図面 (/)

技術 振動アクチュエータ

出願人 株式会社ニコン
発明者 高木忠雄ラムティスバンセビッチ
出願日 1999年4月8日 (21年2ヶ月経過) 出願番号 1999-101254
公開日 2000年10月20日 (19年8ヶ月経過) 公開番号 2000-295876
状態 特許登録済
技術分野 超音波モータ、圧電モータ、静電モータ
主要キーワード 楕円軸 時間的位相 結線部材 時間的位相差 指示速度 振動域 形状調整 傾斜調整
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2000年10月20日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (18)

課題

超音波アクチュエータ振動子に発生する楕円運動長径短径、さらには軸の傾斜角度を独立して制御できない。

解決手段

振動子21と、振動子21に、交流電圧φ1 を印加するとともに交流電圧φ1 と同じ位相または異なる位相の交流電圧φ2 を切り換えて印加することにより、駆動方向へ振動する1次の縦振動と、駆動方向と直交する方向へ振動する2次の屈曲振動とを励振させて、振動子21に縦振動と屈曲振動との合成である楕円運動を発生させるための電力入力装置32と、振動子21と電力入力装置32との間に設けられた、振動子21に入力される交流電圧φ2 の電圧を調整する可変抵抗体33、および交流電圧φ2 に交流電圧φ1 に対する位相遅れを生成する可変コンデンサ40とを備える振動アクチュエータ20である。

概要

背景

図15は、特開平7−241090号公報により提案されたこの種の振動アクチュエータ振動子1の説明図であり、図15(A)は上面図、図15(B)は側面図である。

図15(A)および図15(B)に示すように、振動子1は、矩形平板状外形を有する弾性体2と、弾性体2の一方の平面に装着された圧電素子3と、弾性体2の他方の平面に突出して設けられた駆動力取出部4a、4bとを備える。圧電素子3は、A相の駆動信号が入力される圧電素子3aと、A相の駆動信号とは位相が(π/2)ずれたB相の駆動信号が入力される圧電素子3bと、振動検出用の圧電素子3pと、接地用の圧電素子3gとに分割される。図示しない駆動装置から、A相の駆動信号を圧電素子3aに入力するとともに、B相の駆動信号を圧電素子3bに入力する。すると、振動子1には、1次の縦振動と4次の屈曲振動とが励振される。このため、これらの振動が合成されて、駆動力取出部4a、4bには、位相がπずれた楕円運動がそれぞれ発生する。これにより、振動子1は、駆動力取出部4a、4bを介して加圧接触する相対運動部材との間で相対運動を発生する。

また、図16は、文献「VIBROMOTORS FOR PRECISIONMICROROBOTS」に開示された振動アクチュエータの振動子5を示す斜視図である。図16に示すように、振動子5は、矩形平板状の圧電素子6と、圧電素子6の一方の平面に装着された駆動用電極7a、7a’、7b、7b’と、他方の平面に装着された接地用の電極7gと、駆動力取出部8a、8b、8cとを備える。電極7aおよび電極7a’は結線され、また電極7bおよび電極7b’も結線される。図示しない駆動装置から、A相の駆動信号を電極7aに入力するとともに、B相の駆動信号を電極7bに入力する。すると、振動子5には、1次の縦振動と2次の屈曲振動とが励振される。このため、これらの振動が合成されて、駆動力取出部8a〜8cには、楕円運動がそれぞれ発生し、駆動力取出部8aまたは駆動力取出部8b、8cを介して加圧接触する相対運動部材との間で相対運動を発生する。

このように、これらの振動子1、5は、いずれも、2種類の振動を発生し、これらの振動の合成である楕円運動によって、加圧接触する相対運動部材との間で相対運動を発生する。したがって、この楕円運動を所望の形状に制御することが重要となる。

図17は、これらの振動アクチュエータの駆動制御回路9の一例を示すブロック図である。図16に示す振動子5を例にとって、駆動制御回路9を説明する。図17において、発振器10は、振動子5の縦振動L1および曲げ振動B2それぞれに相当する周波数の信号を発振する。発振器10の出力は分岐して、一方の出力は、増幅器11aによって増幅された後にA相電圧として電極7aに入力される。また、分岐した他方の出力は、移相器12によってA相電圧とは(π/2)だけ位相をずらしてB相電圧とした後に、増幅器11bを介して電極7bに入力される。

概要

超音波アクチュエータの振動子に発生する楕円運動の長径短径、さらには軸の傾斜角度を独立して制御できない。

振動子21と、振動子21に、交流電圧φ1 を印加するとともに交流電圧φ1 と同じ位相または異なる位相の交流電圧φ2 を切り換えて印加することにより、駆動方向へ振動する1次の縦振動と、駆動方向と直交する方向へ振動する2次の屈曲振動とを励振させて、振動子21に縦振動と屈曲振動との合成である楕円運動を発生させるための電力入力装置32と、振動子21と電力入力装置32との間に設けられた、振動子21に入力される交流電圧φ2 の電圧を調整する可変抵抗体33、および交流電圧φ2 に交流電圧φ1 に対する位相遅れを生成する可変コンデンサ40とを備える振動アクチュエータ20である。

目的

本発明は、これらの課題を解決することを目的としたものであり、振動子に発生する楕円運動の形状、すなわち楕円運動の長径、短径、さらには軸の傾斜角度を独立して制御できる振動アクチュエータを提供することを目的とする。

効果

実績

技術文献被引用数
0件
牽制数
7件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

駆動信号を入力されることにより、第1の振動と、該第1の振動の方向と交差する方向へ振動する第2の振動とを励振させて、前記第1の振動と前記第2の振動との合成である楕円運動を発生する振動子と、前記楕円運動の軌跡における長径または短径を個別に制御するための楕円形状制御手段と、前記楕円運動の軌跡における軸の傾斜を制御するための楕円軸傾斜制御手段とのうちの少なくとも一方とを備えることを特徴とする振動アクチュエータ

請求項2

駆動信号を入力されることにより、第1の振動と、該第1の振動の方向と交差する方向へ振動する第2の振動とを励振させて、前記第1の振動と前記第2の振動との合成である楕円運動を発生する振動子と、前記第1の振動の振幅または前記第2の振動の振幅を個別に制御するための振幅制御手段と、前記第1の振動と前記第2の振動との間の時間的位相差を変更する位相差制御手段とのうちの少なくとも一方とを備えることを特徴とする振動アクチュエータ。

請求項3

振動子と、該振動子に、第1の交流電圧印加するとともに、該第1の交流電圧または第2の交流電圧を切り換えることによって得られる第3の交流電圧を印加することにより、第1の振動と、該第1の振動の方向と交差する方向へ振動する第2の振動とを励振させて、前記振動子に前記第1の振動と前記第2の振動との合成である楕円運動を発生させるための電力入力装置と、前記振動子に印加される前記第3の交流電圧の電圧を変更する可変抵抗器と、前記第3の交流電圧に前記第1の交流電圧に対する時間的位相遅れを生成する可変コンデンサとのうちの少なくとも一方とを備えることを特徴とする振動アクチュエータ。

請求項4

さらに、前記振動子の駆動状況に関する量に基づいて前記楕円運動を制御するためのフィードバック制御手段を備えることを特徴とする請求項1から請求項3までのいずれか1項に記載された振動アクチュエータ。

請求項5

前記振動子は、矩形平板状の本体を有し、該本体は4つの矩形平板状の電気機械変換領域に分割され、対角上に配置された該電気機械変換領域同士は結線されることを特徴とする請求項1から請求項4までのいずれか1項に記載された振動アクチュエータ。

請求項6

前記第1の振動および前記第2の振動のうちの一方は縦振動であるとともに、他方は屈曲振動であることを特徴とする請求項1から請求項5までのいずれか1項に記載された振動アクチュエータ。

技術分野

0001

本発明は、振動アクチュエータに関し、より具体的には、相対運動部材加圧接触する振動子を備え、この振動子に楕円状の周期的な変位を発生させることによって振動子と相対運動部材との間で相対運動を発生する振動アクチュエータに関する。

背景技術

0002

図15は、特開平7−241090号公報により提案されたこの種の振動アクチュエータの振動子1の説明図であり、図15(A)は上面図、図15(B)は側面図である。

0003

図15(A)および図15(B)に示すように、振動子1は、矩形平板状外形を有する弾性体2と、弾性体2の一方の平面に装着された圧電素子3と、弾性体2の他方の平面に突出して設けられた駆動力取出部4a、4bとを備える。圧電素子3は、A相の駆動信号が入力される圧電素子3aと、A相の駆動信号とは位相が(π/2)ずれたB相の駆動信号が入力される圧電素子3bと、振動検出用の圧電素子3pと、接地用の圧電素子3gとに分割される。図示しない駆動装置から、A相の駆動信号を圧電素子3aに入力するとともに、B相の駆動信号を圧電素子3bに入力する。すると、振動子1には、1次の縦振動と4次の屈曲振動とが励振される。このため、これらの振動が合成されて、駆動力取出部4a、4bには、位相がπずれた楕円運動がそれぞれ発生する。これにより、振動子1は、駆動力取出部4a、4bを介して加圧接触する相対運動部材との間で相対運動を発生する。

0004

また、図16は、文献「VIBROMOTORS FOR PRECISIONMICROROBOTS」に開示された振動アクチュエータの振動子5を示す斜視図である。図16に示すように、振動子5は、矩形平板状の圧電素子6と、圧電素子6の一方の平面に装着された駆動用電極7a、7a’、7b、7b’と、他方の平面に装着された接地用の電極7gと、駆動力取出部8a、8b、8cとを備える。電極7aおよび電極7a’は結線され、また電極7bおよび電極7b’も結線される。図示しない駆動装置から、A相の駆動信号を電極7aに入力するとともに、B相の駆動信号を電極7bに入力する。すると、振動子5には、1次の縦振動と2次の屈曲振動とが励振される。このため、これらの振動が合成されて、駆動力取出部8a〜8cには、楕円運動がそれぞれ発生し、駆動力取出部8aまたは駆動力取出部8b、8cを介して加圧接触する相対運動部材との間で相対運動を発生する。

0005

このように、これらの振動子1、5は、いずれも、2種類の振動を発生し、これらの振動の合成である楕円運動によって、加圧接触する相対運動部材との間で相対運動を発生する。したがって、この楕円運動を所望の形状に制御することが重要となる。

0006

図17は、これらの振動アクチュエータの駆動制御回路9の一例を示すブロック図である。図16に示す振動子5を例にとって、駆動制御回路9を説明する。図17において、発振器10は、振動子5の縦振動L1および曲げ振動B2それぞれに相当する周波数の信号を発振する。発振器10の出力は分岐して、一方の出力は、増幅器11aによって増幅された後にA相電圧として電極7aに入力される。また、分岐した他方の出力は、移相器12によってA相電圧とは(π/2)だけ位相をずらしてB相電圧とした後に、増幅器11bを介して電極7bに入力される。

発明が解決しようとする課題

0007

ところで、これらの振動子1、5を、各部の寸法が設計値に高精度で正確に一致するように組み立てることは、容易ではない。各部の寸法が設計値から少しでも外れると、縦振動および屈曲振動それぞれの振幅によって発生する楕円運動の長径短径との比や、楕円運動の軸の傾斜が変動し、組み立てられた振動子1、5の性能がばらついてしまう。

0008

このようなばらつきを解消するため、入力電圧を大きくしたり、駆動制御回路9を用いて入力周波数共振点に近づけることにより、組み立てられた振動子1、5の速度を高めようとすると、楕円運動が相似的に拡大される。これにより、駆動方向と平行な方向に振動する縦振動の振幅だけでなく、駆動方向と直交する方向に振動する屈曲振動の振幅も大きくなり、振動子1、5が相対運動部材に対して相対的に飛び跳ね現象が発生する。このため、駆動時に騒音が発生し、振動アクチュエータの特徴の一つである静粛性が損なわれてしまう。

0009

また、入力電圧を小さくしたり、駆動制御回路9を用いて入力周波数を共振点から遠ざけることにより、組み立てられた振動子1、5の速度を下げようとすると、楕円運動が相似的に縮小される。これにより、縦振動の振幅だけでなく、屈曲振動の振幅も小さくなり、振動子1、5の出力が低下してしまう。

0010

さらに、楕円運動の軸が所望の角度からずれて傾斜していると、振動子1、5の運動が相対運動部材に効率よく伝達されない。このため、振動子1、5が発生する速度、力、エネルギー効率さらには制御等における損失が発生し、振動子1、5が本来有する性能を発揮できない。

0011

本発明は、これらの課題を解決することを目的としたものであり、振動子に発生する楕円運動の形状、すなわち楕円運動の長径、短径、さらには軸の傾斜角度を独立して制御できる振動アクチュエータを提供することを目的とする。

課題を解決するための手段

0012

請求項1の発明では、駆動信号を入力されることにより、第1の振動と、この第1の振動の方向と交差する方向へ振動する第2の振動とを励振させて、第1の振動と第2の振動との合成である楕円運動を発生する振動子と、楕円運動の軌跡における長径または短径を個別に制御するための楕円形状制御手段と、楕円運動の軌跡における軸の傾斜を制御するための楕円軸傾斜制御手段とのうちの少なくとも一方とを備えることを特徴とする振動アクチュエータを提供する。

0013

請求項2の発明では、駆動信号を入力されることにより、第1の振動と、この第1の振動の方向と交差する方向へ振動する第2の振動とを励振させて、第1の振動と第2の振動との合成である楕円運動を発生する振動子と、第1の振動の振幅または第2の振動の振幅を個別に制御するための振幅制御手段と、第1の振動と第2の振動との間の時間的位相差を変更する位相差制御手段とのうちの少なくとも一方とを備えることを特徴とする振動アクチュエータを提供する。

0014

請求項3の発明では、振動子と、この振動子に、第1の交流電圧印加するとともに、第1の交流電圧または第2の交流電圧を切り換えることによって得られる第3の交流電圧を印加することにより、第1の振動と、第1の振動の方向と交差する方向へ振動する第2の振動とを励振させて、振動子に第1の振動と第2の振動との合成である楕円運動を発生させるための電力入力装置と、振動子に印加される第3の交流電圧の電圧を変更する可変抵抗器と、第3の交流電圧に第1の交流電圧に対する時間的位相遅れを生成する可変コンデンサとのうちの少なくとも一方とを備えることを特徴とする振動アクチュエータを提供する。

0015

請求項4の発明は、請求項1から請求項3までのいずれか1項に記載された振動アクチュエータにおいて、さらに、振動子の駆動状況に関する量に基づいて楕円運動を制御するためのフィードバック制御手段を備えることを特徴とする。

0016

請求項5の発明は、請求項1から請求項4までのいずれか1項に記載された振動アクチュエータにおいて、振動子が、矩形平板状の本体を有し、この本体が4つの矩形平板状の電気機械変換領域に分割され、対角上に配置された該電気機械変換領域同士が結線されることを特徴とする。

0017

さらに、請求項6の発明は、請求項1から請求項5までのいずれか1項に記載された振動アクチュエータにおいて、第1の振動および第2の振動のうちの一方が縦振動であるとともに、他方が屈曲振動であることを特徴とする。

発明を実施するための最良の形態

0018

(第1実施形態)以下、本発明にかかる振動アクチュエータの実施の形態を、添付図面を参照しながら詳細に説明する。なお、以降の説明は、振動アクチュエータが、超音波振動域を利用した超音波アクチュエータである場合を例にとって、行う。

0019

図1は、本実施形態の超音波アクチュエータ20を示す説明図である。図1に示すように、本実施形態の超音波アクチュエータ20は、振動子21と、電力入力装置32と、可変抵抗体33とを備える。以下、これらの構成要素について順次説明する。

0020

〔振動子21〕図2は、本実施形態の超音波アクチュエータ20の振動子21を示す斜視図である。

0021

図2に示すように、本実施形態では、前述した文献「VIBROMOTORSFOR PRECISIONMICROROBOTS」等によって開示されている振動子を用いた。すなわち、振動子21は、矩形平板状に構成されるPZT等の圧電素子22によって、本体が構成される。圧電素子22は、表面側から裏面側への方向(図中矢印方向)へ分極されている。

0022

圧電素子22の表面には、例えば接着等の適宜手段によって、4枚の電極23a、23b、23c、23dが装着される。電極23a〜23dは、互いに絶縁されて配置される。電極23a〜23dのうちで、対角上に配置された電極23aと電極23dとは結線部材24で結線される。また、対角上に配置された電極23bと23cとは結線部材25で結線される。圧電素子22の裏面には、例えば接着等の適宜手段によって、その全面に一枚の電極26が装着される。電極26は接地用の電極である。

0023

この振動子21に対して既知の発振器(図示せず)によって、電極23aに形成されたA端子に振動子21の共振周波数付近の周波数を有する交流電圧をA相の駆動信号として印加するとともに、電極23bに形成されたB端子にA相の駆動信号と周波数および電圧が等しく、位相が(π/2)異なる交流電圧をB相の駆動信号として印加する。すると、振動子21には、X軸方向へ振動する1次の縦振動L1と、Y軸方向へ振動する2次の屈曲振動B2とが励振される。図3は、縦振動L1および屈曲振動B2を生じた時の振動子21の変位例を示す説明図である。

0024

振動子21に発生した縦振動L1と屈曲振動B2とは合成され、振動子21に楕円運動が発生する。図4は、振動子21に発生した楕円運動を示す説明図である。図4に示すように、振動子21には、Y方向と平行な側面21aにおける点D(側面21aの略中央の位置)と、X方向と平行な側面21bにおける点E、F(屈曲振動B2の腹となる位置)とには、それぞれ、楕円運動が発生する。

0025

点Dまたは点E、Fにセラミックスもしくはプラスチック材料等からなる摺動材料を装着し、点Dまたは点E、Fを介して相対運動部材(図示しない)を加圧接触させる。図5は、振動子21と相対運動部材30とが加圧接触した状態の一例を示す説明図である。図5に示すように、振動子21の点E、Fに摺動部材27a、27bを装着し、加圧部材28が発生するばね力により、摺動部材27a、27bを介して振動子21を、ベアリング29a、29bにより両矢印方向へ直線状に移動自在に支持された相対運動部材30の表面に加圧接触させる。

0026

すると、振動子21は、点E、Fに発生した楕円運動により、相対運動部材30との間で、左右方向いずれかへ直線状の相対運動を発生する。なお、相対運動方向を反転するには、2相の交流電圧を逆に接続すればよい。

0027

振動子21については、文献「VIBROMOTORS FOR PRECISIONMICROROBOTS」等によって既に公知であるため、振動子21に関するこれ以上の説明は省略する。

0028

〔電力入力装置32〕図1に示すように、本実施形態の電力入力装置32は、発振器34とスイッチ35とを有する。発振器34から、第1の交流電圧φ1 と第2の交流電圧φ2 とが出力される。これら2相の交流電圧φ1 、φ2 は互いに(π/2)の位相差を有する。

0029

交流電圧φ2 は、スイッチ35の端子35aに印加される。一方、交流電圧φ1 は、スイッチ35の端子35bと、振動子21に装着された電極23bとにそれぞれ印加される。スイッチ35の端子35cと35fとは、いずれも、後述する可変抵抗体33を介して振動子21に装着された電極23aに接続される。

0030

スイッチ35の端子35aと端子35bとは、接続に関して連動する。すなわち、図1実線で示すようにスイッチ35を上側に倒すと、端子35aと端子35cとがつながるとともに、端子35bと端子35eとがつながる。また、図1破線で示すようにスイッチ35を下側に倒すと、端子35aと端子35dとがつながるとともに、端子35bと端子35fとがつながる。

0031

したがって、電力入力装置32は、スイッチ35が上側に倒れているときは、振動子21の電極23a、23dに第2の交流電圧φ2 を印加し、振動子21の電極23b、23cに第1の交流電圧φ1 を印加する。また、スイッチ35を切り換えて下側に倒したときは、振動子21の電極23a、23dには第1の交流電圧φ1 を印加し、振動子21の電極23b、23cにも第1の交流電圧φ1 を印加する。

0032

〔可変抵抗体33〕本実施形態では、スイッチ35の端子35c、35fと、振動子21の電極23aとの間に、可変抵抗体33が設けられる。可変抵抗体33は、抵抗の値を自由に変えることができる抵抗体であればよく、特定の型式のものには限定されない。このような可変抵抗体33としては、例えば公知のポテンショメータを用いることができる。

0033

本実施形態では、この可変抵抗体33の抵抗値を変更することにより、スイッチ35の端子35c、35fから振動子21の電極23aへ印加される交流電圧φ1 または交流電圧φ2 の電圧を、自在に変えることができる。

0034

本実施形態の超音波アクチュエータ20は、以上のように構成される。次に、この超音波アクチュエータ20の動作を説明する。図6は、本実施形態の超音波アクチュエータ20により、振動子21に発生する楕円運動の形状が制御されることを示す説明図である。

0035

図1に実線で示すようにスイッチ35が上側に倒されている場合、図6に示すように可変抵抗体33の抵抗値Rを充分大きく設定すると、主に、交流電圧φ2が振動子21の電極23b、23cに印加される。このとき、振動子21には、第1の方向、すなわち、X方向とほぼ平行に振動する第1の振動(1次の縦振動L1)と、この第1の方向とは異なる第2の方向、すなわち、X方向と直交するY方向とほぼ平行に振動する第2の振動(2次の屈曲振動B2)とが同時に発生する。これらの縦振動L1と屈曲振動B2とは合成されて、振動子21の点E、Fにそれぞれ設けられた駆動力取出部27a、27bに、楕円運動が発生する。この楕円運動は図6の符号36aに示す軌跡を有している。

0036

この状態から、可変抵抗体33の抵抗値Rを徐々に小さくしていくと、電極23b、23cに印加される交流電圧φ2 の電圧は変わらないが、電極23a、23dに印加される交流電圧φ1 が徐々に増加する。このため、点E、Fに発生する楕円運動は、図6の符号36b、36cに示すように、徐々にX方向へ振動する第1の振動(1次の縦振動L1)の振幅だけが減少し、X方向へ潰れた形状となる。

0037

そして、可変抵抗体33の抵抗値が充分に小さくなると、交流電圧φ1 が電極23a、23dに印加されるとともに、交流電圧φ1 と周波数および電圧が等しいとともに位相が(π/2)異なる交流電圧φ2 が電極23b、23cに印加される。このため、点E、Fに発生する楕円運動は、図6の符号36dに示すように、屈曲振動のみの直線形状となる。

0038

一方、図1に破線で示すようにスイッチ35が下側に倒されている場合、図6に示すように可変抵抗体33の抵抗値Rを充分大きく設定すると、交流電圧φ2が電極23b、23cに印加される。このため、点E、Fには、図6の符号36aに示す軌跡を有する楕円運動が発生する。

0039

この状態から、可変抵抗体33の抵抗値Rを徐々に小さくしていくと、電極23b、23cに印加される交流電圧φ2 の電圧は変わらないが、電極23a、23dに印加される交流電圧φ2 が徐々に増加する。このため、点E、Fに発生する楕円運動は、図6の符号36e、36fに示すように、徐々にY方向へ振動する第2の振動(2次の屈曲振動B2)の振幅だけが減少し、Y方向へ潰れた形状となる。

0040

そして、可変抵抗体33の抵抗値が充分に小さくなると、交流電圧φ2 が電極23a、23dと、電極23b、23cとに印加される。このため、点E、Fに発生する楕円運動は、図6の符号36gに示すように、縦振動のみの直線形状となる。

0041

このように、本実施形態の超音波アクチュエータ20によれば、スイッチ35の切替えと、可変抵抗体33の抵抗値Rの変更とにより、振動子21に発生する楕円運動の形状を、図6の符号36a〜36gに示すように、自由に変更することができる。

0042

したがって、本実施形態の超音波アクチュエータ20では、駆動速度を速くしたい場合には、スイッチ35を下側に倒すとともに抵抗値Rを小さく設定することにより、駆動方向と直交する方向への振動、すなわち屈曲振動B2の振幅が増加することを防止できる。したがって、楕円運動の駆動方向と直交する方向の振幅を増加させずに楕円運動の駆動方向の振幅だけを増加させることができる。このため、駆動速度を増加しても、振動子21が相対運動部材に対して相対的に飛び跳ねる現象に起因した騒音が発生しない。

0043

また、駆動速度を遅くしたい場合には、スイッチ35を上側に倒すとともに抵抗値Rを小さく設定することにより、駆動方向と直交する方向への振動、すなわち屈曲振動B2の振幅が低下することを防止できる。したがって、楕円運動の駆動方向と直交する方向の振幅を低下させずに楕円運動の駆動方向の振幅だけを減少させることができる。このため、駆動速度を減少しても、振動子21の出力の低下が発生しない。

0044

さらに、駆動速度を変更する機会が少ない場合には、スイッチ35の切替えと可変抵抗体33の抵抗値Rとを、振動子21の使用環境に応じて最適に設定することにより、性能のばらつきが少ない超音波アクチュエータを、高い製造歩留りで量産することができる。

0045

(第2実施形態)次に、第2実施形態の超音波アクチュエータを説明する。なお、以降の各実施形態の説明では、上述した第1実施形態と相違する部分についてだけ説明を行うこととし、同一の部分には共通する図中符号を付すことにより、重複する説明を省略する。

0046

図7は、本実施形態の超音波アクチュエータ20−1を示す説明図である。図7に示すように、本実施形態の超音波アクチュエータ20−1は、振動子21−1と、電力入力装置32−1と、可変抵抗体33とを備える。以下、これらの構成要素について、第1実施形態と相違する部分について順次説明する。

0047

〔振動子21−1〕本実施形態の振動子21−1が、第1実施形態の振動子21と相違するのは、振動子21−1の裏面に装着される電極が、振動子21−1の表面に装着される電極23a〜23dと同様に、4枚の電極26a〜26dに4分割されており、かつ対角上に配置された電極同士が結線されること、すなわち電極26a、26cが結線されるとともに電極26b、26dが結線されることである。これ以外は、第1実施形態の振動子21と同じである。

0048

〔電力入力装置32−1〕本実施形態の電力入力装置32−1が、第1実施形態の電力入力装置32と相違するのは、主として、振動子21−1の裏面側に電極26a〜26dを設けたことに対応するための変更である。本実施形態の電力入力装置32−1は、発振器34とスイッチ37とを有する。

0049

発振器34の端子34a、34bから、交流電圧φ1 がそれぞれ出力される。発振器34の端子34aは、振動子21−1の表面側の電極23aと、可変抵抗器33を介してスイッチ37の端子37bとに接続される。一方、発振器34の端子34bは、振動子21−1の裏面側の電極26aと、スイッチ37の端子37aとに接続される。

0050

スイッチ37の端子37cと端子37fとは、ともに、振動子21−1の表面側の電極23bに接続される。また、スイッチ37の端子37dと端子37eとは、ともに、振動子21−1の裏面側の電極26bに接続される。

0051

スイッチ37の端子37aと端子37bとは、接続において連動する。このため、図7に実線で示すようにスイッチ37を上側に倒すと、端子37aと端子37cとがつながるとともに、端子37bと端子37eとがつながる。また、図7に破線で示すようにスイッチ37を下側に倒すと、端子37aと端子37dとがつながるとともに端子37bと端子37fとがつながる。

0052

したがって、電力入力装置32−1は、スイッチ37が上側に倒れているときは、振動子21−1の電極23aと電極26aとの間と、電極23bと電極26bとの間とに、互いに逆向きの交流電圧φ1 をそれぞれ印加する。これにより、電極23a、26a間および電極23d、26d間にそれぞれ印加される交流電圧φ1 と、電極23b、26b間および電極23c、26c間にそれぞれ印加される交流電圧φ1 とは、互いに逆向きとなる。

0053

また、電力入力装置32−1は、スイッチ37を切り換えて下側に倒したときは、振動子21の電極23aと電極26aとの間と、電極23bと電極26bとの間とに、互いに同じ向きの交流電圧φ1 をそれぞれ印加する。これにより、電極23a、26a間および電極23d、26d間にそれぞれ印加される交流電圧φ1 と、電極23b、26b間および電極23c、26c間にそれぞれ印加される交流電圧φ1 とは、互いに同じ向きとなる。

0054

〔可変抵抗体33〕本実施形態では、発振器34の端子34aと、スイッチ37の端子37bとの間に、可変抵抗体33が設けられる。本実施形態では、この可変抵抗体33の抵抗値を変更することにより、発振器34の端子34aから、スイッチ37の端子37bへ印加される交流電圧φ1 の電圧を、自在に変えることができる。

0055

本実施形態の超音波アクチュエータ20−1は、以上のように構成される。次に、この超音波アクチュエータ20−1の動作を説明する。図8は、本実施形態の超音波アクチュエータ20−1により、振動子21−1に発生する楕円運動が制御されることを示す説明図である。

0056

図7に実線で示すようにスイッチ37が上側に倒されている場合、図8に示すように可変抵抗体33の抵抗値Rを充分大きく設定すると、主に電極23aと電極26aとの間と、電極23dと電極26dとの間に、交流電圧φ1 がそれぞれ印加される。このとき、振動子21−1には、第1の方向、すなわち、X方向とほぼ平行に振動する第1の振動(1次の縦振動L1)と、この第1の方向とは異なる第2の方向、すなわち、X方向と直交するY方向とほぼ平行に振動する第2の振動(2次の屈曲振動B2)とが同時に発生する。これらの縦振動L1と屈曲振動B2とは合成されて、振動子21−1の点E、F(図5参照)にそれぞれ設けられた駆動力取出部27a、27bに、楕円運動が発生する。この楕円運動は、図8の符号38aに示す軌跡を有している。

0057

この状態から、可変抵抗体33の抵抗値Rを徐々に小さくしていくと、電極23aと電極26aとの間と、電極23dと電極26dとの間にそれぞれ印加される交流電圧φ1 の電圧は変わらないが、電極23bと電極26bとの間と、電極23cと電極26cとの間とにそれぞれ印加される交流電圧φ1 の電圧が徐々に増加する。このため、点E、Fに発生する楕円運動は、図8の符号38b、38cに示すように、徐々にX方向へ振動する第1の振動(1次の縦振動L1)の振幅が減少し、X方向へ潰れた形状となる。

0058

そして、可変抵抗体33の抵抗値が充分に小さくなると、交流電圧φ1 が電極23a、26aの間、電極23b、26bとの間、電極23c、26cとの間、および電極23d、26dとの間にそれぞれ印加される。このため、点E、Fに発生する楕円運動は、図8の符号38dに示すように、屈曲振動のみの直線形状となる。

0059

一方、図7に破線で示すようにスイッチ37が下側に倒されている場合、図8に示すように可変抵抗体33の抵抗値Rを充分大きく設定すると、交流電圧φ1が電極23a、26a間と、電極23d、26d間にそれぞれ印加される。このため、点E、Fには、図8の符号38aに示すような楕円運動が発生する。

0060

この状態から、可変抵抗体33の抵抗値Rを徐々に小さくしていくと、電極23a、26a間と、電極23d、26d間にそれぞれ印加される交流電圧φ1 の値は変わらないが、電極23b、26b間と、電極23c、26c間にそれぞれ印加される交流電圧φ1 の電圧が徐々に増加する。このため、点E、Fに発生する楕円運動は、図8の符号38e、38fに示すように、徐々にY方向へ振動する第2の振動(2次の屈曲振動B2)の振幅が減少し、Y方向へ潰れた形状となる。

0061

そして、可変抵抗体33の抵抗値が充分に小さくなると、交流電圧φ1 が電極23a、26aの間、電極23b、26bとの間、電極23c、26cとの間、および電極23d、26dとの間にそれぞれ印加される。このため、点E、Fに発生する楕円運動は、図8の符号38gに示すように、縦振動のみの直線形状となる。

0062

このように、本実施形態の超音波アクチュエータ20−1によれば、スイッチ37の切替えと、可変抵抗体33の抵抗値Rの変更とにより、振動子21−1に発生する楕円運動の形状を、図8の軌跡38a〜38gに示すように、自由に変更することができる。

0063

したがって、本実施形態の超音波アクチュエータ20−1では、駆動速度を速くしたい場合には、スイッチ37を下側に倒すとともに抵抗値Rを小さく設定することにより、駆動方向と直交する方向への振動、すなわち屈曲振動B2の振幅が増加することを防止できる。したがって、楕円運動の駆動方向と直交する方向の振幅を増加させずに楕円運動の駆動方向の振幅だけを増加させることができる。このため、駆動速度を増加しても、振動子21−1が相対運動部材に対して相対的に飛び跳ねる現象に起因した騒音が発生しない。

0064

また、駆動速度を遅くしたい場合には、スイッチ37を上側に倒すとともに抵抗値Rを小さく設定することにより、駆動方向と直交する方向への振動、すなわち屈曲振動B2の振幅が低下することを防止できる。したがって、楕円運動の駆動方向と直交する方向の振幅を低下させずに楕円運動の駆動方向の振幅だけを減少させることができる。このため、駆動速度を減少しても、振動子21−1の出力の低下が発生しない。

0065

さらに、駆動速度を変更する機会が少ない場合には、スイッチ37の切替えと可変抵抗体33の抵抗値Rとを、振動子21−1の使用環境に応じて最適に設定することにより、性能のばらつきが少ない超音波アクチュエータを、高い製造歩留りで量産することができる。

0066

(第3実施形態)図9は、本実施形態の超音波アクチュエータ20−2を示す説明図である。図9に示すように、本実施形態の超音波アクチュエータ20−2が、第1実施形態の超音波アクチュエータ20と相違するのは、可変抵抗体33に代えて、可変コンデンサ40を設けた点であり、他は図1の構成とほぼ同じである。可変コンデンサ40は、容量を自由に変えることができるコンデンサであればよく、特定の型式のものには限定されない。

0067

本実施形態の超音波アクチュエータ20−2は、以上のように構成される。次に、この超音波アクチュエータ20−2の動作を説明する。図10は、本実施形態の超音波アクチュエータ20−2により、振動子21に発生する楕円運動が制御されることを示す説明図である。

0068

図10に示すように、製造上の誤差により、振動子21の点E、Fに発生する楕円運動が、符号41aに示すように、軸が傾斜した状態で、生じているとする。本実施形態の超音波アクチュエータ20−2において、スイッチ35が実線で示すように上側に倒されている場合、可変コンデンサ40の容量Cを充分に小さく設定すると、可変コンデンサ40の作用は小さいため、点E、Fにおける楕円運動の軌跡は、符号41aに示すように、軸が傾斜したままである。

0069

この状態で、可変コンデンサ40の容量Cを徐々に大きくしていくと、スイッチ35の端子35cまたは端子35fから電極23aおよび23dに入力される交流電圧φ1 または交流電圧φ2 に、電極23bおよび23cに入力される交流電圧φ2 に対する位相遅れが、徐々に大きく生成される。このため、点E、Fにおける楕円運動の軌跡は、符号41b、41cに示すように、軸の傾斜が変更され、軸の傾斜は徐々に直交する方向に近づく。

0070

さらに、可変コンデンサ40の容量Cを充分に大きくすると、発振器34から出力される交流電圧φ1 が、可変コンデンサ40によって(π/2)近く位相シフトされる。このため、振動子21の電極23aと電極23dとに印加される交流電圧と、電極23bと電極23cとに印加される交流電圧との間には、約πの位相差が生じる。これにより、振動子21の点E、Fに発生する楕円運動は、図10の符号41dに示すように、屈曲振動B2のみの直線形状となる。

0071

一方、スイッチ35が破線で示すように下側に倒されている場合、可変コンデンサ40の容量Cを充分に小さく設定すると、可変コンデンサ40の作用は小さいため、点E、Fにおける楕円運動の軌跡は、符号41aに示すように、軸が傾斜したままである。

0072

この状態で、可変コンデンサ40の容量Cを徐々に大きくしていくと、スイッチ35の端子35fから電極23aおよび23cに入力される交流電圧φ2 に、電極23bおよび23cに入力される交流電圧φ2 に対する位相遅れが、徐々に大きく生成される。このため、点E、Fにおける楕円運動の軌跡は、軌跡41e、41fに示すように、軸の傾斜が変更され、軸の傾斜は徐々に水平な方向に近づく。

0073

さらに、可変コンデンサ40の容量Cを充分に大きくすると、発振器34から出力される交流電圧φ2 のうちで可変コンデンサ40に入力された交流電圧は、可変コンデンサ40によって(π/2)近く位相シフトされる。このため、振動子21の電極23aと電極23dとに印加される交流電圧と、電極23bと電極23cとに印加される交流電圧との間の位相差は略0になる。つまり、振動子21の電極21a〜21dには、略同位相の交流電圧φ1 が印加される。これにより、振動子21の点E、Fに発生する楕円運動は、図10の符号41gに示すように、縦振動L1のみの直線形状となる。

0074

このように、本実施形態によれば、スイッチ35の切替えと、可変コンデンサ40の容量Cの変更とにより、振動子21に発生する楕円運動の形状を、図9の符号41a〜41gに示すように、自由に変更することができる。このため、例えば製造上の誤差により、振動子21の点E、Fに発生する楕円運動の軌跡が軸が傾斜した状態で生じても、点E、Fにおける楕円運動の軸の傾斜を設計時の狙いの通りに変更することができる。

0075

(第4実施形態)図11は、本実施形態の超音波アクチュエータの構成を示す説明図である。同図に示すように、本実施形態は、第1実施形態の超音波アクチュエータ20に制御装置42を付加して超音波アクチュエータ20−3とすることにより、スイッチ35の切替えと、可変抵抗体33の設定と、交流電圧φ1 、φ2 の周波数の設定とを、自動的に行うようにしたものである。

0076

図11において、制御装置であるCPU42には、速度指示手段43から指示速度vが入力される。CPU42は、入力された指示速度vに基づいて、発振器34へ交流電圧φ1 、φ2 の周波数の設定指示と、スイッチ35への切替え指示と、可変抵抗体33への抵抗値Rの指示とを出力する。

0077

図12は、CPU42に記憶された各種指示の出力プログラムの一例を示すグラフである。CPU42は、速度指示手段43から低い指示速度v1 が入力されると、図12に例示したグラフに基づいて、超音波アクチュエータ20の共振周波数から離れた高い周波数f1 を交流電圧φ1 、φ2 の周波数として指示し、上側への切替えをスイッチ35へ指示し、さらに低い抵抗値R1 を可変抵抗体33へ指示する。一方、CPU42は、速度指示手段43から高い指示速度v4 が入力されると、このグラフに基づいて、超音波アクチュエータ20の共振周波数に近い低い周波数f4 を交流電圧φ1 、φ2 の周波数として指示し、下側への切替えをスイッチ35へ指示し、さらに高い抵抗値R4 を可変抵抗体33へ指示する。

0078

また、図11に示す超音波アクチュエータ20−3では、相対運動部材30にスケール44が取り付けられている。超音波アクチュエータ20−3の駆動に伴うスケール44の移動をエンコーダ45により読み取り、この値はCPU42に入力される。

0079

CPU42では、エンコーダ45から時系列的に入力されるこの値を微分して速度情報に加工する。そして、CPU42では、速度指示手段43から入力される指示速度vと、この速度情報との偏差を最小にするべく、発振器34からの交流電圧φ1 、φ2 の周波数の設定値をさらに微調整する。

0080

この超音波アクチュエータ20−3の速度を小さい速度v0 (<v1 )にするには、図12に示すように、CPU42からの制御信号により、スイッチ35は上側に倒され、可変抵抗体33の抵抗値は小さい値R0 に設定され、さらに交流電圧φ1 、φ2 の周波数は高い値f0 に設定される。これにより、点E、Fに発生する楕円運動は、図6の符号36dに示すように、屈曲振動のみの直線形状となり、速度はv0 となる。

0081

次に、超音波アクチュエータ20−3の速度を速度v1 に上昇するには、図12に示すように、CPU42からの制御信号により、スイッチ35は上側に倒されたままで、可変抵抗体33の抵抗値は値R3 よりも大きい値R1 に変更され、さらに交流電圧φ1 、φ2 の周波数を値f0 よりも小さい値f1 に変更される。これにより、点E、Fに発生する楕円運動は、図6の符号36cまたは符号36bに示すように、X方向へ振動する第2の振動(2次の屈曲振動B2)の振幅が増加し、速度がv1 に上昇する。

0082

次に、超音波アクチュエータ20−3の速度を速度v2 に上昇するには、図12に示すように、CPU42からの制御信号により、スイッチ35は上側に倒されたままで、可変抵抗体33の抵抗値は値R1 よりも大きい値R2 に変更され、さらに交流電圧φ1 、φ2 の周波数は値f1 よりも低い値f2 に変更されるか、またはスイッチ35は下側に切り換えて倒され、可変抵抗体33の抵抗値は値R1 よりも大きい値R2 に変更され、さらに交流電圧φ1 、φ2 の周波数は値f1 よりも低い値f2 に変更される。これにより、点E、Fに発生する楕円運動は、図6の符号36aに示すような楕円形状となる。

0083

次に、超音波アクチュエータ20−3の速度を速度v3 に上昇するには、図12に示すように、CPU42からの制御信号により、スイッチ35は下側に倒されたままで、可変抵抗体33の抵抗値は値R2 よりも小さい値R3 に変更され、さらに交流電圧φ1 、φ2 の周波数は値f2 よりも低い値f3 に変更される。これにより、点E、Fに発生する楕円運動は、図6の符号36eまたは符号36fに示すように、徐々にY方向へ振動する第1の振動(1次の縦振動L1)の振幅が増加し、Y方向へ潰れた形状となる。これにより、速度がv3 に上昇する。

0084

さらに、超音波アクチュエータ20−3の速度を速度v4 に上昇するには、図12に示すように、CPU42からの制御信号により、スイッチ35は下側に倒されたままで、可変抵抗体33の抵抗値は値R3 よりも小さい値R4 に変更され、さらに交流電圧φ1 、φ2 の周波数は値f3 よりも低い値f4 に変更される。これにより、点E、Fに発生する楕円運動は、図6の符号36gに示すように、縦振動のみの直線形状となる。

0085

このように、本実施形態の超音波アクチュエータ20−3によれば、CPU42からの制御信号により、スイッチ35の切替えと、可変抵抗体33の設定と、交流電圧φ1 、φ2 の周波数の設定とが自動的に行われ、超音波アクチュエータ20−3の速度が自在に変更される。

0086

変形形態)各実施形態の説明では、振動アクチュエータが、超音波の振動域を用いる超音波アクチュエータである場合を例にとった。しかし、本発明はこの形態には限定されず、超音波以外の他の振動域を用いる振動アクチュエータであれば、同様に適用される。

0087

また、各実施形態の説明では、文献「VIBROMOTORS FOR PRECISIONMICROROBOTS」に開示された、1次の縦振動と2次の屈曲振動とを発生する矩形平板状の振動子を備える振動アクチュエータを用いた。しかし、本発明はこの形態の振動子を備える振動アクチュエータには限定されず、第1の方向へ振動する第1の振動と、第1の方向とは異なる第2の方向へ振動する第2の振動とを励振させて、第1の振動と第2の振動との合成である楕円運動を発生させる振動子を備える振動アクチュエータに対して、等しく適用される。例えば、特開平7−241090号公報に開示された、1次の縦振動と4次の屈曲振動とを発生する矩形平板状の振動子を備える振動アクチュエータに対しても、適用される。

0088

また、各実施形態の説明では、振動子21、21−1の点E、Fに駆動力取出部27a、27bを設けた場合を例にとった。しかし、本発明はこの形態には限定されず、振動子21、21−1の点D(図4参照)に駆動力取出部27cを設けてもよい。図13は、この形態を示す説明図であり、駆動力取出部27cに生じる楕円運動により、相対運動部材30を左右方向へ直線運動させることができる。

0089

また、各実施形態の説明では、相対運動部材30を直線運動させる場合を例にとった。しかし、本発明はこの形態には限定されず、相対運動部材を回転運動させることもできる。図14は、この形態を示す説明図であり、相対運動部材30−1を回転自在に支持しておき、この相対運動部材30−1の外周面に駆動力取出部27cを加圧接触させればよい。

0090

また、第3実施形態では、第1実施形態の超音波アクチュエータ20に可変コンデンサ40を設けたが、第2実施形態の超音波アクチュエータ20−1に対しても可変抵抗体33の代わりに可変コンデンサ40を設けることにより、第3実施形態と同様に、楕円運動の軸の傾斜を調整することができる。

0091

また、第1実施形態や第2実施形態における可変抵抗体33と、第3実施形態における可変コンデンサ40とを直列に配置することにより、第1実施形態や第2実施形態による楕円運動の形状調整と、第3実施形態による楕円運動の軸の傾斜調整とをともに行うことができる。

0092

さらに、第4実施形態では、第1実施形態の超音波アクチュエータ20に制御装置42を付加したが、第2実施形態の超音波アクチュエータ20−1に制御装置42を付加することによっても、第4実施形態と同様に、スイッチ37の切替えと、可変抵抗体33の設定と、交流電圧φの周波数の設定とを、自動的に行うことができる。

発明の効果

0093

以上詳細に説明したように、請求項1〜請求項6の発明によれば、振動アクチュエータの振動子に発生する楕円運動の形状、すなわち楕円運動の長径、短径、さらには軸の傾斜角度を独立して制御できる。このため、本発明にかかる振動アクチュエータによれば、高速度時の騒音の発生や、低速時の力の不足や、楕円運動の軸の傾斜が不適切であることに起因した諸性能の低下が、いずれも解消され、振動アクチュエータの性能を向上させることができる。

図面の簡単な説明

0094

図1第1実施形態の超音波アクチュエータを示す説明図である。
図2第1実施形態の超音波アクチュエータの振動子を示す斜視図である。
図3第1実施形態における超音波アクチュエータの振動子に、縦振動および屈曲振動を生じた時の変位例を示す説明図である。
図4第1実施形態における超音波アクチュエータの振動子に発生した楕円運動を示す説明図である。
図5第1実施形態における超音波アクチュエータの振動子と相対運動部材とが加圧接触した状態の一例を示す説明図である。
図6第1実施形態における超音波アクチュエータにより、振動子に発生する楕円運動の形状が制御されることを示す説明図である。
図7第2実施形態の超音波アクチュエータを示す説明図である。
図8第2実施形態の超音波アクチュエータにより、振動子に発生する楕円運動が制御されることを示す説明図である。
図9第3実施形態の超音波アクチュエータを示す説明図である。
図10第3実施形態の超音波アクチュエータにより、振動子に発生する楕円運動が制御されることを示す説明図である。
図11第4実施形態の超音波アクチュエータの構成を示す説明図である。
図12第4実施形態の超音波アクチュエータにおいて、CPUに記憶された各種指示の出力プログラムの一例を示すグラフである。
図13変形形態の超音波アクチュエータの構成を示す説明図である。
図14変形形態の超音波アクチュエータの構成を示す説明図である。
図15特開平7−241090号公報により提案された振動アクチュエータの振動子の説明図であり、図15(A)は上面図、図15(B)は側面図である。
図16文献「VIBROMOTORS FOR PRECISIONMICROROBOTS」に開示された振動アクチュエータの振動子を示す斜視図である。
図17従来の振動アクチュエータの駆動制御回路の一例を示すブロック図である。

--

0095

20振動アクチュエータ
21振動子
23a〜23d電極
32電力入力装置
33可変抵抗体
35 スイッチ
40可変コンデンサ
44スケール(フィードバック制御手段)
45エンコーダ(フィードバック制御手段)
φ1 、φ2 交流電圧

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • シチズン時計株式会社の「 電気機械変換器」が 公開されました。( 2018/06/21)

    【課題】可動部材を小型にしても出力が低下しにくい電気機械変換器を提供する。【解決手段】帯電部と対向電極との間の静電的な相互作用を利用して電力と動力の間の変換を行う電気機械変換器(1)は、固定基板(13... 詳細

  • シチズン時計株式会社の「 電気機械変換器」が 公開されました。( 2018/06/21)

    【課題】可動部材を小型にしても出力が低下しにくい電気機械変換器を提供する。【解決手段】帯電部と対向電極との間の静電的な相互作用を利用して電力と動力の間の変換を行う電気機械変換器(1)は、第1の固定基板... 詳細

  • シチズン時計株式会社の「 電気機械変換器」が 公開されました。( 2018/06/21)

    【課題】可動部材を小型にしても出力が低下しにくい電気機械変換器を提供する。【解決手段】帯電部と対向電極との間の静電的な相互作用を利用して電力と動力の間の変換を行う電気機械変換器は、回転軸の周りに回転可... 詳細

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ