、シリンダ型の流体圧アクチュエータ2のヘッド側室2hに通路13の圧力以上の負荷圧力Ploadがある場合は、通路15よりシャトル弁42で高圧選択されて、この負荷圧力Ploadが可変スロット47の開口47a よりバネ室51へ導入され、復帰バネ52のバネ力と共にメータイン側のメインポペット41をシート49側に押圧するため、通路15から通路13へ至るリークは発生しない。

0099

また、メータインバルブA1IMV ,A2IMV のロードホールドチェック弁機能を説明すると、操作レバー87が操作され、共通バイパス弁8が閉止してゆき、ポンプ吐出量が増大すると共に、プッシュソレノイド57へコントローラ86よりコマンド(電流値)が供給され、パイロットスプール54を押込む方向に作用すると、ポペット部69がシート56を開いてゆく。

0100

このとき、まだ通路15の負荷圧力Ploadが通路13の圧力より高圧であると、メインポペット41のバネ室51は高圧側の通路15の圧力に等しく、このメインポペット41は閉止したままであり、これはロードホールドチェック弁としての機能を果たしていることになる。

0101

さらに、共通バイパス弁8が閉止し、ポンプ吐出量が増大すると、やがて通路13のポンプ吐出圧力は通路15の負荷圧力Ploadを超えて高くなってくる。

0102

このとき、シャトル弁42により通路13側の圧力が高圧選択されてメインポペット41のバネ室51よりパイロットスプール54のポペット部69に作用し、この圧力は通路65の圧力(=通路15の圧力)より高いため、通路53からシート56、バネ室61およびチェック弁64を経て通路65へ流れるパイロット流量が発生する。

0103

このメータイン側のメインポペット41は、パイロット流量増幅機能を有しているので、パイロット流量の増加にしたがってバネ室51の圧力が下降し、メインポペット41の流量制御部48がシート49よりリフトし、弁先端部の開口面積の漸次増加により通路13より通路15へ制御された主流量が発生し、シリンダ型の流体圧アクチュエータ2はゆっくり伸張してゆく。

0104

次に、図3に示された制御系の各部をその機能とともに説明する。

0105

(1)負荷圧力推定機能
供給側(メータイン側)のパイロットスプール54と排出側(メータアウト側)のパイロットスプール33とを独立させたブリッジ回路3において、パイロットスプール54を駆動する場合はパイロットスプール33は非駆動側となり、また、パイロットスプール33を駆動する場合はパイロットスプール54は非駆動側となるが、その非駆動側のパイロットスプール54または33を、通過流量がのままとなる中立位置近辺の不感帯(デッドバンド)において、微少変位させることで負荷圧力Ploadを推定する。

0106

例えば、メータイン側のパイロットスプール54が非駆動側の場合は、このパイロットスプール54を下方へ微小変位させるが、その場合、パイロットスプール54を下方へ変位量Xだけ微小変位させたときは、図1にて上向きに作用する力は、質量mのパイロットスプール54が加速度d2X/dt2で運動する際の反力m・d2X/dt2と、パイロットスプール54が油中で運動する際の粘性抵抗C・dX/dt(Cは粘性抵抗に関する減衰定数)と、復帰バネ62の圧縮量Xによる反発力K・X(Kはバネ定数)と、復帰バネ62の取付荷重Rと、通路15から通路65,79を経てドーナツエリア状の負荷圧力室78までフィードバックされた負荷圧力Ploadがパイロットスプール54の負荷圧力感知部77の下側受面積Area に対し作用する力Pload・Area とであり、一方、図にて下向きに作用する力は、プッシュソレノイド57に電流Iを流したときに生ずる電流Iに比例した押力Fと、複数のブリッジ回路3,3aから共通のタンク7に作動油が排出される構造から生ずるタンクライン圧Ptが負荷圧力感知部77の上側受圧面積Areaに対し作用する力Pt・Areaとであり、パイロットスプール54の中立位置近辺の不感帯(デッドバンド)においてはシート56とポペット部69との間に通過流量が発生しないので、この通過流量に伴って発生するフローフォースを考慮する必要がなく、上記の上向きの力と下向きの力とがバランスするので、次の式3が成立する。

0107

m・d2X/dt2+C・dX/dt+K・X+R+Pload・Area =F+Pt・Area
書換えると、下記の式4になる。

0108

Pload={F−(m・d2X/dt2+C・dX/dt+K・X+R)+Pt・Area}/Area
この式4において、m、C、K、RおよびArea は既知の定数であり、X、dX/dtおよびd2X/dt2 は、変位センサ82により測定または測定値から演算することができ、Fはソレノイド電流Iから演算でき、タンクライン圧Ptは共通の圧力センサにより検出できるから、負荷圧力Ploadは、上式で推定することができる。

0109

図4は、このような負荷圧力を推定演算する負荷圧力演算装置92をブロック図としたものであり、前記プッシュソレノイド57への電流Iは関数112により押力Fに変換され、この押力Fは、ノイズを含むものであるため、ノイズフィルタ113によりそのノイズを除去する。そして、この押力Fなどの各数値を演算部114に入力して、負荷圧力Ploadを演算により求める。

0110

さらに、この負荷圧力演算装置92は、パイロットスプール54の変位X、速度dX/dtおよび加速度d2X/dt2からノイズを除去するノイズフィルタ115を備えている。

0111

一方、メータアウト側の通路15のパイロットスプール33が非駆動側の場合は、同様に、このパイロットスプール33をデッドバンドの範囲内で微小変位させることにより、負荷圧力Ploadを推定することができる。

0112

このように、パイロットスプール33,54に段付き形成された負荷圧力感知部38,77に負荷圧力Ploadをフィードバックさせ、そのフィードバック力とパイロットスプール33,54の推力などとの釣合い関係から負荷圧力Ploadを推定する負荷圧力演算装置92が形成されている。

0113

要するに、この負荷圧力演算装置92は、供給側(ポンプ側)のパイロット弁と排出側(タンク側)のパイロット弁とを独立させ、非駆動側のパイロット弁での通過流量が零となる中立位置近辺の不感帯(デッドバンド)において、この非駆動側のパイロット弁を微少変位させることにより、通過流量に伴って発生するフローフォースを考慮することなく、また負荷圧力を検出するための圧力センサを用いることなく、負荷圧力Ploadを高精度に推定できる。

0114

(2)流量制御機能
前記式1
Q=α・A・(PP−Pload)1/2
において、ポンプ吐出圧力PPはポンプ圧力センサ88により検出され、負荷圧力Ploadは負荷圧力演算装置92により演算できるから、レバー操作により駆動電流をプッシュソレノイド57に供給して、前記関数93,94により演算されたパイロットスプール54の変位量XCをフィードバック制御することにより、既に説明したようにメインポペット41の変位量を制御し、すなわちメインポペット41の開口面積Aを制御することで、メインポペット41での流量Qを実現して、流体圧アクチュエータ2の作動速度を制御する。

0115

(3)圧力制御機能
例えば、流体圧アクチュエータ2のヘッド側室2h における負荷圧力Ploadが上昇すると、パイロットスプール54の負荷圧力室78に臨む負荷圧力感知部77の下側段差部がその負荷圧力Ploadを受けて、パイロットスプール54は図示上方へ変位する。これにより、シート56に対するポペット部69の開度が減少し、高負荷駆動が防止される。

0116

ポンプ1からの吐出圧力が、駆動したい負荷圧力よりも高いときでも、この高負荷駆動防止機能によりポペット部69の開口中においても、パイロットスプール54が中立位置(図示された閉止位置)に戻され、ポペット部69がシート56を閉じることで、負荷圧力Ploadがポンプ吐出圧力まで上昇することを防止できる。

0117

さらに、パイロットスプール54に段付き形状に設けられた負荷圧力感知部77に対し負荷圧力をフィードバックし、ひいては、このパイロットスプール54により制御されるメインポペット41の流量制御機構に負荷圧力をフィードバックする負荷圧力フィードバック機構が形成されており、メインポペット41により負荷圧力を設定された値に制御できる。

0118

これを図5で説明すると、操作レバー87のステップ入力に対して、実負荷圧力が急上昇して突出すると、パイロットスプール54が実パイロットスプール変位の特性曲線に示されるように、負荷圧力感知部77などの負荷圧力フィードバック機構により中立位置側に戻される。これに伴い、メインポペット41も実メインポペット変位の特性曲線に示されるように、中立位置側に戻され、実負荷圧力が応答良く減少することで、負荷圧力の変動を抑え込むことができる。

0119

このときに、駆動したい負荷圧力Ploadは、プッシュソレノイド57の推力すなわち駆動電流によって調整する。

0120

すなわち、前記負荷圧力演算装置92により負荷圧力Ploadを推定できるから、パイロットスプール54に接続されているプッシュソレノイド57を用いてその負荷圧力Ploadに対抗する推力を調整する。

0121

例えば、前記圧力フィードバックコントローラ101によって、プッシュソレノイド57の推力を立上げるときに、この推力を、対抗する負荷圧力Ploadによるフィードバック力(負荷圧力感知部77の下側受圧面に作用する上向きの力)より一時的に若干減少させることで、パイロットスプール54を応答良く中立位置方向へ戻すことができ、設定圧力を超えないように負荷圧力を圧力制御することができる。

0122

これを、図6に実線で示すと、操作レバー87のステップ入力に対してプッシュソレノイド57の推力が立上がった際に、その立上がり直後にプッシュソレノイド57への入力電流値をいったん下げて、その推力を負荷圧力Ploadによるフィードバック力より減少させることで、パイロットスプール54を閉じ方向に動作させ、メインポペット41のバネ室51を一時的に昇圧させて、メインポペット41の開口動作を抑制することにより、負荷圧力Ploadが設定圧力をオーバシュートしないように圧力制御して、制御系の安定性を図ることができる。点線は、オーバシュートした状態である。

0123

このように、リリーフ弁などの圧力制御弁を流体圧アクチュエータごとに用いることなく、また負荷圧力を検出するための圧力センサを用いることなく、プッシュソレノイド57の推力すなわち駆動電流を制御することによって、流量制御手段でもあるメインポペット41によって負荷圧力Ploadを調整することができる。

0124

なお、従来、負荷圧力を圧力センサなどを用いて計測し、電気的にパイロットスプールを絞り制御することにより、負荷圧力が予め設定しておいた圧力を超えないように制御する手法もあるが、フィードバックの演算遅れなどにより制御系が不安定となる不具合がある。

0125

(4)復帰バネ力調整機能
メータインバルブA2IMV で説明すると、ゲイン調整装置97により、負荷圧力Ploadに応じてパイロットスプール54のプッシュソレノイド57に通電される電流値を制御して、プッシュソレノイド57の推力を増加または減少させるように補正することで、復帰バネ62のバネ力(バネ定数)を実質的に調整する。

0126

例えば、負荷圧力Ploadが高い領域では、すなわち負荷圧力感知部77へのフィードバック力が大きい領域では、ゲイン調整装置97によりプッシュソレノイド57に供給される電流値のゲインを下げ、プッシュソレノイド57の推力を減少させることにより、復帰バネ62のバネ力(バネ定数)を相対的に大きくするように補正する。これにより、負荷圧力の変動に対するパイロットスプール54の変位を抑制し、制御系の安定性を向上させる。

0127

また、逆に負荷圧力Ploadが低い領域では、ゲイン調整装置97によりプッシュソレノイド57に供給される電流値のゲインを上げ、プッシュソレノイド57の推力を増加させることにより、復帰バネ62のバネ力(バネ定数)を相対的に小さくするように補正する。これにより、わずかな負荷圧力の変化も感度良くフィードバック感知し、制御精度を良くするとともに、圧力制御の応答性を向上させる。

0128

特に、パイロットスプール54に負荷圧力Ploadをフィードバックさせ、パイロットスプール54に作用する推力とバネ力とフィードバック力との釣合い関係から、負荷圧力演算装置92により負荷圧力を推定する際に、このゲイン調整手法を用いると、負荷圧力の推定精度を向上できる。

0129

このように、負荷圧力演算装置92により推定された負荷圧力Ploadに応じて、ゲイン調整装置97によりプッシュソレノイド57に供給される電流値ゲインを制御することで、その推力を制御すれば、パイロットスプール54の復帰バネ62のバネ定数を実質的に可変制御でき、制御系の安定性、制御精度および応答性を向上でき、円滑な操作性を得ることができる。

0130

このバネ力調整は、メータアウトバルブA3IMV ,A4IMV でも可能であり、例えばメータアウトバルブA4IMV において、負荷圧力Ploadが高い領域では、すなわち通路36から負荷圧力感知部38へフィードバックされる負荷圧力Ploadによる力が大きい領域では、復帰バネ34のバネ力(バネ定数)が相対的に大きくなるように、ゲイン調整装置(97に相当するが図示せず)によりプッシュソレノイド35に供給される電流値のゲインを下げ、プッシュソレノイド35の推力を減少させるように補正することで、負荷圧力の変動に対するスプールの変位を抑制し、制御系の安定性を向上させる。

0131

また、逆に負荷圧力Ploadが低い領域では、復帰バネ34のバネ力(バネ定数)が相対的に小さくなるように、ゲイン調整装置によりプッシュソレノイド35に供給される電流値のゲインを上げ、プッシュソレノイド35の推力を増加させるように補正することで、わずかな負荷圧力の変化も感度良くフィードバック感知し、制御精度および負荷圧力の推定精度を良くするとともに、圧力制御の応答性を向上させる。

0132

(5)建設機械の作業負荷推定機能
図7に示されるように、作業機械としての油圧ショベルには、可動体としての作業腕(以下、この作業腕をフロント作業装置FLという)が上下方向へ回動自在に軸支され、このフロント作業装置FLは、流体圧アクチュエータ(以下、この流体圧アクチュエータをブームシリンダ2BMという)により上下動される。

0133

前記作業負荷推定装置102は、油圧ショベルによる積込み作業などにおいて、作業負荷としてのバケット内負荷(土砂荷重)WLを次のように推定する。

0134

作業中はブームシリンダ2BMが動いている場合が多く、ブームシリンダ2BMのヘッド側に生じた負荷圧力Ploadは慣性負荷の影響を受けるため、精度良くバケット内負荷WLを推定するためには、慣性負荷の影響を除去する必要がある。

0135

そこで、先ず、ブームシリンダ2BMの負荷圧力Ploadの時系列データを、負荷圧力計測手段としての負荷圧力演算装置92により間接的に計測し、図8に示されるように、連続的に計測した負荷圧力Ploadの時系列データから、慣性負荷による影響である所定範囲周波数成分(ω0〜ω1)を抽出して差引き、その差引き後の負荷圧力Ploadを用いてバケット内負荷WLを推定する。

0136

慣性負荷による所定範囲の周波数成分(ω0〜ω1)は、計測した負荷圧力Ploadの時系列データをバンドパスフィルタ121に一定時間だけ通すことによって抽出し、この抽出された所定範囲の周波数成分(ω0〜ω1)を、所定周波数除去演算部としての減算器122にて、計測した負荷圧力Ploadの時系列データから差引くことにより、慣性負荷の影響を除去できる。

0137

バンドパスフィルタ121を一定時間だけ使うのは、その後の追従性を良くするためである。

0138

この場合、バンドパスフィルタ121のバンド幅(ω0〜ω1)は、フロント作業装置FLの固有周波数に合わせる。これにより、フロント作業装置FLの固有振動による慣性負荷を効果的に除去できる。

0139

図9に示されるように、バンドパスフィルタ121は、微分要素123によってω0以下の周波数をカットし、ローパスフィルタ124によってω1以上の周波数をカットすることにより、所定範囲の周波数成分(ω0〜ω1)を抽出する。

0140

減算器122にて所定範囲の周波数成分(ω0〜ω1)を差引いた負荷圧力Ploadは、作業負荷演算部125に入力して、フロント作業装置FLの先端バケット内にある作業負荷すなわちバケット内負荷WLを演算により推定する。

0141

すなわち、この作業負荷演算部125では、フロント作業装置FLの各回動軸部に設けられた回動角度検出器でフロント作業装置FLの姿勢を計測してバケット内負荷WLの(X,Z)座標値を求め、前記慣性負荷の影響を取除いたブームシリンダ2BMのヘッド側室の負荷圧力Ploadと、バケット内負荷WLの(X,Z)座標値とから、バケット内負荷WLを、WL=f(Pload,X,Z)により演算することができる。

0142

このバケット内負荷WLは、作業毎に演算して積算することにより、例えば運搬車両に対する土砂などの積込み総重量を簡単に算出でき、特別な荷重センサを用いることなく、許容重量超過を防止できる。

0143

図10は、点線により、慣性負荷の影響を受けている負荷圧力Ploadの時系列データを示し、また、実線により、バンドパスフィルタ121を通して抽出した所定範囲の周波数成分(ω0〜ω1)を取除いた負荷圧力Ploadの時系列データ、すなわちフロント作業装置FLの慣性負荷の影響を取除いた負荷圧力Ploadの時系列データを示す。

0144

このように、油圧ショベルの積込み作業などにおいてブームシリンダ2BMが作動している最中でも、フロント作業装置FLの慣性負荷の影響を排除して、シリンダの負荷圧力Ploadを精度良く推定し、シリンダの負荷圧力Ploadとフロント作業装置FLの姿勢とから、バケット内負荷WLを迅速かつ正確に求めることができる。

0145

次に、この作業負荷推定装置102により慣性負荷の影響を排除して高精度に推定されたブームシリンダ2BMの負荷圧力は、圧力フィードバックコントローラ101に取り込まれ、圧力制御に用いられる。その制御のシミュレーション結果を、図11図14に示す。

0146

シミュレーション条件
(1)シリンダ初期負荷:0Pa(バケットを地上に置いた状況を想定)
(2)ポンプ初期負荷:20×9.81×104Pa、ただし、レバー操作後のポンプ吐出圧力は、実シリンダ負荷圧力より20×9.81×104Pa以上高くなるようにメインリリーフ弁9が制御されているものとする。

0147

(3)レバー入力:シミュレーション開始0.2秒後にステップ入力(100%)、ただし、レバー入力は20Hzの2次系ローパスフィルタを通したものとする。

0148

(4)シリンダ負荷圧力:100×9.81×104Pa、ただし、シリンダ負荷圧力はシリンダが動き出した直後に発生するものとする。

0149

図11は、圧力制御系への操作レバーのステップ入力に対する実メインポペット変位、要求メインポペット変位、実パイロットスプール変位、要求パイロットスプール変位の各シミュレーション結果を示すステップ応答特性図である。

0150

A :操作レバー位置
B :実メインポペット変位
C :要求メインポペット変位
D :実パイロットスプール変位
E :要求パイロットスプール変位
図12は、圧力制御系への操作レバーのステップ入力に対する実シリンダ速度および実シリンダ変位の各シミュレーション結果を示すステップ応答特性図である。

0151

F :実シリンダ速度
G :実シリンダ変位
図13は、流量制御系への操作レバーのステップ入力に対する実メインポペット変位、要求メインポペット変位、実パイロットスプール変位、要求パイロットスプール変位の各シミュレーション結果を示すステップ応答特性図である。

0152

A´:操作レバー位置
B´:実メインポペット変位
C´:要求メインポペット変位
D´:実パイロットスプール変位
E´:要求パイロットスプール変位
図14は、流量制御系への操作レバーのステップ入力に対する実シリンダ速度および実シリンダ変位の各シミュレーション結果を示すステップ応答特性図である。

0153

F´:実シリンダ速度
G´:実シリンダ変位
(シミュレーション結果)図11のシミュレーション結果と図13のシミュレーション結果とを比較すると、流量制御より圧力制御の方が負荷圧力の変動が小さく、しかも早く収束することがわかる。これは、負荷圧力が高いとき、パイロットスプール54が中立位置(閉止位置)方向に戻され、それに伴い、メインポペット41の開口が減少し、これにより、負荷圧力が減少するためである。

0154

また、図12のシミュレーション結果と図14のシミュレーション結果とを比較すると、流量制御より圧力制御の方がシリンダ速度変化が滑らかであり、流体圧アクチュエータ2をスムーズに作動させることができる。

発明の効果

0155

請求項1記載の発明によれば、負荷圧力が増大すると、その負荷圧力はパイロット弁に直接フィードバックされ、パイロット弁がフィードバック力によりパイロット流量減少方向に変位され、このパイロット弁変位により主弁が主流量減少方向に制御され、負荷圧力が応答良く減少するから、圧力センサを用いて負荷圧力を検出しなくても高負荷駆動を防止できるとともに、負荷圧力の変動を抑え込んで、安定性を確保でき、従来の圧力センサから演算系を経て負荷圧力をフィードバックする際の演算遅れによる不安定性を防止でき、短時間で収斂する圧力制御が可能である。

0156

請求項2記載の発明によれば、負荷圧力に対抗する外部からの推力を調整することで、駆動したい負荷圧力を調整できる。

0157

請求項3記載の発明によれば、負荷圧力と対抗する推力を立上げる際に負荷圧力によるフィードバック力より推力を一時的に減少させることで、パイロット弁を応答良く中立位置方向へ戻すことができ、制御系の安定性を向上できる。

0158

請求項4記載の発明によれば、負荷圧力が増大すると、その負荷圧力は負荷圧力フィードバック機構によりパイロット弁に直接フィードバックされ、パイロット弁はフィードバック力によりパイロット流量減少方向に変位し、これにより主弁は主流量減少方向に変位して負荷圧力を応答良く減少させるから、高負荷駆動を防止できるとともに、負荷圧力の変動を抑え込んで、安定性を確保できる圧力制御装置を提供できる。

0159

請求項5記載の発明によれば、パイロット弁の駆動手段を制御することにより、負荷圧力に対抗する駆動手段の推力を調整して、駆動したい負荷圧力を調整できる圧力制御装置を提供できる。

0160

請求項6記載の発明によれば、コントローラにより、駆動手段の推力を立上げる際に負荷圧力によるフィードバック力より駆動手段の推力を一時的に減少させることで、負荷圧力によりパイロット弁を応答良く中立位置方向へ戻すことができ、制御系の安定性を向上できる圧力制御装置を提供できる。

図面の簡単な説明

0161

図1本発明の圧力制御装置に係るパイロット弁および主弁の一実施の形態を示す断面図である。
図2同上圧力制御装置に係るブリッジ回路の一実施の形態を示す流体圧回路図である。
図3同上圧力制御装置に係る圧力−流量複合制御系の一実施の形態を示すブロック図である。
図4同上圧力制御装置に係る負荷圧力演算装置の一例を示すブロック図である。
図5同上圧力制御装置に係る負荷圧力フィードバック機構の作用例を示す特性図である。
図6同上圧力制御装置に係る圧力制御方法の一例を示す特性図である。
図7同上圧力制御装置に係る作業負荷推定装置の機能を説明するための説明図である。
図8同上作業負荷推定装置の一例を示すブロック図である。
図9同上作業負荷推定装置におけるバンドパスフィルタの一例を示すブロック図である。
図10同上作業負荷推定装置により慣性負荷の影響を除去する機能の一例を示す特性図である。
図11圧力制御系への操作レバーのステップ入力に対するメインポペット変位およびパイロットスプール変位のシミュレーション結果を示すステップ応答特性図である。
図12圧力制御系への操作レバーのステップ入力に対するシリンダ速度およびシリンダ変位のシミュレーション結果を示すステップ応答特性図である。
図13流量制御系への操作レバーのステップ入力に対するメインポペット変位およびパイロットスプール変位のシミュレーション結果を示すステップ応答特性図である。
図14流量制御系への操作レバーのステップ入力に対するシリンダ速度およびシリンダ変位のシミュレーション結果を示すステップ応答特性図である。
図15ブリッジ回路を含む流体圧アクチュエータ制御回路を示す回路図である。
図16従来の圧力センサを用いた負荷圧力フィードバック機構を示す回路図である。

--

0162

22,41主弁としてのメインポペット
33,54パイロット弁としてのパイロットスプール
35,57 駆動手段としてのプッシュソレノイド
36,79負荷圧力フィードバック機構の通路
38,77 負荷圧力フィードバック機構の負荷圧力感知部
86 コントローラ

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 日立建機株式会社の「 作業機械」が 公開されました。( 2021/01/07)

    【課題】掘削支援制御による目標掘削面の掘削中に作業装置が作業領域境界に近接する状況においても,目標掘削面に沿った掘削が可能となる作業機械を提供すること。【解決手段】バケット10を含む複数のフロント部材... 詳細

  • 日立建機株式会社の「 作業機械」が 公開されました。( 2021/01/07)

    【課題】施工現場の地形データが広範囲に渡ってデータ量が増加しても、コントローラによる地形データの処理時間の増加を抑制できる作業機械を提供すること。【解決手段】情報コントローラ161は、不揮発性記憶装置... 詳細

  • 株式会社小松製作所の「 作業機械を制御するためのシステム及び方法」が 公開されました。( 2021/01/07)

    【課題】本開示の目的は、作業機械の自動制御において、土の硬さなどの要因による作業効率の低下を抑えることにある。【解決手段】コントローラは、掘削終端の位置と、目標土量と、掘削距離とに基づいて、第1パスの... 詳細

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ