図面 (/)

技術 車両用摩擦係合装置の温度推定装置

出願人 トヨタ自動車株式会社
発明者 大葉充鈴木浩一山本貴史山下勝司池田暁彦
出願日 1998年3月31日 (21年3ヶ月経過) 出願番号 1998-087304
公開日 1999年10月19日 (19年9ヶ月経過) 公開番号 1999-287257
状態 特許登録済
技術分野 動力伝達装置の配置~駆動 油圧・電磁・流体クラッチ・流体継手
主要キーワード 環状押圧部材 温度飽和 温度推定式 重量配分比 入力側軸受 平衡力 出力側摩擦板 入力側摩擦板
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(1999年10月19日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (11)

課題

温度の推定精度を一層高めることができる車両用摩擦係合装置温度推定装置を提供する。

解決手段

温度推定手段210により、電磁クラッチ30の外周部に位置して入力軸58を回転可能に支持するベアリング入力側軸受)56および出力軸62を回転可能に支持するベアリング(出力側軸受)60の発熱状態に基づいて、電磁クラッチ30の温度Tempcが推定されることから、軸方向或いは軸に直角な方向の負荷を受けつつ回転させられることにより比較的多くの熱を発生するベアリング56、60の発熱状態が考慮され、電磁クラッチ30の温度Tempcが一層正確に推定される。

概要

背景

車輪へ伝達されるトルクを制御するために車両の動力伝達経路に設けられて作動させられる摩擦係合装置が知られている。このような摩擦係合装置は、その作動温度耐久性に影響を与えることから、温度推定装置を用いてその作動温度を推定することが提案されている。たとえば、特開平1−122728号公報に記載された装置がそれである。

このような車両用摩擦係合装置の温度推定装置においては、その摩擦係合装置の前後回転数差すなわち入力側回転部材出力側回転部材との間の回転速度差、およびその摩擦係合装置の伝達トルクに基づいて発熱量を算出し、その発熱量に基づいて、発熱が抑制されるように摩擦係合装置を制御する技術が開示されている。

概要

温度の推定精度を一層高めることができる車両用摩擦係合装置の温度推定装置を提供する。

温度推定手段210により、電磁クラッチ30の外周部に位置して入力軸58を回転可能に支持するベアリング入力側軸受)56および出力軸62を回転可能に支持するベアリング(出力側軸受)60の発熱状態に基づいて、電磁クラッチ30の温度Tempcが推定されることから、軸方向或いは軸に直角な方向の負荷を受けつつ回転させられることにより比較的多くの熱を発生するベアリング56、60の発熱状態が考慮され、電磁クラッチ30の温度Tempcが一層正確に推定される。

目的

本発明は以上の事情背景として為されたものであり、その目的とするところは、温度の推定精度を一層高めることができる車両用摩擦係合装置の温度推定装置を提供することにある。

効果

実績

技術文献被引用数
4件
牽制数
7件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

車両の動力伝達経路に設けられた摩擦係合装置の温度を推定する車両用摩擦係合装置温度推定装置であって、前記摩擦係合装置の外周部に位置する部材の発熱状態に基づいて該摩擦係合装置の温度を推定する温度推定手段を、含むことを特徴とする車両用摩擦係合装置の温度推定装置。

請求項2

前記温度推定手段により推定された前記摩擦係合装置の温度に基づいて該摩擦係合装置を制御する摩擦係合制御手段をさらに含むものである請求項1の車両用摩擦係合装置の温度推定装置。

請求項3

前記温度推定手段により逐次推定される温度を、前記摩擦係合装置における温度上昇時定数よりも短い値の時定数で逐次平滑化処理する平滑化処理手段を、さらに含むものである請求項1または2の車両用摩擦係合装置の温度推定装置。

技術分野

0001

本発明は、車両の動力伝達経路に設けられた摩擦係合装置の温度を推定する車両用摩擦係合装置温度推定装置に関するものである。

背景技術

0002

車輪へ伝達されるトルクを制御するために車両の動力伝達経路に設けられて作動させられる摩擦係合装置が知られている。このような摩擦係合装置は、その作動温度耐久性に影響を与えることから、温度推定装置を用いてその作動温度を推定することが提案されている。たとえば、特開平1−122728号公報に記載された装置がそれである。

0003

このような車両用摩擦係合装置の温度推定装置においては、その摩擦係合装置の前後回転数差すなわち入力側回転部材出力側回転部材との間の回転速度差、およびその摩擦係合装置の伝達トルクに基づいて発熱量を算出し、その発熱量に基づいて、発熱が抑制されるように摩擦係合装置を制御する技術が開示されている。

発明が解決しようとする課題

0004

しかしながら、上記従来の車両用摩擦係合装置の温度推定装置では、単に摩擦材における発熱量しか考慮されていないことから、摩擦係合装置の温度の推定精度が充分に得られず、車両用摩擦係合装置の耐久性が損なわれる可能性があった。

0005

本発明は以上の事情背景として為されたものであり、その目的とするところは、温度の推定精度を一層高めることができる車両用摩擦係合装置の温度推定装置を提供することにある。

課題を解決するための手段

0006

本発明者等は、以上の事情を背景として種々検討を重ねた結果、摩擦係合装置の入力軸および出力軸を回転可能に支持する軸受の発熱が、摩擦係合装置の発熱に無視できない大きさで影響していることを見いだした。本発明はかかる知見に基づいて成されたものである。

0007

すなわち、本発明の要旨とするところは、車両の動力伝達経路に設けられた摩擦係合装置の温度を推定する車両用摩擦係合装置の温度推定装置であって、前記摩擦係合装置の外周部に位置する部材の発熱状態に基づいてその摩擦係合装置の温度を推定する温度推定手段を、含むことにある。

発明の効果

0008

このようにすれば、温度推定手段は、摩擦係合装置の外周部に位置する部材の発熱状態に基づいてその摩擦係合装置の温度を推定することから、摩擦係合装置の温度の推定精度が一層高められる。

0009

ここで、好適には、前記摩擦係合装置の外周部に位置する部材は、その摩擦係合装置の入力軸を回転可能に支持する入力側軸受およびその摩擦係合装置の出力軸を回転可能に支持する出力側軸受の少なくとも一方である。このようにすれば、軸方向或いは軸に直角な方向の負荷を受けつつ回転させられることにより、比較的多くの熱を発生する入力側軸受および出力側軸受の少なくとも一方の発熱状態に基づいて摩擦係合装置の温度が正確に推定される。

0010

また、好適には、前記温度推定手段により推定された前記摩擦係合装置の温度に基づいてその摩擦係合装置を制御する摩擦係合制御手段がさらに設けられる。このようにすれば、温度推定手段による推定温度に基づいて摩擦係合装置が制御されるので、摩擦係合装置の耐久性が高められる。

0011

また、好適には、前記温度推定手段により逐次推定される温度を、前記摩擦係合装置における温度上昇時定数よりも短い値の時定数で逐次平滑化処理する平滑化処理手段が、さらに設けられる。このようにすれば、前記温度推定手段により逐次推定される温度が平滑化処理手段によって逐次平滑化されるので、信号変動の影響を受け難くなって安定した推定が行われる。また、平滑化処理手段により、前記摩擦係合装置における温度上昇の時定数よりも短い値の時定数で推定温度が平滑化されるので、実際の温度よりも早期に温度上昇を把握できる利点がある。

0012

また、好適には、前記車両は4輪駆動車両であり、前記摩擦係合装置は、その車両のトランファと前部差動歯車装置或いは後部差動歯車装置との間に設けられて前輪或いは後輪へのトルク配分を行うトルク配分クラッチである。

0013

また、好適には、前記摩擦係合制御手段は、前記温度推定手段により逐次推定され且つ前記平滑化処理手段により逐次平滑化された推定温度が予め設定された判断基準値を越えると、前記摩擦係合装置を解放させるものである。このようにすれば、摩擦係合装置の過熱状態となるとその摩擦係合装置が解放されるので、その摩擦係合装置の耐久性が高められる。

0014

また、好適には、前記温度推定手段は、前記摩擦係合装置の摩擦部材仕事率に関連する量と前記軸受の仕事率に関連する量とに基づいて、その摩擦係合装置の温度を推定するものである。このようにすれば、摩擦係合装置の摩擦部材の仕事率と軸受の仕事率とに基づいて摩擦係合装置の温度が推定されるので、温度の推定精度が一層高められる。

0015

以下、本発明の一実施例を図面に基づいて詳細に説明する。

0016

図1は、本発明の一実施例の温度推定装置を備えた車両の動力伝達装置を示している。図において、原動機として機能するエンジン10には、トルクコンバータ自動変速機12、前部差動歯車装置14、およびトランスファ16を収容するトランクアクスルハウジング18が締結されている。これにより、エンジン10の出力トルクは、トルクコンバータ付自動変速機12、前部差動歯車装置14、左右1対車軸20、22を介して左右1対の前輪24、26へ伝達される一方、上記トルクコンバータ付自動変速機12、トランスファ16、プロペラシャフト28、トルク配分クラッチとして機能する電磁クラッチ30、後部差動歯車装置32、左右1対の車軸34、36を介して左右1対の後輪38、40へ伝達されるようになっている。

0017

上記電磁クラッチ30は、エンジン10から前輪24、26と後輪38、40とへそれぞれ伝達されるトルクの割合を調節するためのトルク配分クラッチとして機能するものであって、プロペラシャフト28に接続されてそれと共に回転する入力側摩擦板42と、後部差動歯車装置32のドライブピニオン44に接続されてそれと共に回転する出力側摩擦板46と、それら入力側摩擦板42と出力側摩擦板46とを電磁力に従って押圧することにより相互に摩擦係合させる電磁ソレノイド48とを基本的に備える摩擦係合装置であって、後述の電子制御装置110からの指令値tref に対応した大きさの伝達トルクを発生するように構成されている。上記電磁クラッチ30が解放された場合には、エンジン10から出力されるトルクの100%が前輪24、26へ伝達されるが、電磁クラッチ30が完全係合された場合には、エンジン10から出力されるトルクの50%が前輪24、26へ伝達され、残りの50%が後輪38、40へ伝達されるので、本実施例では、上記電磁クラッチ30によるトルク配分調節範囲は、前輪と後輪との重量配分比が0.5:0.5である場合には、1:0から0.5:0.5の間までのトルク配分比範囲となっている。一般には、電磁クラッチ30が完全係合された場合には、前後輪の重量配分相当に前後輪のトルクが分配される。本実施例では、電磁クラッチ30により前輪駆動状態から直結4WDまで前後輪のトルクを調節できる。

0018

図2に詳しく示すように、電磁クラッチ30は、プロペラシャフト28に連結されるユニバーサルジョイント50およびクラッチドラム52を両軸端に有し、クラッチハウジング54によりベアリング(入力側軸受)56を介して回転可能に支持された入力軸58と、その入力軸58に対して同心となる状態でクラッチハウジング54によりベアリング(出力側軸受)60を介して回転可能に支持された出力軸62と、入力軸58の軸端面相対回転可能に嵌合された状態でその入力軸58と連結されたクラッチロータ64と、回転不能となるように非回転部材であるクラッチハウジング54の突起65に係合させられた状態でベアリング66を介して入力軸58に支持された電磁ソレノイド48と、電磁ソレノイド48の磁力により吸引される環状磁性部材68を有してクラッチドラム52の内周面とクラッチロータ64の外周面との間に設けられ、その電磁ソレノイド48の磁力によって比較的小さな摩擦トルクが発生させられるコントロールパイロットクラッチ70と、そのコントロールクラッチ70からの摩擦トルクが伝達されるカムリング72とそのカムリング72に接触するボールカム74とを有し、上記コントロールクラッチ70を介して伝達された比較的小さな回転力スラスト方向(軸心方向)の力に変換し且つ倍力して環状押圧部材76に伝達する押圧装置78と、軸方向において互いに重ねられた状態でクラッチドラム52の内周面およびクラッチロータ64の外周面に対して軸方向の移動可能且つ軸まわりの相対回転不能に設けられて、上記環状押圧部材76からのスラスト方向の力により押圧される前記入力側摩擦板42および出力側摩擦板46とを備え、たとえば図3に示す特性に従って、電磁ソレノイド48に供給される駆動電流に対応した大きさの伝達トルクを発生させる。

0019

図1に戻って、車両には、4輪駆動モードを選択するときに操作される4輪駆動選択スイッチ80、左前輪24の回転速度を検出する車輪速度センサ82、右前輪26の回転速度を検出する車輪速度センサ84、左後輪38の回転速度を検出する車輪速度センサ86、右後輪40の回転速度を検出する車輪速度センサ88、車両の前後加速度すなわち走行方向の加速度GX を検出する前後Gセンサ90、車両の左右加速度すなわち横方向の加速度GY を検出する左右Gセンサ92、ステアリングホイール93により操作される車両の舵角を検出する舵角センサ94、アクセルペダルにより操作されるスロットル開度を検出するスロットルセンサ96、エンジン10の回転速度を検出するエンジン回転速度センサ98、自動変速機12の実際のギヤ段すなわちシフト位置を検出するシフト位置センサ100、ブレーキペダル102が操作されたことを検出するブレーキセンサ104、パーキングブレーキレバー106が操作されたことを検出するPBブレーキセンサ108がそれぞれ設けられており、それらのスイッチ或いはセンサからは、4輪駆動モードを選択されたことを示す信号S4WD、左前輪24の回転速度NFLを示す信号SNFL、右前輪26の回転速度NFRを示す信号SNFR、左後輪38の回転速度NRLを示す信号SNRL、右後輪40の回転速度NRRを示す信号SNRR、前後加速度GX を示す信号SGX 、左右(横)加速度GY を示す信号SGY 、車両の舵角δを示す信号Sδ、スロットル開度θthを示す信号Sθ、エンジン10の回転速度NE を示す信号SNE 、シフト位置SPを示す信号SSP、ブレーキペダル102の操作を示す信号SBK、パーキングブレーキレバー106の操作を示す信号SPBが、トルク配分制御用の電子制御装置110へ供給される。

0020

上記前後Gセンサ90および左右Gセンサ92は、比較的大きな質量をもった部材とその部材に作用する力すなわち加速度を検出する圧電素子とを備えた圧電型や、比較的大きな質量をもった部材とその部材に加えられる加速度による変位を元位置に保つような平衡力を電磁力にて発生させる電磁コイルとを備えてその電磁コイルの駆動電流に基づいて加速度を検出するサーボ型などにより構成されている。

0021

上記電子制御装置110は、CPU、RAM、ROM、入出力インターフェースなどを含む所謂マイクロコンピュータであって、CPUはRAMの記憶機能を利用しつつ予めROMに記憶されたプログラムを実行することにより上記の入力信号を処理し、電磁クラッチ30へ制御信号を出力するとともに、電磁クラッチ30の作動中を示す作動表示灯112および電磁クラッチ30の異常を示す異常表示灯114を表示させる。図4は、上記電子制御装置110の構成例を詳細に示すものである。エンジン制御および変速制御用電子制御装置115からは、スロットル開度θth、自動変速機12のギヤ段、エンジン系フェイルを表す信号とエンジン10の回転速度に対応した周波数エンジンパルス信号が電子制御装置110に供給される。電子制御装置110は、ABS制御装置116および4WD用制御装置117と、指令値tref を表す指令信号に応じて電磁クラッチ30に制御電流を出力する駆動回路118とを備えている。

0022

図5は、上記電子制御装置110の制御機能の要部を説明する機能ブロック線図である。図5において、トルク配分クラッチ制御手段120は、たとえば発進時制御旋回走行時制御通常走行時制御制動時制御など、車両の前輪および後輪のトルク配分を制御する複数種類の制御モードの中のいずれか1つを、車両状態に基づいて択一的に選択し、選択した制御モードにおいて予め設定された制御式に従って、電磁クラッチ30の伝達トルク或いはその電磁クラッチ30に供給すべき駆動電流に対応する大きさの指令値tref を表す制御信号SCを出力すると共に、作動表示灯112を点灯させる。たとえば、4輪駆動選択スイッチ80によって4輪駆動モードが選択されているとき、ブレーキセンサ104により主ブレーキの操作が検出されると制動時制御が選択される。また、たとえば図6に示す関係から車速Vと車両舵角δとで示される走行状態に基づいて発進時制御(図6の)、旋回走行時制御(図6の)、通常走行時制御(図6の)のいずれかが選択されるのである。

0023

上記発進時制御では、車両状態に応じた最大のトラクションを得るために、前輪24、26と後輪38、40とに対する車両の重量配分に相当するトルク配分となるように電磁クラッチ30が制御されたり、舵角δに応じて後輪38、40への伝達トルクを制限するように電磁クラッチ30が制御される。また、上記旋回走行時制御では、特に路面摩擦係数が小さい圧雪路或いは凍結路における旋回走行中操縦定性を高めるために、たとえばアンダーステアオーバーステアとの中間の中立ステアとなる目標ヨーレート(重心を通る鉛直線まわりの旋回角速度)に実際のヨーレート追従するように、電磁クラッチ30が制御される。また、上記通常走行時制御では、基本的には重量配分に対応したトルク配分となるように電磁クラッチ30の入力側および出力側の回転速度差が発生すると伝達トルクが大きくなるようにされるが、燃費を高めるために直進走行などのような4輪駆動が不要なときには可及的に締結力を小さくするように、電磁クラッチ30が制御される。また、上記制動時制御では、ABS制御やVSC制御との制御干渉を回避するために、ブレーキペダル102が操作されると、ABS制御が開始されるまでは電磁クラッチ30が締結されてエンジンブレーキ力を4輪に分配させるが、ABS制御が開始されると締結力が小さくされ、またVSC制御が開始されると解放されるように、電磁クラッチ30が制御される。

0024

入力トルク算出手段122は、エンジン10のプロペラシャフト28まわりの出力トルク(車両の駆動トルク)すなわち電磁クラッチ30の入力トルクtin(N・m)を、たとえば図7に示す予め記憶された関係から実際のエンジン回転速度NE (rpm)およびスロットル開度θth(%)或いは吸入空気量Qに基づいて逐次算出する。この入力トルク算出手段122では、予め設定された時間幅を有して時間経過とともに移動させられる移動区間内に得られた複数個の入力トルクtinの平均値すなわち移動平均値として入力トルクtinavが算出される。ここで、上記入力トルクtinは、前輪24、26側へ配分されるトルクtf と電磁クラッチ30から後輪38、40側へ配分されるトルクtr との和(tin=tf +tr )として定義される。上記後輪38、40側へ配分されるトルクtr は電磁クラッチ30の伝達トルクであり、定常状態では電磁クラッチ30に対する指令値tref に対応している。

0025

回転速度差算出手段124は、電磁クラッチ30の入力軸58の回転速度Nfを前輪回転速度NFLおよびNFRの平均値〔(NFL+NFR)/2〕と前部差動歯車装置14のギヤ比とに基づいて算出するとともに、電磁クラッチ30の出力軸62の回転速度Nr を後輪回転数度NRLおよびNRRの平均値〔(NRL+NRR)/2〕と後部差動歯車装置32のギヤ比とに基づいて算出し、入力軸58の回転速度Nf から出力軸62の回転速度Nr を差し引くことにより、入力軸58と出力軸62との回転速度差ΔN(rpm)すなわち電磁クラッチ30の差動(スリップ)回転数ΔN(=Nf −Nr )を算出し、温度推定手段210へ供給する。

0026

温度推定手段210は、数式1に示す予め記憶された温度推定式から、実際の入力軸回転速度Nf 、出力軸回転速度Nr 、回転速度差ΔN、電磁クラッチ30の伝達トルクtr (≒トルク指令値tref )に基づいて、電磁クラッチ30の温度飽和状態における温度Tempcを逐次推定する。この数式1において、KA およびKBは、予め実験的に求められた定数である。また、TC は、最高外気温度に対応する定数である。数式1において、その右辺第1項は、電磁クラッチ30の入力軸58を回転可能に支持するベアリング56の仕事率に対応するものであり、定数KA はその仕事率が継続したときに到達する飽和温度に対応させるものである。また、その数式1の右辺第2項は、電磁クラッチ30の出力軸62を回転可能に支持するベアリング60の仕事率に対応するものであり、定数KB はその仕事率が継続したときに到達する飽和温度に対応させるものである。また、数式1の右辺第3項は、電磁クラッチ30の摩擦板42、46の仕事率に対応するものであり、定数KC はその仕事率が継続したときに到達する飽和温度に対応させるものである。

0027

Tempc=KA ・Nf +KB・Nr +KC ・tr ・ΔN+TC ・・・(1)

0028

平滑化処理手段212は、図8に示すように、上記温度推定手段210により逐次推定される電磁クラッチ30の推定温度Tempcを、たとえばローパスフィルタ処理などを用いて逐次平滑化し、平滑化した推定温度Tempc1 を推定温度Tempcとして出力する。このローパスフィルタ処理では、その時定数が前記電磁クラッチ30の実際の温度上昇の時定数(数十分程度)よりも充分に短い値に設定されている。これにより、図9に示すように、推定温度Tempc(図9の1点鎖線)に基づいて実際の温度上昇(図9実線)よりも早期に電磁クラッチ30の温度を知ることができ、その推定温度Tempcにより過熱が判断されれば、電磁クラッチ30の損傷を回避できる。上記ローパスフィルタ処理は、たとえば数式2に従って実行される。数式2において、KLP1は、ローパスフィルタカットオフ周波数f(Hz)とロジック演算周期タイムステップΔとの函数〔KLP1=1/(2πfΔ+1)〕であり、KLP2も、ローパスフィルタのカットオフ周波数fとタイムステップΔとの函数{KLP2=〔1−1/(2πfΔ+1)〕}である。上記ローパスフィルタのカットオフ周波数fを小さくするほど、フィルタ処理値である推定温度Tempc1 の時間的変化率が抑制され、パラメータの変動やノイズによる影響が好適に防止される。

0029

Tempc1 =KLP1・Tempc1 +KLP2・Tempc ・・・(2)

0030

温度判定手段214は、上記平滑化された推定温度Tempc1 が予め設定された温度判断基準値TJ を越えたか否かを判断し、越えた場合には過熱信号を前記トルク配分クラッチ制御手段120へ出力してそれに電磁クラッチ30を優先的に解放させる。すなわち、トルク配分クラッチ制御手段120は、その温度判定手段214から過熱信号が出力されると、電磁クラッチ30へ出力される指令値tref をとして電磁クラッチ30を優先的に解放させるのである。この意味において、トルク配分クラッチ制御手段120は、温度推定手段210により推定された電磁クラッチ30の推定温度Tempcに基づいてその電磁クラッチ30を制御する摩擦係合制御手段としても機能している。なお、上記温度判断基準値TJ は、電磁クラッチ30の摩擦板42、46や電磁ソレノイド48などの耐久性に影響を与える程の過熱温度であるか否かを判断するための値であり、その過熱温度或いはそれより余裕値だけ小さい値に設定される。

0031

図10は、電子制御装置110の制御作動の要部を説明するフローチャートであって、電磁クラッチ30の温度を推定するルーチンを示している。図10のステップ(以下、ステップを省略する)SK1において入力信号が読み込まれた後、前記回転速度差算出手段124に対応するSK2において、電磁クラッチ30の入力軸58の回転速度Nf が前輪回転速度NFLおよびNFRの平均値〔(NFL+NFR)/2〕と前部差動歯車装置14のギヤ比とに基づいて算出されるとともに、電磁クラッチ30の出力軸62の回転速度Nr が後輪回転数度NRLおよびNRRの平均値〔(NRL+NRR)/2〕と後部差動歯車装置32のギヤ比とに基づいて算出され、それら入力軸58の回転速度Nf から出力軸62の回転速度Nr を差し引くことにより、入力軸58と出力軸62との回転速度差ΔN(rpm)が算出される。

0032

次いで、前記温度推定手段210に対応するSK3において、数式1に示す予め記憶された温度推定式から、実際の入力軸回転速度Nf 、出力軸回転速度Nr、回転速度差ΔN、電磁クラッチ30の伝達トルクtr (≒トルク指令値tref)に基づいて、電磁クラッチ30の温度飽和状態における温度Tempcが逐次推定される。また、前記平滑化処理手段212に対応するSK4においては、上記SK3において逐次推定される電磁クラッチ30の推定温度Tempcが、たとえばローパスフィルタ処理などを用いて逐次平滑化される。

0033

前記温度判定手段214に対応するSK5では、上記SK4において平滑化された推定温度Tempc1 が予め設定された温度判断基準値TJ を越えたか否かが判断される。このSK5の判断が否定された場合は、SK6が実行されないが、肯定された場合は、電磁クラッチ30の過熱状態或いは過熱が予想される状態であるから、前記摩擦係合制御手段に対応するSK6において、電子制御装置110から電磁クラッチ30へ出力されるトルク指令値(制御量)tref が「0」に設定され、続くSK7においてそのトルク指令値tref (=0)が駆動回路118へ出力されることにより、電磁クラッチ30が優先的に解放される。

0034

上述のように、本実施例によれば、温度推定手段210(SK3)により、電磁クラッチ(摩擦係合装置)30の外周部に位置する部材であるベアリング56、60の発熱状態に基づいてその電磁クラッチ30の温度Tempcが推定されることから、電磁クラッチ30の温度の推定精度が一層高められる。すなわち、電磁クラッチ30の外周部に位置して入力軸58を回転可能に支持するベアリング(入力側軸受)56および出力軸62を回転可能に支持するベアリング(出力側軸受)60の発熱状態に基づいて、電磁クラッチ30の温度Tempcが推定されることから、軸方向或いは軸に直角な方向の負荷を受けつつ回転させられることにより比較的多くの熱を発生するベアリング56、60の発熱状態が考慮され、電磁クラッチ30の温度Tempcが一層正確に推定されるのである。

0035

また、本実施例によれば、温度推定手段210(SK3)により推定された電磁クラッチ30の推定温度Tempcに基づいてその電磁クラッチ30を制御するトルク配分クラッチ(摩擦係合)制御手段120(SK6)が設けられていることから、電磁クラッチ30の耐久性が高められる。

0036

また、本実施例によれば、温度推定手段210(SK3)により逐次推定される推定温度Tempcを、電磁クラッチ30における温度上昇の時定数よりも短い値の時定数で逐次平滑化処理する平滑化処理手段212(SK4)が設けられていることから、温度推定手段210(SK3)により逐次推定される温度Tempcが平滑化処理手段212(SK4)によって逐次平滑化されるので、信号変動の影響を受け難くなって安定した推定が行われる。また、その平滑化処理手段212(SK4)により、電磁クラッチ30における温度上昇の時定数よりも短い値の時定数で推定温度Tempcが平滑化されるので、実際の温度よりも早期に温度上昇を把握できる利点がある。

0037

また、本実施例によれば、トルク配分クラッチ(摩擦係合)制御手段120(SK6)は、温度推定手段210(SK3)により逐次推定され且つ平滑化処理手段212(SK4)により逐次平滑化された推定温度Tempc1 が予め設定された判断基準値TJ を越えると、電磁クラッチ30を解放させるものであることから、電磁クラッチ30の過熱状態或いはそれが予測される状態となるとそれが直ちに解放されるので、その電磁クラッチ30の耐久性が高められる。

0038

また、本実施例によれば、温度推定手段210(SK3)は、電磁クラッチ30の摩擦板42、46の仕事率に関連する量とベアリング56、60の仕事率に関連する量とに基づいて、その電磁クラッチ30の温度を推定するものであるので、電磁クラッチ30の温度の推定精度が一層高められる。

0039

以上、本発明の一実施例を図面に基づいて説明したが、本発明はその他の態様においても適用される。

0040

たとえば、前述の温度推定手段210は、入力軸58を回転可能に支持するベアリング56、および出力軸62を回転可能に支持するベアリング60の仕事率を加味した算出式(数式1)から電磁クラッチ30の推定温度Tempcを算出していたが、それらベアリング56および60のうちの相対的に影響度の大きい側だけを加味した算出式により電磁クラッチ30の推定温度Tempcを算出してもよい。

0041

また、前記ベアリング56および60は、複数個の転動体を備えたころがり軸受であったが、摺接面を介して荷重を受けるメタル軸受であっても差し支えない。

0042

また、前記温度推定手段210においては、ベアリング56および60の仕事率を加味して推定温度Tempcを算出するために、数式1に示す右辺第1項および第2項において、入力軸回転速度Nf および出力軸回転速度Nr が用いられていたが、それらの入力軸回転速度Nf および出力軸回転速度Nr に替えて、電磁クラッチ30のハウジングから温度センサにより検出される温度が用いられてもよい。要するに、電磁クラッチ30の外周部に位置する部材の発熱状態を表すパラメータが用いられればよいのである。

0043

また、前述の平滑化処理手段212は、ローパスフィルタ処理を用いて推定温度Tempcを平滑化するものであったが、予め設定された移動区間内の平均値を求めることにより平滑化するものであってもよい。

0044

また、前述の実施例の電磁クラッチ30は、プロペラシャフト28と後部差動歯車装置32との間に設けられるものであったが、所謂センターデフの差動を制限するためにそれに並列に設けられた差動制限クラッチ、トランスファと前部差動歯車装置との間に設けられたクラッチ、プロペラシャフト28とそれに連結された差動歯車装置の出力側の1対の車軸との3軸のうちの何れかの2軸間に設けられたクラッチなどであってもよい。要するに、原動機から複数の車輪へそれぞれ伝達されるトルクの割合を調節する電磁式油圧式などのトルク配分クラッチであればよいのである。

0045

また、前述の実施例において、原動機として機能するエンジン10は、電気モータや電気モータとエンジンとのハイブリッドであっても差し支えない。

0046

その他一々例示はしないが、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。

図面の簡単な説明

0047

図1本発明の一実施例の電磁クラッチ用温度推定装置を備えた車両の動力伝達経路を説明する図である。
図2前輪および後輪のトルク配分を行うために、図1の動力伝達経路に設けられた電磁クラッチの構成を説明する断面図である。
図3図2の電磁クラッチのクラッチ特性を説明する特性図である。
図4図1の電子制御装置の構成例を詳細に説明する図である。
図5図1の電子制御装置の制御機能の要部を説明する機能ブロック線図である。
図6図5のトルク配分クラッチ制御手段において複数種類の制御モードを切り換えるために予め記憶された関係を示す図である。
図7図5の入力トルク算出手段において入力トルクを算出するために予め記憶された関係を示す図である。
図8図5の温度推定手段により求められた推定温度Tempcと、平滑化処理手段により平滑化された後の推定温度Tempc1 とを対比して例示する図である。
図9図5の温度推定手段により求められ且つ平滑化処理手段により平滑化された後の推定温度Tempcと、電磁クラッチの実際の温度とを対比して例示する図である。
図10図4の電子制御装置の制御作動の要部を説明するためのフローチャートであって、クラッチ温度推定ルーチンを示す図である。

--

0048

30:電磁クラッチ(トルク配分クラッチ、摩擦係合装置)
56:ベアリング(入力側軸受)
60:ベアリング(出力側軸受)
120:トルク配分クラッチ制御手段(摩擦係合制御手段)
124:回転速度差算出手段
210:温度推定手段
212:平滑化処理手段

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • アルプスアルパイン株式会社の「 操作装置及び該操作装置の制御方法」が 公開されました。( 2019/05/23)

    【課題・解決手段】操作者が操作した際に、操作者に対して磁気粘性流体を用いて良好な操作感触を与えることができる操作装置及び操作装置の制御方法を提供することを目的とする。操作装置100は、操作者により動作... 詳細

  • 株式会社栗本鐵工所の「 回転制動装置」が 公開されました。( 2019/05/23)

    【課題】回転遠心力により磁性体を移動させ、回転速度に応じて制動力を変化させる回転制動装置において、磁石から磁束が漏れて磁気粘性流体に作用して基底トルクが大きくなってしまうことを防止する。【解決手段】ロ... 詳細

  • 中央発条工業株式会社の「 ばね組立体、付勢体及び押圧方法」が 公開されました。( 2019/05/23)

    【課題】大きい押圧力から小さい押圧力へ切替えながら押圧できる、ばね組立体、付勢体及び押圧方法を提供する。【解決手段】第1の突出部3が第1のプレート2から突出しており、突起部4が、第1の突出部3から、第... 詳細

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ